Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = organic fraction municipal solid waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 262
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

22 pages, 1279 KiB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 394
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

22 pages, 2129 KiB  
Article
Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge
by Rodolfo Daniel Silva-Martínez, Oscar Aguilar-Juárez, Lourdes Díaz-Jiménez, Blanca Estela Valdez-Guzmán, Brenda Aranda-Jaramillo and Salvador Carlos-Hernández
Fermentation 2025, 11(7), 398; https://doi.org/10.3390/fermentation11070398 - 11 Jul 2025
Viewed by 506
Abstract
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are [...] Read more.
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are established to lay the groundwork for further development of feasible industrial-scale projects. In this study, the biochemical hydrogen potential of OFMSW using a 7 L batch reactor at mesophilic conditions was evaluated. Parameters such as pH, redox potential, temperature, alkalinity, total solids, and substrate/inoculum ratio were adjusted and monitored. Biogas composition was analyzed by gas chromatography. The microbial characterization of SS and post-reaction percolate liquids was determined through metagenomics analyses. Results show a biohydrogen yield of 38.4 NmLH2/gVS OFMSW, which forms ~60% of the produced biogas. Aeration was proven to be an efficient inoculum pretreatment method, mainly to decrease the levels of methanogenic archaea and metabolic competition, and at the same time maintain the required total solid (TS) contents for high-solids conditions. The microbial community analysis reveals that biohydrogen production was carried out by specific anaerobic and aerobic bacteria, predominantly dominated by the phylum Firmicutes, including the genus Bacillus (44.63% of the total microbial community), Clostridium, Romboutsia, and the phylum Proteobacteria, with the genus Proteus. Full article
(This article belongs to the Special Issue Valorization of Food Waste Using Solid-State Fermentation Technology)
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

15 pages, 1564 KiB  
Article
Organic Waste and Wastewater Sludge to Volatile Fatty Acids and Biomethane: A Semi-Continuous Biorefinery Approach
by Paolo S. Calabrò, Domenica Pangallo, Mariastella Ferreri, Altea Pedullà and Demetrio A. Zema
Recycling 2025, 10(4), 125; https://doi.org/10.3390/recycling10040125 - 21 Jun 2025
Cited by 1 | Viewed by 471
Abstract
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) [...] Read more.
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) and the organic fraction of municipal solid waste (OFMSW) as a strategy for integrated VFA and biogas production. Semi-continuous experiments were carried out to assess the effect of the substrates ratio (WAS:OFMSW = 90:10 and 30:70), hydraulic retention time (HRT), and pH control (5, 9, no control) on VFA yield and composition. Results showed that higher OFMSW content and alkaline conditions favoured VFA production, with a maximum yield of 144.9 mgHAc·gVS−1 at pH 9 and 70:30 ratio. Acetate dominated, while butyrate production peaked at 114.1 mgHBu·gVS−1 under high sludge conditions. However, the addition of alkali required for pH control may lead to excessive accumulation of alkaline-earth metal ions, which can disrupt biological processes due to their potential toxicity. Anaerobic digestion of fermentation residues enhanced biomethane yields significantly (0.27 NL·gVS−1 vs. 0.05 NL·gVS−1 from raw sludge). The proposed process demonstrates potential for converting wastewater treatment plants into biorefineries, maximising resource recovery while reducing environmental impact. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Graphical abstract

13 pages, 1072 KiB  
Article
Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
by Piergiorgio Romano, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli and Laura Rustioni
Environments 2025, 12(6), 190; https://doi.org/10.3390/environments12060190 - 5 Jun 2025
Viewed by 1057
Abstract
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic [...] Read more.
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic waste into a resource, such as compost. This study explores the effectiveness of compost derived from the organic fraction of municipal solid waste (MSW) not only as a mulching technique but also as a potential biological agent for weed control through allelopathic mechanisms in vineyards. Experiments were conducted both in the field and under controlled conditions. In the field, compost was applied under the vine row as mulch and incorporated into the soil. Under controlled conditions, germination tests were performed to assess weed inhibition at different compost concentrations. Field results demonstrated that compost applications, both as mulch and incorporated into the soil, significantly inhibited weed growth during the first period after application compared to the tilled control without compost. Thus, this inhibition is not limited to physical mulching; it also applies to the release of allelopathic compounds from compost. Controlled condition experiments showed strong inhibition of germination in Cichorium intybus and Foeniculum vulgare seeds, confirming the anti-germinative effects of compost, particularly on small-seeded weed species. Compost is a promising tool for sustainable vineyard management, offering fertilization and weed-suppression benefits while reducing herbicide use. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

23 pages, 2756 KiB  
Article
Improving Biogas Production and Organic Matter Degradation in Anaerobic Co-Digestion Using Spent Coffee Grounds: A Kinetic and Operational Study
by Khalideh Al bkoor Alrawashdeh, La’aly A. Al-Samrraie, Rebhi A. Damseh, Abeer Al Bsoul and Eid Gul
Fermentation 2025, 11(6), 295; https://doi.org/10.3390/fermentation11060295 - 22 May 2025
Viewed by 903
Abstract
This study evaluates the potential of spent coffee grounds (SCGs) as a co-substrate to improve anaerobic co-digestion (AcD) performance, with a focus on biogas yield, methane (CH4) content, and the removal of volatile solids (VS) and total chemical oxygen demand (TCOD). [...] Read more.
This study evaluates the potential of spent coffee grounds (SCGs) as a co-substrate to improve anaerobic co-digestion (AcD) performance, with a focus on biogas yield, methane (CH4) content, and the removal of volatile solids (VS) and total chemical oxygen demand (TCOD). Biochemical methane potential (BMP) tests were conducted in two stages. In Stage I, SCGs were blended with active sludge (AS) and the organic fraction of municipal solid waste (OFMSW) at varying ratios. The addition of 25% SCGs increased biogas production by 24.47% (AS) and 20.95% (OFMSW), while the AS50 mixture yielded the highest methane yield (0.302 Nm3/kg VS, 66.42%). However, SCG concentrations of 75% or higher reduced process stability. In Stage II, we evaluated the impact of mixing. The AS25 configuration maintained stable biogas under varying mixing conditions, showing system resilience, whereas OFMSW25 showed slight improvement. Biogas production kinetics were modeled using modified Gompertz, logistic, and first-order equations, all of which demonstrated high predictive accuracy (R2 > 0.97), with the modified Gompertz model offering the best fit. Overall, SCGs show promise as a sustainable co-substrate for the improvement of methane recovery and organic matter degradation in AcD systems when applied at optimized concentrations. Full article
(This article belongs to the Special Issue Anaerobic Digestion: Waste to Energy: 2nd Edition)
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
Sustainable Management of the Organic Fraction of Municipal Solid Waste: Microbiological Quality Control During Composting and Its Application in Agriculture on a Pilot Scale
by Natividad Miguel, Andrea López, Sindy Dayana Jojoa-Sierra, Jairo Gómez and María P. Ormad
Sustainability 2025, 17(9), 4169; https://doi.org/10.3390/su17094169 - 5 May 2025
Viewed by 582
Abstract
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural [...] Read more.
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural application on a pilot scale. This is necessary to ensure effective sanitization of the compost and that its application does not pose any risk. The microbiological parameters considered were as follows: Salmonella sp., Escherichia coli, total coliforms, and Enterococcus sp. The physicochemical parameters moisture, total solids, organic matter, nitrogen, phosphorus, and heavy metals were also evaluated. Salmonella sp. was not detected throughout the process, and the concentration of the three microbiological indicators decreased to the sanitary conditions recommended by legislation. As a result, the compost obtained complied with the requirements set out in the regulations on fertilizer products and was highly stabilized and mature for application on agricultural land. Tests were carried out on the soil before, during and after the vegetative cycle of the crop and on the irrigation water. The soil results showed that the addition of the organic amendment did not alter the populations of the tested micro-organisms at the end of the crop growing cycle. Thus, an adequate treatment of the residues allows them to be used in a sustainable way, but an adequate monitoring of the operational parameters is necessary to ensure this. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Graphical abstract

44 pages, 2521 KiB  
Article
Evaluation of Environmental Sustainability of Biorefinery and Incineration with Energy Recovery Based on Life Cycle Assessment
by Alejandra Gabriela Yáñez-Vergara, Héctor Mario Poggi-Varaldo, Guadalupe Pérez-Morales, Perla Xochitl Sotelo-Navarro, América Alejandra Padilla-Viveros, Yasuhiro Matsumoto-Kuwahara, Teresa Ponce-Noyola and Rocío Sánchez-Pérez
Fermentation 2025, 11(4), 232; https://doi.org/10.3390/fermentation11040232 - 21 Apr 2025
Viewed by 658
Abstract
Based on Life Cycle Assessment (LCA) and ISO standards, we compared the global environmental sustainability (ES) of two technologies that process the organic fraction of municipal solid waste (OFMSW) in Mexico. The first technology was a biorefinery (BRF) known as HMEZSNN-BRF (abbreviation for [...] Read more.
Based on Life Cycle Assessment (LCA) and ISO standards, we compared the global environmental sustainability (ES) of two technologies that process the organic fraction of municipal solid waste (OFMSW) in Mexico. The first technology was a biorefinery (BRF) known as HMEZSNN-BRF (abbreviation for Hydrogen-Methane-Extraction-Enzyme-Saccharification/Nanoproduction Biorefinery); it produces the gas biofuels hydrogen (H) and methane (M), organic acids (E), enzymes (Z), saccharified liquors (S), and bionanobioparticles (BNBPs) in a nanoproduction stage (NN). The second technology was incineration with energy recovery (IER). An LCA was performed with a functional unit (FU) of 1000 kg of OFMSW. The BRF generates 166.4 kWh/FU (600 MJ) of net electricity, along with bioproducts such as volatile organic acids (38 kg), industrial enzyme solution (1087 kg), and BNBPs (40 kg). The IER only produces 393 net kWh/FU electricity and 5653 MJ/FU heat. The characterization potential environmental impacts (PEIs) were assessed using SimaPro software, and normalized PEIs (NPEIs) were calculated accordingly. We defined a new variable alpha and the indices σ-τ plane for quantifying the ES. The higher the alpha, the lower the ES. Alpha was the sum of the eighteen NPEIs aligned with the ISO standards. The contributions to PEI and NPEI were also analyzed. Four NPEIs were the highest in both technologies, i.e., freshwater and marine ecotoxicities and human non-carcinogenic and carcinogenic toxicities. For the three first categories, the NPEI values corresponding to IER were much higher than those of the BRF (58.6 and 8.7 person*year/FU freshwater toxicity; 93.5 and 13.6 marine ecotoxicity; 12.1 and 1.8 human non-carcinogenic toxicity; 13.7 and 13.9 human carcinogenic toxicity, for IER and the BRF, respectively). The total α values were 179.1 and 40.7 (person*yr)/FU for IER and the BRF, respectively. Thus, the ES of IER was four times lower than that of the BRF. Values of σ = 0.592 and τ = −0.368 were found; the point defined by these coordinates in the σ-τ plane was located in Quadrant IV. This result confirmed that the BRF in this work is more environmentally sustainable (with restrictions) than the IER in Mexico for the treatment of the OFMSW. Full article
(This article belongs to the Special Issue Microbial Biorefineries: 2nd Edition)
Show Figures

Figure 1

21 pages, 3332 KiB  
Article
Separately Collected Organic Fraction of Municipal Solid Waste Compost as a Sustainable Improver of Soil Characteristics in the Open Field and a Promising Selective Booster for Nursery Production
by Santina Rizzo, Adolfo Le Pera, Miriam Sellaro, Luca Lombardo and Leonardo Bruno
Agronomy 2025, 15(4), 958; https://doi.org/10.3390/agronomy15040958 - 15 Apr 2025
Viewed by 1577
Abstract
The Separately Collected Organic Fraction of Municipal Solid Waste (SC-OFMSW) is the biodegradable kitchen and canteen waste fraction that is separately collected at source and classified by the European Waste Catalogue under code 20 01 08. The utilization of SC-OFMSW Compost has emerged [...] Read more.
The Separately Collected Organic Fraction of Municipal Solid Waste (SC-OFMSW) is the biodegradable kitchen and canteen waste fraction that is separately collected at source and classified by the European Waste Catalogue under code 20 01 08. The utilization of SC-OFMSW Compost has emerged as a sustainable approach to enhancing agricultural soil quality and supporting soil biodiversity and productivity, while also serving as a viable option for disposing of treated urban waste. This study investigates the dose effect of SC-OFMSWC through phytotoxicity and growth assays in Arabidopsis thaliana and Lactuca sativa seeds and seedlings, as well as the impact of the same compost on the chemical and microbiological properties of soil under open field conditions. During the field trial in an agricultural orchard, soil pH, nutrient content, organic matter, and microbial activity following SC-OFMSWC and chemical fertilizer application were evaluated. In the greenhouse trial, a significant increase in germination rate and biomass production was found for L. sativa at a compost concentration of 2.5%, while neutral to negative effects were observed for A. thaliana. In the open field, results indicated significantly increased levels of organic carbon and enhanced microbial biomass and activity, accompanied by a general increase in nutrients, promoting soil health and resilience, with only limited increases in EC values and heavy metal content. These findings underscore the potential of SC-OFMSWC as an effective agricultural soil improver and a promising component in sustainable nursery management practices. Full article
(This article belongs to the Special Issue Composting for Soil Improvement and Removal of Soil Contaminants)
Show Figures

Figure 1

25 pages, 3661 KiB  
Article
The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation
by Maria Isabella Sifola, Linda Carrino, Eugenio Cozzolino, Mario Palladino, Mariarosaria Sicignano, Daniele Todisco and Luisa del Piano
Sustainability 2025, 17(2), 769; https://doi.org/10.3390/su17020769 - 19 Jan 2025
Viewed by 1313
Abstract
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. [...] Read more.
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. villana) on a tobacco crop (dark fire-cured Kentucky type, cv. Foiano) grown under both full (100% of ETc) and deficit (70% of crop evapotranspiration, ETc) irrigation. The treatments are hereafter reported as GM (vetch green manuring) and NGM (no vetch green manuring), FI (full irrigation) and DI (deficit irrigation), and C (compost soil amendment) and NC (no compost soil amendment). The following parameters were calculated: (i) yield of the cured product (CLY, Mg ha−1) at a standard moisture content of 19%; (ii) irrigation water use efficiency (IWUE, kg of cured product m−3 seasonal irrigation volume), nitrogen (N) agronomic efficiency (NAE, kg of cured product kg−1 mineral N by synthetic fertilizers). Dry biomass accumulated in the stem and leaves (Mg ha−1) was also measured at 25, 57, 74, and 92 days after transplanting (DAT). The N recovery from the different plant parts (kg ha−1) was determined at 57 and 74 DAT. The C/N ratio, NO3-N (kg ha−1), the soil organic matter (SOM, %), and the soil contents of P2O5 and K2O (mg kg−1) were also analytically determined at 43, 74, and 116 DAT. Water retention measurements were carried out on soil samples at 116 DAT at 0–0.3 and 0.3–0.6 soil depths. Overall, there was a negative effect of both compost amendment and green manuring on yield. Green manuring and compost soil amendment improved soil chemical characteristics (i.e., SOM and C/N), as well as the plant N recovery, the IWUE, and the NAE. They increased the water retention capacity of the soil when the tobacco crop was deficit-irrigated and appeared to be promising practices to support the deficit irrigation strategy, contributing to reaching good agronomic results, although under the conditions of water shortage, and showing synergistic action in those conditions. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 4538 KiB  
Article
Methodology for Analysis of Microplastics in Fine Fraction of Urban Solid Waste
by Katia Paola Avila-Escobedo, Karen Yazmín Moctezuma-Parra, Juan Carlos Alvarez-Zeferino, Rosa María Espinosa-Valdemar, Perla Xochitl Sotelo-Navarro, Alethia Vázquez-Morillas and Arely Areanely Cruz-Salas
Microplastics 2025, 4(1), 2; https://doi.org/10.3390/microplastics4010002 - 4 Jan 2025
Viewed by 2577
Abstract
This study addresses the pressing need for standardized methodologies to quantify microplastics (MPs) within the fine fraction of municipal solid waste (MSW), often overlooked despite its potential environmental impact. Five extraction protocols were evaluated to identify the most effective method for isolating MPs [...] Read more.
This study addresses the pressing need for standardized methodologies to quantify microplastics (MPs) within the fine fraction of municipal solid waste (MSW), often overlooked despite its potential environmental impact. Five extraction protocols were evaluated to identify the most effective method for isolating MPs in fine waste. These were specifically applied to samples from the Universidad Autónoma Metropolitana and one transfer station in Mexico City. A potassium hydroxide digestion protocol with subsequent flotation and centrifugation steps achieved optimal results, ensuring complete organic matter degradation and high microplastic recovery. Subsequent analyses revealed notable concentrations of MPs, primarily fragments and fibers, with higher abundance at the university site. Statistical tests confirmed significant differences between the sample sites. These findings highlight the vulnerability of MSW fine fractions to microplastic contamination and underline the importance of targeted waste management strategies. This research contributes to understanding microplastic behavior in waste management systems and emphasizes the need for mitigation efforts to prevent environmental contamination. Full article
Show Figures

Figure 1

14 pages, 3296 KiB  
Article
Improving the Methods of Solid Domestic Waste Disposal to Reduce Its Human Impact on the Environment
by Bekzat Baibatyrova, Ayaulym Tileuberdi, Meiram Begentayev, Erzhan Kuldeyev, Ruslan Nyrlybayev, Zhaksylyk Altybayev, Bakhytzhan Sarsenbayev, Aisulu Abduova and Gaukhar Sauganova
Sustainability 2024, 16(24), 11071; https://doi.org/10.3390/su162411071 - 17 Dec 2024
Cited by 1 | Viewed by 1460
Abstract
Kazakhstan is embarking on a fresh approach to managing waste, aiming to recycle and repurpose solid household waste while integrating innovative, eco-friendly technologies for its treatment and disposal. The main goal is to reduce the amount of waste sent to landfills and instead [...] Read more.
Kazakhstan is embarking on a fresh approach to managing waste, aiming to recycle and repurpose solid household waste while integrating innovative, eco-friendly technologies for its treatment and disposal. The main goal is to reduce the amount of waste sent to landfills and instead convert it into more stable forms, lessening its harmful impact on the environment. This effort requires a comprehensive strategy, especially as existing landfills still need to be managed and rehabilitated when they reach capacity. It is essential to use municipal solid waste as a resource for producing various goods, which not only helps in landfill management but also aligns with principles of sustainability. This approach aligns with circular economic principles and helps to reduce the technological impact of landfills on the surrounding environment. The main types of waste in the Aktas landfill were identified as a result of this research: it is glass, of which only 3% is recycled. In our results, the setup allowed for the extraction of valuable components from the fine fraction, which can then be recycled. This enriches the organic material ready for composting (organo-mineral raw material mixture) with food waste. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

13 pages, 1681 KiB  
Article
Comparison Among Thermal Pre-Treatments’ Effectiveness in Increasing Anaerobic Digestibility of Organic Fraction in Municipal Solid Wastes
by Marco De Sanctis, Valerio Guido Altieri, Emanuele Barca, Luigi di Bitonto, Francesco Tedeschi and Claudio Di Iaconi
Energies 2024, 17(24), 6293; https://doi.org/10.3390/en17246293 - 13 Dec 2024
Viewed by 826
Abstract
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study [...] Read more.
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study compares the effectiveness of different thermal pre-treatments in increasing OFMSW anaerobic digestibility. Thermal pre-treatments were compared with OFMSW shredding, considered as the minimum pre-treatment required in order to reduce particles size of the OFMSW. The pre-treatments were performed in autoclave (121 °C and 1.4 bar for 20 min) or in an ad hoc hydrolysis reactor designed for the experimental trial (140 °C and 7 bar for 30 min) with air or nitrogen as gas phase. The thermal pre-treatments affected methane yield (NmLCH4/gVS), depending on the pre-treatment strategy, with autoclaving allowing for an 80% increase with respect to the control run, and leading to a methane yield of 476 ± 194 NmLCH4/gVS. The pre-treatments in the hydrolysis reactor caused a loss of organic matter (due to its volatilization) reducing the organic loading rate of the digester. Nevertheless, the digester performance in terms of COD (chemical oxygen demand) and VSS (volatile suspended solid) removal showed limited differences among the pre-treatments applied and ranged on average 79–94%. Full article
Show Figures

Figure 1

Back to TopTop