Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,449)

Search Parameters:
Keywords = organic acids synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 31608 KiB  
Article
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply
by The Ngoc Phuong Nguyen, Rose Nimoh Serwaa and Jwakyung Sung
Metabolites 2025, 15(8), 519; https://doi.org/10.3390/metabo15080519 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient [...] Read more.
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles. Methods: Seedlings were treated with N-modified nutrient solution, which contained 0% to 120% of the standard nitrogen level (8.5 mM). Results: Nitrogen starvation (N0) significantly reduced plant height (by 11–14%), shoot fresh weight (over 30%) compared to the optimal N supply (N100). Total leaf nitrogen content under N0–N20 was less than half of that in N100, whereas moderate N deficiency resulted in moderate reductions in growth and nitrogen content. Metabolite analysis revealed that N deficiency induced the accumulation of soluble sugars and organic acids (up to threefold), while sufficient N promoted the synthesis of amino acids related to nitrogen assimilation and protein biosynthesis. Statistical analyses (PCA and ANOVA) showed that both genotypes (MB and TYC) and tissue type (upper vs. lower leaves) influenced the metabolic response to nitrogen, with MB displaying more consistent shifts and TYC exhibiting greater variability under moderate stress. Conclusions: These findings highlight the sensitivity of maize seedlings to early nitrogen deficiency, with severity influenced by nitrogen level, tissue-specific position, and genotype; thus underscore the close coordination between physiological growth and primary metabolic pathways in response to nitrogen availability. These findings expand current knowledge of nitrogen response mechanisms and offer practical insights for improving nitrogen use efficiency in maize cultivation. Full article
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264
by Jonathan Uriel Hernández-Alonso, María Alejandra Pichardo-Sánchez, Sergio Huerta-Ochoa, Angélica Román-Guerrero, Oliverio Rodríguez-Fernández, Humberto Vásquez-Torres, Roberto Olayo-González, Roberto Olayo-Valles, Luis Víctor Rodríguez-Durán and Lilia Arely Prado-Barragán
Materials 2025, 18(15), 3577; https://doi.org/10.3390/ma18153577 - 30 Jul 2025
Abstract
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the [...] Read more.
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the synthesis of 3-hydroxy valerate (3HV) and co-polymerization of PHBV by Burkholderia thailandensis E264 (BtE264) was assessed. Thermogravimetric, XRD, NMR, and mechanical characterization were performed on the homopolymer (PHB) and co-polymer (PHBV), and compared to the PHBV-STD. BtE264 produced the co-polymer PHBV when adding any of the three co-substrates. LA showed a higher positive effect on microbial growth (8.4 g∙L−1) and PHBV production (3.91 g∙L−1), representing 78 and 22 mol % of 3HB and 3HV, respectively. The PHBV obtained with LA had a melting temperature (Tm) lower than the PHB homopolymer and presented lower values for melting enthalpies (ΔHf); the degree of crystallization and TGA values indicated that PHBV had better thermal stability. Additionally, FTIR and NMR revealed that BtE264 synthesizes PHBV with an organization in monomeric units (3HB-3HV), suggesting differentiated incorporation of the monomers, improving 3.4 times the break elongation the co-polymer’s tensile properties. This study highlights the co-substrates’ relevance in PHBV synthesis using BtE264 for the first time. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 40
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

19 pages, 3026 KiB  
Article
Gallic, Aconitic, and Crocetin Acids as Potential TNF Modulators: An Integrated Study Combining Molecular Docking, Dynamics Simulations, ADMET Profiling, and Gene Expression Analysis
by Adolat Manakbayeva, Andrey Bogoyavlenskiy, Timur Kerimov, Igor Yershov, Pavel Alexyuk, Madina Alexyuk, Vladimir Berezin and Vyacheslav Dushenkov
Molecules 2025, 30(15), 3175; https://doi.org/10.3390/molecules30153175 - 29 Jul 2025
Viewed by 108
Abstract
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, [...] Read more.
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, followed by detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling and molecular dynamics (MD) simulations for three lead candidates: gallic, aconitic, and crocetin acids. Their effects on TNF gene expression were then assessed in vivo using a mouse leukocyte model. The in silico results indicated that crocetin had the highest TNF binding affinity (−5.6 to −4.6 kcal/mol), while gallic acid formed the most stable protein-ligand complex during MD simulations, and aconitic acid established hydrogen bond interactions. ADMET analysis suggested potential pharmacokinetic limitations, including low permeability. Contrasting its high predicted binding affinity, in vivo gene expression analysis revealed that crocetin stimulated TNF synthesis, whereas gallic and aconitic acids acted as inhibitors. This research explores organic acids as potential TNF modulators, highlighting their complex interactions and providing a foundation for developing these compounds as anti-inflammatory agents targeting TNF-mediated diseases. Full article
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 322
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

23 pages, 1789 KiB  
Review
Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications
by Sara Khan and David D. Boehr
Catalysts 2025, 15(8), 718; https://doi.org/10.3390/catal15080718 - 28 Jul 2025
Viewed by 250
Abstract
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key [...] Read more.
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key enzymes: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase, and tryptophan synthase. We examine the structural diversity and distribution of these enzymes across evolutionary domains, highlighting conserved catalytic mechanisms alongside species-specific regulatory adaptations. The review covers directed evolution strategies that have transformed naturally regulated enzymes into standalone biocatalysts with enhanced activity and expanded substrate scope, enabling synthesis of non-canonical amino acids and complex organic molecules. Industrial applications demonstrate the pathway’s potential for sustainable production of pharmaceuticals, polymer precursors, and specialty chemicals through engineered microbial platforms. Additionally, we discuss the therapeutic potential of inhibitors targeting pathogenic organisms, particularly their mechanisms of action and antimicrobial efficacy. This comprehensive review establishes the shikimate pathway as a paradigmatic system where understanding allosteric networks enables the rational design of biocatalytic platforms, providing blueprints for biotechnological innovation and demonstrating how evolutionary constraints can be overcome through protein engineering to create superior industrial biocatalysts. Full article
Show Figures

Graphical abstract

24 pages, 4278 KiB  
Article
Nanoplastic Disrupts Intestinal Homeostasis in Immature Rats by Altering the Metabolite Profile and Gene Expression
by Justyna Augustyniak, Beata Toczylowska, Beata Dąbrowska-Bouta, Kamil Adamiak, Grzegorz Sulkowski, Elzbieta Zieminska and Lidia Struzynska
Int. J. Mol. Sci. 2025, 26(15), 7207; https://doi.org/10.3390/ijms26157207 - 25 Jul 2025
Viewed by 112
Abstract
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because [...] Read more.
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because they are able to freely cross biological barriers, posing health risks, particularly to developing organisms. Therefore, the aim of the current study was to investigate the toxic potential of polystyrene nanoparticles (PS-NPs) on the jejunum of immature rats. Two-week-old animals were orally exposed to environmentally relevant dose of small PS-NPs (1 mg/kg b.w.; 25 nm) for 3 weeks. We detected a significant accumulation of PS-NPs in the epithelium and subepithelial layer of the intestine, which resulted in significant changes in the expression of genes related to gut barrier integrity, nutrient absorption, and endocrine function. Moreover, increased expression of proinflammatory cytokines was observed together with decreased antioxidant capacity and increased markers of oxidative damage to proteins. Additionally, in the jejunal extracts of exposed rats, we also noted changes in the metabolite profile, mainly amino acids involved in molecular pathways related to cellular energy, inflammation, the intestinal barrier, and protein synthesis, which were consistent with the observed molecular markers of inflammation and oxidative stress. Taken together, the results of the metabolomic, molecular, and biochemical analyses indicate that prolonged exposure to PS-NPs may disrupt the proper function of the intestine of developing organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

34 pages, 800 KiB  
Review
The Role of miRNAs and Extracellular Vesicles in Adaptation After Resistance Exercise: A Review
by Dávid Csala, Zoltán Ádám and Márta Wilhelm
Curr. Issues Mol. Biol. 2025, 47(8), 583; https://doi.org/10.3390/cimb47080583 - 23 Jul 2025
Viewed by 312
Abstract
Resistance exercise can enhance or preserve muscle mass and/or strength. Modifying factors are secreted following resistance exercise. Biomarkers like cytokines and extracellular vesicles, especially small extracellular vesicles, are released into the circulation and play an important role in cell-to-cell and inter-tissue communications. There [...] Read more.
Resistance exercise can enhance or preserve muscle mass and/or strength. Modifying factors are secreted following resistance exercise. Biomarkers like cytokines and extracellular vesicles, especially small extracellular vesicles, are released into the circulation and play an important role in cell-to-cell and inter-tissue communications. There is increasing evidence that physical activity itself promotes the release of extracellular vesicles into the bloodstream, suggesting the importance of vesicles in mediating systemic adaptations following exercise. Extracellular vesicles contain proteins, nucleic acids like miRNAs, and other molecules targeting different cell types and tissues of distant organs. Therefore, extracellular vesicles and encapsulated miRNAs are fine tuners of protein synthesis and are important in the adaptation after resistance training. However, there is a lack of strong data supporting the precise mechanisms of these processes. In this literature review, we collected publications related to miRNA and extracellular vesicle profile changes induced by resistance exercise. To the best of our knowledge, the changes in human extracellular vesicle and microRNA profiles following resistance exercise have not been reviewed yet. We aimed to assess the shortcomings and difficulties characterizing this research area, to summarize the existing results to date, and to propose possible solutions that could help standardize the implementation of future investigations. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

21 pages, 1808 KiB  
Article
The Effect of Semiorganic Iodine-Containing Compounds on the Antibiotic Susceptibility of Pathogenic Microorganisms
by Sabina T. Kenesheva, Seitzhan Turganbay, Ardak B. Jumagaziyeva, Gaukhar Askhatkyzy, Dana A. Askarova, Amir A. Azembayev, Alexandr I. Ilin, Oleg N. Reva and Tatyana A. Karpenyuk
Biomedicines 2025, 13(8), 1790; https://doi.org/10.3390/biomedicines13081790 - 22 Jul 2025
Viewed by 269
Abstract
Objectives: The global rise in multidrug resistance underscores the urgent need for the development of novel and effective antimicrobial agents. Semi-organic iodine-containing complexes, owing to their unique properties, low likelihood of resistance development, and stability under various conditions, represent a promising avenue for [...] Read more.
Objectives: The global rise in multidrug resistance underscores the urgent need for the development of novel and effective antimicrobial agents. Semi-organic iodine-containing complexes, owing to their unique properties, low likelihood of resistance development, and stability under various conditions, represent a promising avenue for the design of new therapeutic strategies. This study describes the synthesis of semi-organic iodine-containing complexes and the in vitro evaluation of their impact on antibiotic susceptibility modulation in the multidrug-resistant pathogenic microorganisms S. aureus and E. coli. Methods: The physicochemical properties of the semiorganic compounds were characterized using UV-Vis spectroscopy, potentiometric, and titrimetric methods. Evaluation of antimicrobial activity was obtained according to CLSI protocols. The impact of semiorganic compounds on the in vitro susceptibility of MDR strains was evaluated by the disk diffusion method. Results: This study evaluated the effects of iodine-containing complexes KC-270 and KC-271 on the antibiotic susceptibility of Staphylococcus aureus BAA-39 and Escherichia coli BAA-196. The most pronounced effect was observed with KC-270 applied during the lag phase, which enhanced the activity of several antibiotics and, in some cases, restored susceptibility. KC-271 exhibited a weaker and more limited impact. The findings suggest that KC-270 has potential as a modulator of antibiotic susceptibility, particularly when administered at early stages of bacterial growth. Conclusions: The results support the ability of amino acid-based iodine coordination compounds to influence the antibiotic susceptibility of pathogenic bacteria, highlighting their potential as adjuvant agents to improve the effectiveness of current antimicrobial therapies. However, although changes in susceptibility were detected, neither compound fully eliminated resistance in the multidrug-resistant strains, indicating the necessity for further research into their mechanisms of action and possible synergistic interactions with antibiotics. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

25 pages, 3583 KiB  
Review
Hyaluronic Acid and Its Synthases—Current Knowledge
by Klaudia Palenčárová, Romana Köszagová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(15), 7028; https://doi.org/10.3390/ijms26157028 - 22 Jul 2025
Viewed by 395
Abstract
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the [...] Read more.
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the food industry. The molecular weight of HA might vary significantly, as it can be less than 10 kDa or reach more than 6000 kDa. There is a strong correlation between variations in its molecular weight and bioactivities, as well as with various pathological processes. Consequently, monodispersity is a crucial requirement for HA production, together with purity and safety. Common industrial approaches, such as extraction from animal sources and microbial fermentation, have limits in fulfilling these requests. Research and protein engineering with hyaluronic acid synthases can provide a strong tool for the production of monodisperse HA. One-pot multi-enzyme reactions that include in situ nucleotide phosphate regeneration systems might represent the future of HA production. In this review, we explore the current knowledge about HA, its production, hyaluronic synthases, the most recent stage of in vitro enzymatic synthesis research, and one-pot approaches. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 383
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 362
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

40 pages, 3563 KiB  
Review
Use of Glucose Obtained from Biomass Waste for the Synthesis of Gluconic and Glucaric Acids: Their Production, Application, and Future Prospects
by Mariya P. Shcherbakova-Sandu, Eugene P. Meshcheryakov, Semyon A. Gulevich, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Molecules 2025, 30(14), 3012; https://doi.org/10.3390/molecules30143012 - 18 Jul 2025
Viewed by 419
Abstract
The demand for biomass has been growing in recent years for several reasons, related to environmental, economic, and social trends. In the context of global climate changes and the depletion of natural resources, the recycling of plant biomass waste is a promising strategy [...] Read more.
The demand for biomass has been growing in recent years for several reasons, related to environmental, economic, and social trends. In the context of global climate changes and the depletion of natural resources, the recycling of plant biomass waste is a promising strategy for sustainable development that contributes to minimizing waste, improving resource efficiency, and achieving the goal of creating a circular economy. One of the highly demanded products of agricultural waste recycling is glucose. Glucose is an important organic substrate that allows a number of value-added products to be obtained. In this review, we focused on the commercially significant products of glucose oxidation: gluconic and glucaric acids. This review summarized the latest available data on the scope of the application of each product as well as the methods of their production. The capabilities and limitations of currently used methods of synthesis were highlighted. Full article
Show Figures

Graphical abstract

23 pages, 838 KiB  
Review
Recent Advances in Heterologous Protein Expression and Natural Product Synthesis by Aspergillus
by Yuyang Sheng, Shangkun Qiu, Yaoming Deng and Bin Zeng
J. Fungi 2025, 11(7), 534; https://doi.org/10.3390/jof11070534 - 17 Jul 2025
Viewed by 625
Abstract
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the [...] Read more.
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the rapid advancement of synthetic biology, Aspergillus has been extensively exploited as a heterologous chassis for the production of heterologous proteins (e.g., sweet proteins and antibodies) and the synthesis of natural products (e.g., terpenoids and polyketides) due to its distinct advantages, such as superior protein secretion capacity, robust precursor supply, and efficient eukaryotic post-translational modifications. In this review, we provide a comprehensive summary of the advancements in the successful expression of heterologous proteins and the biosynthesis of natural products using Aspergillus platforms (including Aspergillus niger, Aspergillus nidulans, and Aspergillus oryzae) in recent years. Emphasis is placed on the applications of A. oryzae in the heterologous biosynthesis of terpenoids. More importantly, we thoroughly examine the current state of the art in utilizing CRISPR-Cas9 for genetic modifications in A. oryzae and A. niger. In addition, future perspectives on developing Aspergillus expression systems are discussed in this article, along with an exploration of their potential applications in natural product biosynthesis. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 338
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

Back to TopTop