Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = organic–inorganic metal halides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7495 KiB  
Review
Advances of Low-Dimensional Organic-Inorganic Hybrid Metal Halide Luminescent Materials: A Review
by Suqin Wang, Hui Zhu, Ming Sheng, Bo Shao, Yu He, Zhuang Liu and Guangtao Zhou
Crystals 2025, 15(4), 364; https://doi.org/10.3390/cryst15040364 - 16 Apr 2025
Cited by 1 | Viewed by 1347
Abstract
Low-dimensional organic–inorganic hybrid metal halides (OIMHs) have garnered significant research attention due to their remarkable optical, electrical, and mechanical properties. These materials feature tunable optoelectronic characteristics, high photovoltaic efficiency, exceptional scalability and processability and ease of fabrication. By selecting appropriate organic and inorganic [...] Read more.
Low-dimensional organic–inorganic hybrid metal halides (OIMHs) have garnered significant research attention due to their remarkable optical, electrical, and mechanical properties. These materials feature tunable optoelectronic characteristics, high photovoltaic efficiency, exceptional scalability and processability and ease of fabrication. By selecting appropriate organic and inorganic components, it is possible to achieve molecular-level dimensional control of the metal halides. Here, this review provides an in-depth analysis of the structure and synthesis methods of OIMHs materials, explores their optical properties, and summarizes their current applications in areas such as white-light LEDs, X-ray detectors, sensors, and solar cells. Finally, we also discuss the challenges faced by these materials and offer a perspective on their future development, aiming to serve as a reference for advancing research in OIMHs. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

13 pages, 2546 KiB  
Article
Humidity-Triggered Reversible 0–1D Phase Transition in Hybrid Antimony Halides
by Yi Liu, Jiahua Luo, Abdusalam Ablez, Jinmei Liu, Nianhao Wang, Haowei Lin, Zeping Wang and Xiaoying Huang
Nanomaterials 2025, 15(6), 442; https://doi.org/10.3390/nano15060442 - 14 Mar 2025
Cited by 1 | Viewed by 629
Abstract
Stimulus-responsive inorganic–organic hybrid metal halides (IOMHs) have shown great potential in applications such as sensing and anti-counterfeiting. IOMHs can undergo a variety of structural changes when triggered by humidity; however, relevant reports of structural dimensionality change from zero dimension (0D) to one dimension [...] Read more.
Stimulus-responsive inorganic–organic hybrid metal halides (IOMHs) have shown great potential in applications such as sensing and anti-counterfeiting. IOMHs can undergo a variety of structural changes when triggered by humidity; however, relevant reports of structural dimensionality change from zero dimension (0D) to one dimension (1D) are rare. This study investigates the synthesis, structure, and properties of two antimony-based IOMHs, namely 0D-(Mp)3SbCl6·MeCN and 1D-(Mp)2SbCl5 (Mp = protonated morpholine; MeCN = acetonitrile). Photophysical characterizations show that (Mp)3SbCl6·MeCN, when being excited at 375 nm, exhibits typical self-trapped exciton triplet state broad-band emission, with a peak at 620 nm and a quantum yield as high as 75.06%. Under humid conditions, the 0D structure of (Mp)3SbCl6·MeCN undergoes a phase transition, leading to the 1D structure of (Mp)2SbCl5. This transition is accompanied by fluorescence quenching. X-ray powder diffraction, Raman spectroscopy, and thermogravimetric analysis confirm the phase transition process and its reversibility. Based on the high contrast of fluorescence before and after phase transition, (Mp)3SbCl6·MeCN is demonstrated as an ideal material for fluorescence water sensing, capable of detecting trace amounts of water in tetrahydrofuran with a detection limit of 0.2% v/v. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

22 pages, 2991 KiB  
Article
Luminescent Manganese(II) Iminophosphorane Derivatives
by Domenico Piccolo, Jesús Castro, Daniele Rosa-Gastaldo and Marco Bortoluzzi
Molecules 2025, 30(6), 1319; https://doi.org/10.3390/molecules30061319 - 14 Mar 2025
Viewed by 1266
Abstract
The reaction between the iminophosphorane ligand N-phenyl-1,1,1-triphenylphosphanimine (NPh=PPh3) and anhydrous manganese(II) halides allowed the isolation of complexes with the general formula [MnX2(NPh=PPh3)2] (X = Cl, Br, I). The compounds showed luminescence in the green [...] Read more.
The reaction between the iminophosphorane ligand N-phenyl-1,1,1-triphenylphosphanimine (NPh=PPh3) and anhydrous manganese(II) halides allowed the isolation of complexes with the general formula [MnX2(NPh=PPh3)2] (X = Cl, Br, I). The compounds showed luminescence in the green region attributed to the 4T1(4G)→6A1(6S) transition of the metal centre in the tetrahedral field, which was superimposed in the cases of X = Cl and X = Br on weak ligand-centred fluorescence. The emission and excitation spectra were compared with those of the free ligand and of the related zinc(II) bromo-complex. DFT calculations on the free ligand and on the manganese(II) bromo-complex helped to rationalise the experimental data. The protonation of NPh=PPh3 led to the formation of the iminium cation [NHPh=PPh3]+, which was used as a building block for the synthesis of organic–inorganic hybrids with the general formula [NHPh=PPh3]2[MnX4] (X = Cl, Br, I). The crystal structure of [NHPh=PPh3]2[MnBr4] was determined by means of X-ray diffraction. Green photoluminescence associated with the metal-centred transition was also observed for the organic–inorganic hybrids, with higher quantum yields with respect to the neutral [MnX2(NPh=PPh3)2] complexes. In the case of X = I, luminescence from the cation was superimposed on that from the tetraiodomanganate anion upon excitation of the compound with near–UV light. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

21 pages, 4395 KiB  
Article
Tuning the Properties of Dodecylpyridinium Metallosurfactants: The Role of Iron-Based Counterions
by Mirta Rubčić, Mirta Herak, Ana Ivančić, Edi Topić, Emma Beriša, Ivana Tartaro Bujak and Darija Domazet Jurašin
Int. J. Mol. Sci. 2025, 26(6), 2540; https://doi.org/10.3390/ijms26062540 - 12 Mar 2025
Cited by 1 | Viewed by 708
Abstract
Metallosurfactants combine the unique soft-matter properties of surfactants with magnetic functionalities of metal ions. The inclusion of iron-based species, in particular, can further boost the functionality of the material, owing to iron’s ability to adopt multiple oxidation states and form both high-spin and [...] Read more.
Metallosurfactants combine the unique soft-matter properties of surfactants with magnetic functionalities of metal ions. The inclusion of iron-based species, in particular, can further boost the functionality of the material, owing to iron’s ability to adopt multiple oxidation states and form both high-spin and low-spin complexes. Motivated by this, a series of hybrid inorganic-organic dodecylpyridinium metallosurfactants with iron-containing counterions was developed. It was established that using either divalent or trivalent iron halides in a straightforward synthetic procedure yields C12Py-metallosurfactants with distinct complex counterions: (C12Py)2[Fe2X6O] and (C12Py)[FeX4] (X = Cl or Br), respectively. A combination of techniques—including conductometry, dynamic and electrophoretic light scattering, single-crystal and thermogravimetric analysis, and magnetic measurements—provided in-depth insights into their solution and solid-state properties. The presence of different iron-based counterions significantly influences the crystal structure (interdigitated vs. non-interdigitated bilayers), magnetic properties (paramagnetic vs. nonmagnetic singlet ground state), and self-assembly (vesicles vs. micelles) of the dodecylpyridinium series. To our knowledge, this is the first report on the synthesis and characterization of hybrid organic-inorganic metallosurfactants containing the μ-oxo-hexahalo-diferrate anion. Full article
(This article belongs to the Special Issue Hybrid Organic–Inorganic Materials: From Synthesis to Applications)
Show Figures

Figure 1

20 pages, 26165 KiB  
Article
In-Vivo Dosimetry for Ultra-High Dose Rate (UHDR) Electron Beam FLASH Radiotherapy Using an Organic (Plastic), an Organic–Inorganic Hybrid and an Inorganic Point Scintillator System
by Verdi Vanreusel, Hugo Vallet, Jordi Wijnen, Benjamin Côté, Paul Leblans, Paul Sterckx, Dirk Vandenbroucke, Dirk Verellen and Luana de Freitas Nascimento
Photonics 2024, 11(9), 865; https://doi.org/10.3390/photonics11090865 - 13 Sep 2024
Cited by 2 | Viewed by 1499
Abstract
Dosimetry is crucial in radiotherapy to warrant safe and correct treatment. In FLASH radiotherapy, where ultra-high dose rates (UHDRs) are used, the dosimetric demands are more stringent, requiring the development and investigation of new dosemeters. In this study, three prototype fiber-optic dosemeters (FODs)—an [...] Read more.
Dosimetry is crucial in radiotherapy to warrant safe and correct treatment. In FLASH radiotherapy, where ultra-high dose rates (UHDRs) are used, the dosimetric demands are more stringent, requiring the development and investigation of new dosemeters. In this study, three prototype fiber-optic dosemeters (FODs)—an inorganic, an organic–inorganic hybrid metal halide, and an organic (plastic) scintillator are optimized and investigated for UHDR electron irradiations. The plastic FOD is developed by Medscint, whereas the others are in-house made. The stem signal is minimized by spectral decomposition for the plastic scintillator, and by band-pass wavelength filters for the inorganic and organic–inorganic hybrid metal halide FOD. All prototypes are tested for the dose rate defining parameters. The optimal band-pass wavelength filters are found to be centered around 500 nm and 425 nm for the inorganic and organic–inorganic hybrid metal halide FODs, respectively. A sampling frequency of 1000 Hz is chosen for the inorganic and organic–inorganic hybrid metal halide FODs. The plastic FOD shows to be the least dose rate dependent with maximum deviations of 3% from the reference for the relevant beam settings. The inorganic and organic–inorganic hybrid metal halide FODs, in contrast, show large deviations of >10% from the reference and require more investigation. The current FOD prototypes are insufficient for application in UHDR electron beams, and require further development and investigation. Full article
(This article belongs to the Special Issue Optical Fibre Sensing: Recent Advances and Future Perspectives)
Show Figures

Figure 1

13 pages, 5777 KiB  
Article
Characterization and Degradation of Perovskite Mini-Modules
by R. Ebner, A. Mittal, G. Ujvari, M. Hadjipanayi, V. Paraskeva, G. E. Georghiou, A. Hadipour, A. Aguirre and T. Aernouts
Inorganics 2024, 12(8), 219; https://doi.org/10.3390/inorganics12080219 - 15 Aug 2024
Viewed by 1719
Abstract
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, [...] Read more.
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, and temperature), advanced characterization methods are needed to understand their degradation mechanisms. In this context, investigation of the electrical and optoelectronic properties of several perovskite mini-modules was performed by means of photo- and electroluminescence imaging as well as Dark Lock-In Thermography methods. Current–voltage curves at periodic time intervals and External Quantum Efficiency measurements were implemented alongside other measurements to reveal correlations between the electrical and radiative properties of the solar cells. The different imaging techniques used in this study reveal the changes in radiative emission processes and how those are correlated with performance. Alongside the indoor optoelectronic characterization of perovskite reference samples, the outdoor monitoring of two perovskite modules of the same structure for 23 weeks is reported. Significant performance degradation is presented outdoors from the first week of testing for both samples under test. The evolution of the major electrical characteristics of the mini-modules and the diurnal changes were studied in detail. Finally, dark storage recovery studies after outdoor exposure were implemented to investigate changes in the major electrical parameters. Full article
(This article belongs to the Special Issue The State of the Art of Research on Perovskites Materials)
Show Figures

Figure 1

53 pages, 11095 KiB  
Review
Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review
by Muthaiah Shellaiah, Kien Wen Sun, Natesan Thirumalaivasan, Mayank Bhushan and Arumugam Murugan
Sensors 2024, 24(8), 2504; https://doi.org/10.3390/s24082504 - 13 Apr 2024
Cited by 19 | Viewed by 3096
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted [...] Read more.
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic–inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Sensors 2023)
Show Figures

Figure 1

9 pages, 4338 KiB  
Communication
A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration
by Chenbo Huang, Yichao Yang, Yujie Li, Shijie Jiang, Lurong Yang, Ruixiao Li and Xiaojian She
Photonics 2024, 11(4), 362; https://doi.org/10.3390/photonics11040362 - 12 Apr 2024
Viewed by 2090
Abstract
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we [...] Read more.
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we studied the dark current behaviors of phototransistors fabricated based on the Indium Gallium Zinc Oxide (IGZO) channel and different perovskite materials. We found that depositing organic–inorganic hybrid perovskites materials (MAPbI3/FAPbI3/FA0.2MA0.8PbI3) on top of IGZO transistor can increase dark current from ~10−6 mA to 1~10 mA. By contrast, we observed depositing an inorganic perovskite material, CsPbI3, incorporated with PCBM additive can suppress the dark current down to ~10−6 mA. Our study of ion migration reveals that ion migration is pronounced in organic–inorganic perovskite films but is suppressed in CsPbI3, particularly in CsPbI3 mixed with PCBM additive. This study shows that ion migration suppression by the exclusion of organic halide and the incorporation of PCBM additive can benefit low dark current in perovskite phototransistors. Full article
Show Figures

Figure 1

12 pages, 10075 KiB  
Article
Mn(II)-Activated Zero-Dimensional Zinc(II)-Based Metal Halide Hybrids with Near-Unity Photoluminescence Quantum Yield
by Chengyu Peng, Jiazheng Wei, Lian Duan, Ye Tian and Qilin Wei
Materials 2024, 17(3), 562; https://doi.org/10.3390/ma17030562 - 25 Jan 2024
Cited by 4 | Viewed by 1986
Abstract
As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. [...] Read more.
As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. However, pure zinc-based metal halide materials are still limited by their poor optical properties and cannot achieve large-scale practical applications. Therefore, in this work, we report an organic–inorganic hybrid zero-dimensional zinc bromide, (TDMP)ZnBr4, using transition metal Mn2+ ions as dopants and incorporating them into the (TDMP)ZnBr4 lattice. The original non-emissive (TDMP)ZnBr4 exhibits bright green emission under the excitation of external UV light after the introduction of Mn2+ ions with a PL peak position located at 538 nm and a PLQY of up to 91.2%. Through the characterization of relevant photophysical properties and the results of theoretical calculations, we confirm that this green emission in Mn2+:(TDMP)ZnBr4 originates from the 4T16A1 optical transition process of Mn2+ ions in the lattice structure, and the near-unity PLQY benefits from highly localized electrons generated by the unique zero-dimensional structure of the host material (TDMP)ZnBr4. This work provides theoretical guidance and reference for expanding the family of zinc-based metal halide materials and improving and controlling their optical properties through ion doping. Full article
Show Figures

Figure 1

10 pages, 1864 KiB  
Article
Zero-Dimensional Tellurium-Based Organic–Inorganic Hybrid Halide Single Crystal with Yellow-Orange Emission from Self-Trapped Excitons
by Xiangyan Yun, Jingheng Nie, Hanlin Hu, Haizhe Zhong, Denghui Xu, Yumeng Shi and Henan Li
Nanomaterials 2024, 14(1), 46; https://doi.org/10.3390/nano14010046 - 22 Dec 2023
Cited by 3 | Viewed by 1721
Abstract
Organic–inorganic hybrid halides and their analogs that exhibit efficient broadband emission from self-trapped excitons (STEs) offers an unique pathway towards realization of highly efficient white light sources for lighting applications. An appropriate dilution of ns2 ions into a halide host is essential [...] Read more.
Organic–inorganic hybrid halides and their analogs that exhibit efficient broadband emission from self-trapped excitons (STEs) offers an unique pathway towards realization of highly efficient white light sources for lighting applications. An appropriate dilution of ns2 ions into a halide host is essential to produce auxiliary emissions. However, the realization of ns2 cation-based halides phosphor that can be excited by blue light-emitting diode (LED) is still rarely reported. In this study, a zero-dimensional Te-based single crystal (C8H20N)2TeCl6 was synthesized, which exhibits a yellow-orange emission centered at 600 nm with a full width at half maximum of 130 nm upon excitation under 437 nm. Intense electron–phonon coupling was confirmed in the (C8H20N)2TeCl6 single crystal and the light emitting mechanism is comprehensively discussed. The results of this study are pertinent to the emissive mechanism of Te-based hybrid halides and can facilitate discovery of unidentified metal halides with broadband excitation features. Full article
Show Figures

Figure 1

28 pages, 2454 KiB  
Review
The Scale Effects of Organometal Halide Perovskites
by Yibo Zhang, Zhenze Zhao, Zhe Liu and Aiwei Tang
Nanomaterials 2023, 13(22), 2935; https://doi.org/10.3390/nano13222935 - 13 Nov 2023
Cited by 7 | Viewed by 2659
Abstract
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize [...] Read more.
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize the materials towards an enhanced performance. Generally speaking, organometal halide perovskites can be classified in two ways. By controlling the morphological dimensionality, 2D perovskite nanoplatelets, 1D perovskite nanowires, and 0D perovskite quantum dots have been studied. Using appropriate organic and inorganic components, low-dimensional organic–inorganic metal halide hybrids with 2D, quasi-2D, 1D, and 0D structures at the molecular level have been developed and studied. This provides opportunities to investigate the scale-dependent properties. Here, we present the progress on the characteristics of scale effects in organometal halide perovskites in these two classifications, with a focus on carrier diffusion, excitonic features, and defect properties. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

14 pages, 2033 KiB  
Article
Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation
by Safdar Mehmood, Yang Xia, Furong Qu and Meng He
Energies 2023, 16(21), 7438; https://doi.org/10.3390/en16217438 - 3 Nov 2023
Cited by 9 | Viewed by 2456
Abstract
Organic–inorganic metal halide perovskite (OIMHP) has emerged as a promising material for solar cell application due to their outstanding optoelectronics properties. The perovskite-based solar cell (PSC) demonstrates a significant enhancement in efficiency of more than 20%, with a certified efficiency rating of 23.13%. [...] Read more.
Organic–inorganic metal halide perovskite (OIMHP) has emerged as a promising material for solar cell application due to their outstanding optoelectronics properties. The perovskite-based solar cell (PSC) demonstrates a significant enhancement in efficiency of more than 20%, with a certified efficiency rating of 23.13%. Considering both the Shockley limit and bandgap, there exists a substantial potential for further efficiency improvement. However, stability remains a significant obstacle in the commercialization of these devices. Compared to organic carrier transport layers (CTLs), inorganic material such as ZnO, TiO2, SnO2, and NiOX offer the advantage of being deposited using atomic layer deposition (ALD), which in turn improves the efficiency and stability of the device. In this study, methylammonium lead iodide (MAPbI3)-based cells with inorganic CTL layers of SnO2 and NiOX are simulated using SCAPS-1D software. The cell structure configuration comprises ITO/SnO2/CH3NH3PbI3/NiOX/Back contact where SnO2 and NiOX act as ETL and HTL, respectively, while ITO is a transparent front-end electrode. Detailed investigation is carried out into the influence of various factors, including MAPbI3 layer size, the thickness of CTLs, operating temperature parasitic resistance, light intensity, bulk defects, and interfacial defects on the performance parameters. We found that the defects in layers and interface junctions greatly influence the performance parameter of the cell, which is eliminated through an ALD deposition approach. The optimum size of the MAPbI3 layer and CTL was found to be 400 nm and 50 nm, respectively. At the optimized configuration, the PSC demonstrates an efficiency of 22.13%, short circuit current (JSC) of 20.93 mA/m2, open circuit voltage (VOC) of 1.32 V, and fill factor (FF) of 70.86%. Full article
Show Figures

Figure 1

13 pages, 3746 KiB  
Article
Multi-Functional Ethylene-vinyl Acetate Copolymer Flexible Composite Film Embedded with Indium Acetate-Passivated Perovskite Quantum Dots
by Sheng Huang, Shasha Gao, Hui Zhang, Ce Bian, Yulong Zhao, Xiuquan Gu and Wenjie Xu
Polymers 2023, 15(19), 3986; https://doi.org/10.3390/polym15193986 - 4 Oct 2023
Cited by 1 | Viewed by 1801
Abstract
In recent years, all-inorganic cesium lead halide perovskite quantum dots have emerged as promising candidates for various optoelectronic applications, including sensors, light-emitting diodes, and solar cells, owing to their exceptional photoelectric properties. However, their commercial utilization has been limited by stability issues. In [...] Read more.
In recent years, all-inorganic cesium lead halide perovskite quantum dots have emerged as promising candidates for various optoelectronic applications, including sensors, light-emitting diodes, and solar cells, owing to their exceptional photoelectric properties. However, their commercial utilization has been limited by stability issues. In this study, we addressed this challenge by passivating the surface defects of CsPbBr3 quantum dots using indium acetate, a metal–organic compound. The resulting CsPbBr3 quantum dots exhibited not only high photoluminescence intensity, but also a remarkably narrow half-peak width of 19 nm. Furthermore, by embedding the CsPbBr3 quantum dots in ethylene-vinyl acetate, we achieved stretchability and significantly enhanced stability while preserving the original luminous intensity. The resulting composite film demonstrated the potential to improve the power conversion efficiency of crystalline silicon solar cells and enabled the creation of excellent white light-emitting diodes with coordinates of (0.33, 0.31). This co-passivation strategy, involving surface passivation and polymer packaging, provides a new idea for the practical application of CsPbBr3 quantum dots. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 3948 KiB  
Article
Structural, Electric and Dynamic Properties of (Pyrrolidinium)3[Bi2I9] and (Pyrrolidinium)3[Sb2I9]: New Lead-Free, Organic–Inorganic Hybrids with Narrow Band Gaps
by Magdalena Rowińska, Anna Piecha-Bisiorek, Wojciech Medycki, Piotr Durlak, Ryszard Jakubas and Anna Gagor
Molecules 2023, 28(9), 3894; https://doi.org/10.3390/molecules28093894 - 5 May 2023
Cited by 12 | Viewed by 2447
Abstract
Hybrid organic–inorganic iodides based on Bi(III) and Sb(III) provide integrated functionalities through the combination of high dielectric constants, semiconducting properties and ferroic phases. Here, we report a pyrrolidinium-based bismuth (1) and antimony (2) iodides of (NC4H10 [...] Read more.
Hybrid organic–inorganic iodides based on Bi(III) and Sb(III) provide integrated functionalities through the combination of high dielectric constants, semiconducting properties and ferroic phases. Here, we report a pyrrolidinium-based bismuth (1) and antimony (2) iodides of (NC4H10)3[M2I9] (M: Bi(III), Sb(III)) formula which are ferroelastic at room temperature. The narrow band gaps (~2.12 eV for 1 and 2.19 eV for 2) and DOS calculations indicate the semiconducting characteristics of both materials. The crystal structure consists of discrete, face-sharing bioctahedra [M2I9]3− and disordered pyrrolidinium amines providing charge balance and acting as spacers between inorganic moieties. At room temperature, 1 and 2 accommodate orthorhombic Cmcm symmetry. 1 displays a complex temperature-induced polymorphism. It is stable up to 525 K and undergoes a sequence of low-temperature phase transitions (PTs) at 221/222 K (I ↔ II) and 189/190 K (II ↔ III) and at 131 K (IV→III), associated with the ordering of pyrrolidinium cations and resulting in Cmcm symmetry breaking. 2 undergoes only one PT at T = 215 K. The dielectric studies disclose a relaxation process in the kilohertz frequency region, assigned to the dynamics of organic cations, described well by the Cole–Cole relation. A combination of single-crystal X-ray diffraction, synchrotron powder diffraction, spin–lattice relaxation time of 1H NMR, dielectric and calorimetric studies is used to determine the structural phase diagram, cation dynamics and electric properties of (NC4H10)3[M2I9]. Full article
Show Figures

Figure 1

29 pages, 7736 KiB  
Review
Bulk Perovskite Crystal Properties Determined by Heterogeneous Nucleation and Growth
by Pranta Barua and Inchan Hwang
Materials 2023, 16(5), 2110; https://doi.org/10.3390/ma16052110 - 5 Mar 2023
Cited by 25 | Viewed by 8186
Abstract
In metal halide perovskites, charge transport in the bulk of the films is influenced by trapping and release and nonradiative recombination at ionic and crystal defects. Thus, mitigating the formation of defects during the synthesis process of perovskites from precursors is required for [...] Read more.
In metal halide perovskites, charge transport in the bulk of the films is influenced by trapping and release and nonradiative recombination at ionic and crystal defects. Thus, mitigating the formation of defects during the synthesis process of perovskites from precursors is required for better device performance. An in-depth understanding of the nucleation and growth mechanisms of perovskite layers is crucial for the successful solution processing of organic–inorganic perovskite thin films for optoelectronic applications. In particular, heterogeneous nucleation, which occurs at the interface, must be understood in detail, as it has an effect on the bulk properties of perovskites. This review presents a detailed discussion on the controlled nucleation and growth kinetics of interfacial perovskite crystal growth. Heterogeneous nucleation kinetics can be controlled by modifying the perovskite solution and the interfacial properties of perovskites adjacent to the underlaying layer and to the air interface. As factors influencing the nucleation kinetics, the effects of surface energy, interfacial engineering, polymer additives, solution concentration, antisolvents, and temperature are discussed. The importance of the nucleation and crystal growth of single-crystal, nanocrystal, and quasi-two-dimensional perovskites is also discussed with respect to the crystallographic orientation. Full article
(This article belongs to the Special Issue Charge Transport in Perovskite Solar Cells: Materials and Mechanisms)
Show Figures

Figure 1

Back to TopTop