Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = organic–inorganic halide perovskites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5617 KiB  
Review
Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
by Fateh Ullah, Zina Fredj and Mohamad Sawan
Nanomaterials 2025, 15(11), 873; https://doi.org/10.3390/nano15110873 - 5 Jun 2025
Viewed by 811
Abstract
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK [...] Read more.
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK QDs and their role in resistive switching memory architectures. We provide an overview of halide PVK QDs synthesis techniques, switching mechanisms, and recent advancements in memristive applications. Special emphasis is placed on the ionic migration and charge trapping phenomena governing resistive switching, along with the prospects of photonic memory devices that leverage the intrinsic photosensitivity of PVK QDs. Despite their advantages, challenges such as stability, scalability, and environmental concerns remain critical hurdles. We conclude this review with insights into potential strategies for enhancing the reliability and commercial viability of PVK QD-based memory technologies. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

24 pages, 5160 KiB  
Review
Chiral Perovskite Single Crystals: Toward Promising Design and Application
by Lin Wang, Jie Ren and Hanying Li
Materials 2025, 18(11), 2635; https://doi.org/10.3390/ma18112635 - 4 Jun 2025
Viewed by 758
Abstract
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. [...] Read more.
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. Herein, the recent advances in various synthesis strategies for chiral perovskite single crystals (SCs) are systematically demonstrated. Then, we elucidate an in-depth understanding of the chirality transfer mechanisms from chiral organic ligands to perovskite inorganic frameworks. Furthermore, representative examples of chiral perovskite SC-based applications are comprehensively discussed, including circularly polarized light (CPL) photodetection, nonlinear optical (NLO) responses, and other emerging chirality-dependent applications. In the end, an outlook for future challenges and research opportunities is provided, highlighting the transformative potential of chiral perovskites in next-generation optoelectronic devices. Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Graphical abstract

16 pages, 4820 KiB  
Article
Triple-Band Warm White-Light Emission from Type II Band-Aligned Aggregation-Induced Enhanced Emission Organic Cation-Incorporated Two-Dimensional Lead Iodide Perovskite
by Almaz R. Beisenbayev, Igor Ivanov-Prianichnikov, Anatoly Peshkov, Tangsulu Adil, Davit Hayrapetyan and Chang-Keun Lim
Int. J. Mol. Sci. 2025, 26(11), 5054; https://doi.org/10.3390/ijms26115054 - 24 May 2025
Viewed by 420
Abstract
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics [...] Read more.
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics poorly, restricting their efficiency as white-light emitters. This study presents a 2D lead iodide perovskite that incorporates a fluorinated π-conjugated aggregation-induced enhanced emission luminophore, FPCSA, as a bulky organic cation to create a quasi-2D perovskite. The FPCSA cation establishes a Type II energy level alignment with the lead iodide layer in the 2D perovskite, and a significant energy offset effectively suppresses charge transfer, enabling independent emission from both the organic and inorganic layers while facilitating self-trapped exciton formation. Under 315 nm UV excitation, this material demonstrates warm white-light emission with RGB triple-band photoluminescence stemming from the electronically decoupled FPCSA and perovskite layers. These findings provide a promising new method for designing efficient single-phase white-light-emitting materials for optoelectronic applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

9 pages, 1685 KiB  
Article
Optimal Methylammounium Chloride Additive for High-Performance Perovskite Solar Cells
by Qinghua Cao, Hui Liu, Jiangping Xing, Bing’e Li, Chuangping Liu, Fobao Xie, Xiaoli Zhang and Weiren Zhao
Nanomaterials 2025, 15(4), 292; https://doi.org/10.3390/nano15040292 - 14 Feb 2025
Cited by 1 | Viewed by 1339
Abstract
Organic–inorganic lead halide perovskite solar cells (PSCs) have presented promising improvements within recent years due to the superior photophysical properties of perovskites. The efficiency of PSCs is closely related to the quality of the of the perovskite film. Additive engineering is an effective [...] Read more.
Organic–inorganic lead halide perovskite solar cells (PSCs) have presented promising improvements within recent years due to the superior photophysical properties of perovskites. The efficiency of PSCs is closely related to the quality of the of the perovskite film. Additive engineering is an effective strategy to regulate the crystallization of perovskite film. Therefore, in this work, we introduce methylammounium chloride (MACl) into a perovskite precursor as an additive to improve the crystallization of perovskite film and to suppress the formation of defects to achieve high-performance PSCs. By meticulously investigating and studying the influence of different percentages of MACl additives on perovskite film quality, we obtain that the best amount of incorporated MACl is 10%. Thanks the employment of the optimal amount of MACl, the perovskite film shows a significantly improved morphology with larger grains, a smoother surface, and suppressed defects. Finally, the target PSCs with the addition of 10% MACl present the highest PCE of 23.61%, which is much higher than the value (16.72%) of the control device. Full article
(This article belongs to the Special Issue Perovskite Nanomaterials for Photovoltaic and Optoelectronic Devices)
Show Figures

Figure 1

15 pages, 4792 KiB  
Article
Encapsulating Halide Perovskite Quantum Dots in Metal–Organic Frameworks for Efficient Photocatalytic CO2 Reduction
by Jingwen Zhang, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2024, 14(9), 590; https://doi.org/10.3390/catal14090590 - 3 Sep 2024
Cited by 3 | Viewed by 1804
Abstract
Halide perovskite has shown great potential in photocatalysis owing to its diversity, suitable energy band alignment, rapid charge transfer, and excellent optical properties. However, poor stability, especially under humid conditions, hinders their practical application in photocatalysis. In this work, we report the encapsulation [...] Read more.
Halide perovskite has shown great potential in photocatalysis owing to its diversity, suitable energy band alignment, rapid charge transfer, and excellent optical properties. However, poor stability, especially under humid conditions, hinders their practical application in photocatalysis. In this work, we report the encapsulation of inorganic–organic hybrid perovskite QDs into MIL-101(Cr) through an in situ growth strategy to prepare a series of MAPbBr3@MIL-101(Cr) (MA = CH3NH3+) composites. The perovskite precursors, i.e., MABr and PbBr2, were successively introduced into the pores of MOF, where the perovskite quantum dots were self-assembled in the confined environment. In photocatalytic CO2 reduction, 11%MAPbBr3@MIL-101(Cr) composite displayed the best performance among the composites with a total CO and CH4 yield of 875 μmol g−1 in 9 h, which was 8 times higher than that of the pure MAPbBr3. Such high gas production efficiency could be maintained for 78 h at least without structural and morphologic decomposition. The remarkable stability and catalytic activity of composites are mainly due to the synergistic effect and improved electron transfer between MAPbBr3 and MIL-101(Cr). Moreover, these composites revealed a novel mechanism, showing switched CH4 selectivity with the controlling of the perovskite location and contents. Those with perovskites encapsulated in the mesopores of MIL-101(Cr) were more preferential for CO production, while those with perovskites encapsulated in both meso- and micropores could produce CH4 dominantly. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 5777 KiB  
Article
Characterization and Degradation of Perovskite Mini-Modules
by R. Ebner, A. Mittal, G. Ujvari, M. Hadjipanayi, V. Paraskeva, G. E. Georghiou, A. Hadipour, A. Aguirre and T. Aernouts
Inorganics 2024, 12(8), 219; https://doi.org/10.3390/inorganics12080219 - 15 Aug 2024
Viewed by 1719
Abstract
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, [...] Read more.
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, and temperature), advanced characterization methods are needed to understand their degradation mechanisms. In this context, investigation of the electrical and optoelectronic properties of several perovskite mini-modules was performed by means of photo- and electroluminescence imaging as well as Dark Lock-In Thermography methods. Current–voltage curves at periodic time intervals and External Quantum Efficiency measurements were implemented alongside other measurements to reveal correlations between the electrical and radiative properties of the solar cells. The different imaging techniques used in this study reveal the changes in radiative emission processes and how those are correlated with performance. Alongside the indoor optoelectronic characterization of perovskite reference samples, the outdoor monitoring of two perovskite modules of the same structure for 23 weeks is reported. Significant performance degradation is presented outdoors from the first week of testing for both samples under test. The evolution of the major electrical characteristics of the mini-modules and the diurnal changes were studied in detail. Finally, dark storage recovery studies after outdoor exposure were implemented to investigate changes in the major electrical parameters. Full article
(This article belongs to the Special Issue The State of the Art of Research on Perovskites Materials)
Show Figures

Figure 1

14 pages, 10436 KiB  
Article
Impact of Residual Strains on the Carrier Mobility and Stability of Perovskite Films
by Moulay Ahmed Slimani, Luis Felipe Gerlein, Ricardo Izquierdo and Sylvain G. Cloutier
Nanomaterials 2024, 14(15), 1310; https://doi.org/10.3390/nano14151310 - 3 Aug 2024
Cited by 1 | Viewed by 2158
Abstract
Solution-based inorganic–organic halide perovskites are of great interest to researchers because of their unique optoelectronic properties and easy processing. However, polycrystalline perovskite films often show inhomogeneity due to residual strain induced during the film’s post-processing phase. In turn, these strains can impact both [...] Read more.
Solution-based inorganic–organic halide perovskites are of great interest to researchers because of their unique optoelectronic properties and easy processing. However, polycrystalline perovskite films often show inhomogeneity due to residual strain induced during the film’s post-processing phase. In turn, these strains can impact both their stability and performance. An exhaustive study of residual strains can provide a better understanding and control of how they affect the performance and stability of perovskite films. In this work, we explore this complex interrelationship between residual strains and electrical properties for methylammonium CH3NH3PbI3xClx films using grazing incidence X-ray diffraction (GIXRD). We correlate their resistivity and carrier mobility using the Hall effect. The sin2(ψ) technique is used to optimize the annealing parameters for the perovskite films. We also establish that temperature-induced relaxation can yield a significant enhancement of the charge carrier transports in perovskite films. Finally, we also use Raman micro-spectroscopy to assess the degradation of perovskite films as a function of their residual strains. Full article
Show Figures

Figure 1

14 pages, 2127 KiB  
Article
The Effect of Cesium Incorporation on the Vibrational and Elastic Properties of Methylammonium Lead Chloride Perovskite Single Crystals
by Syed Bilal Junaid, Furqanul Hassan Naqvi and Jae-Hyeon Ko
Materials 2024, 17(12), 2862; https://doi.org/10.3390/ma17122862 - 12 Jun 2024
Viewed by 1266
Abstract
Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is [...] Read more.
Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is the substitution of cations and/or anions in LHPs. The impact of Cs substitution at the A site on the structural, vibrational, and elastic properties of MAxCs1−xPbCl3-mixed single crystals was investigated using X-ray diffraction (XRD) and Raman and Brillouin light scattering techniques. The XRD results confirmed the successful synthesis of impurity-free single crystals, which exhibited a phase coexistence of dominant cubic and minor orthorhombic symmetries. Raman spectroscopy was used to analyze the vibrational modes associated with the PbCl6 octahedra and the A-site cation movements, thereby revealing the influence of cesium incorporation on the lattice dynamics. Brillouin spectroscopy was employed to investigate the changes in elastic properties resulting from the Cs substitution. The incorporation of Cs cations induced lattice distortions within the inorganic framework, disrupting the hydrogen bonding between the MA cations and PbCl6 octahedra, which in turn affected the elastic constants and the sound velocities. The substitution of the MA cations with smaller Cs cations resulted in a stiffer lattice structure, with the two elastic constants increasing up to a Cs content of 30%. The current findings facilitate a fundamental understanding of mixed lead chloride perovskite materials, providing valuable insights into their structural and vibrational properties. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
Phonon Properties and Lattice Dynamics of Two- and Tri-Layered Lead Iodide Perovskites Comprising Butylammonium and Methylammonium Cations—Temperature-Dependent Raman Studies
by Mirosław Mączka, Szymon Smółka and Maciej Ptak
Materials 2024, 17(11), 2503; https://doi.org/10.3390/ma17112503 - 22 May 2024
Cited by 1 | Viewed by 1817
Abstract
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron–phonon coupling, the dynamics of the organic cations, and the degree of lattice [...] Read more.
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron–phonon coupling, the dynamics of the organic cations, and the degree of lattice distortion. We report temperature-dependent Raman studies of BA2MAPb2I7 and BA2MA2Pb3I10 (BA = butylammonium; MA = methylammonium), which undergo two structural phase transitions. Raman data obtained in broad temperature (360–80 K) and wavenumber (1800–10 cm−1) ranges show that ordering of BA+ cations triggers the higher temperature phase transition, whereas freezing of MA+ dynamics occurs below 200 K, leading to the onset of the low-temperature phase transition. This ordering is associated with significant deformation of the inorganic sublattice, as evidenced by changes observed in the lattice mode region. Our results show, therefore, that Raman spectroscopy is a very valuable tool for monitoring the separate dynamics of different organic cations in perovskites, comprising “perovskitizer” and interlayer cations. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

13 pages, 2367 KiB  
Review
Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites
by Junhong Guo, Jinlei Zhang, Yunsong Di and Zhixing Gan
Nanomaterials 2024, 14(8), 683; https://doi.org/10.3390/nano14080683 - 16 Apr 2024
Cited by 5 | Viewed by 3259
Abstract
The Rashba effect appears in the semiconductors with an inversion–asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance [...] Read more.
The Rashba effect appears in the semiconductors with an inversion–asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic–inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Figure 1

53 pages, 11095 KiB  
Review
Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review
by Muthaiah Shellaiah, Kien Wen Sun, Natesan Thirumalaivasan, Mayank Bhushan and Arumugam Murugan
Sensors 2024, 24(8), 2504; https://doi.org/10.3390/s24082504 - 13 Apr 2024
Cited by 19 | Viewed by 3096
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted [...] Read more.
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic–inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Sensors 2023)
Show Figures

Figure 1

9 pages, 4338 KiB  
Communication
A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration
by Chenbo Huang, Yichao Yang, Yujie Li, Shijie Jiang, Lurong Yang, Ruixiao Li and Xiaojian She
Photonics 2024, 11(4), 362; https://doi.org/10.3390/photonics11040362 - 12 Apr 2024
Viewed by 2090
Abstract
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we [...] Read more.
Perovskite-based metal oxide phototransistors have emerged as promising photodetection devices owing to the superior optoelectronic properties of perovskite materials and the high carrier mobility of metal oxides. However, high dark current has been one major problem for this type of device. Here, we studied the dark current behaviors of phototransistors fabricated based on the Indium Gallium Zinc Oxide (IGZO) channel and different perovskite materials. We found that depositing organic–inorganic hybrid perovskites materials (MAPbI3/FAPbI3/FA0.2MA0.8PbI3) on top of IGZO transistor can increase dark current from ~10−6 mA to 1~10 mA. By contrast, we observed depositing an inorganic perovskite material, CsPbI3, incorporated with PCBM additive can suppress the dark current down to ~10−6 mA. Our study of ion migration reveals that ion migration is pronounced in organic–inorganic perovskite films but is suppressed in CsPbI3, particularly in CsPbI3 mixed with PCBM additive. This study shows that ion migration suppression by the exclusion of organic halide and the incorporation of PCBM additive can benefit low dark current in perovskite phototransistors. Full article
Show Figures

Figure 1

11 pages, 2415 KiB  
Article
[BMP]+[BF4]-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation
by Haixia Xie, Lei Li, Jiawei Zhang, Yihao Zhang, Yong Pan, Jie Xu, Xingtian Yin and Wenxiu Que
Molecules 2024, 29(7), 1476; https://doi.org/10.3390/molecules29071476 - 26 Mar 2024
Cited by 1 | Viewed by 1258
Abstract
With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic–inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability [...] Read more.
With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic–inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability of these perovskite solar cells, due to the decomposition of its unstable organic components, has restricted the development of all-inorganic perovskite solar cells. In recent years, Br-mixed halogen all-inorganic perovskites (CsPbI3−xBrx) have aroused great interests due to their ability to balance the band gap and phase stability of pure CsPbX3. However, the photoinduced phase segregation in lead mixed halide perovskites is still a big burden on their practical industrial production and commercialization. Here, we demonstrate inhibited photoinduced phase segregation all-inorganic CsPbI1.2Br1.8 films and their corresponding perovskite solar cells by incorporating a 1-butyl-1-methylpiperidinium tetrafluoroborate ([BMP]+[BF4]−) compound into the CsPbI1.2Br1.8 films. Then, its effect on the perovskite films and the corresponding hole transport layer-free CsPbI1.2Br1.8 solar cells with carbon electrodes under light is investigated. With a prolonged time added to the reduced phase segregation terminal, this additive shows an inhibitory effect on the photoinduced phase segregation phenomenon for perovskite films and devices with enhanced cell efficiency. Our study reveals an efficient and simple route that suppresses photoinduced phase segregation in cesium lead mixed halide perovskite solar cells with enhanced efficiency. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

12 pages, 10075 KiB  
Article
Mn(II)-Activated Zero-Dimensional Zinc(II)-Based Metal Halide Hybrids with Near-Unity Photoluminescence Quantum Yield
by Chengyu Peng, Jiazheng Wei, Lian Duan, Ye Tian and Qilin Wei
Materials 2024, 17(3), 562; https://doi.org/10.3390/ma17030562 - 25 Jan 2024
Cited by 4 | Viewed by 1986
Abstract
As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. [...] Read more.
As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. However, pure zinc-based metal halide materials are still limited by their poor optical properties and cannot achieve large-scale practical applications. Therefore, in this work, we report an organic–inorganic hybrid zero-dimensional zinc bromide, (TDMP)ZnBr4, using transition metal Mn2+ ions as dopants and incorporating them into the (TDMP)ZnBr4 lattice. The original non-emissive (TDMP)ZnBr4 exhibits bright green emission under the excitation of external UV light after the introduction of Mn2+ ions with a PL peak position located at 538 nm and a PLQY of up to 91.2%. Through the characterization of relevant photophysical properties and the results of theoretical calculations, we confirm that this green emission in Mn2+:(TDMP)ZnBr4 originates from the 4T16A1 optical transition process of Mn2+ ions in the lattice structure, and the near-unity PLQY benefits from highly localized electrons generated by the unique zero-dimensional structure of the host material (TDMP)ZnBr4. This work provides theoretical guidance and reference for expanding the family of zinc-based metal halide materials and improving and controlling their optical properties through ion doping. Full article
Show Figures

Figure 1

16 pages, 3877 KiB  
Article
Internal Vibrations of Pyridinium Cation in One-Dimensional Halide Perovskites and the Corresponding Halide Salts
by Anna Yu. Samsonova, Alena Yu. Mikheleva, Kirill M. Bulanin, Nikita I. Selivanov, Anton S. Mazur, Peter M. Tolstoy, Constantinos C. Stoumpos and Yury V. Kapitonov
Molecules 2024, 29(1), 78; https://doi.org/10.3390/molecules29010078 - 22 Dec 2023
Cited by 3 | Viewed by 1999
Abstract
We investigate vibrations of the pyridinium cation PyH+ = C5H5NH+ in one-dimensional lead halide perovskites PyPbX3 and pyridinium halide salts PyHX (X = I, Br), combining infrared absorption and Raman scattering [...] Read more.
We investigate vibrations of the pyridinium cation PyH+ = C5H5NH+ in one-dimensional lead halide perovskites PyPbX3 and pyridinium halide salts PyHX (X = I, Br), combining infrared absorption and Raman scattering methods at room temperature. Internal vibrations of the cation were assigned based on density functional theory modeling. Some of the vibrational bands are sensitive to perovskite or the salt environment in the solid state, while halide substitution has only a minor effect on them. These findings have been confirmed by 1H, 13C and 207Pb solid-state nuclear magnetic resonance (NMR) experiments. Narrower vibrational bands in perovskites indicate less disorder in these materials. The splitting of NH-group vibrational bands in perovskites can be rationalized the presence of nonequivalent crystal sites for cations or by more exotic phenomena such as quantum tunneling transition between two molecular orientations. We have shown how organic cations in hybrid organic–inorganic crystals could be used as spectators of the crystalline environment that affects their internal vibrations. Full article
Show Figures

Graphical abstract

Back to TopTop