[BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of SnO2 Precursor
2.3. Preparation of Perovskite Precursor
2.4. Preparation of Perovskite Precursors with Different Mass Concentrations of [BMP]+[BF4]−
2.5. Device Fabrication
2.6. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Guo, Y.; Xie, H.; Que, W.; Kong, L.B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 2019, 3, 1900001. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Laboratory, N.R.E. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/national-center-for-photovoltaics.html (accessed on 17 January 2024).
- Sun, Z.; Chen, X.; He, Y.; Li, J.; Wang, J.; Yan, H.; Zhang, Y. Toward efficiency limits of crystalline silicon solar cells: Recent progress in high-efficiency silicon heterojunction solar cells. Adv. Energy Mater. 2022, 12, 2200015. [Google Scholar] [CrossRef]
- Kajal, S.; Jeong, J.; Seo, J.; Anand, R.; Kim, Y.; Bhaskararao, B.; Beom Park, C.; Yeop, J.; Hagdfeldt, A.; Young Kim, J.; et al. Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chem. Eng. J. 2023, 451, 138740. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, C.; Hou, Y.; Yang, D.; Ye, T.; Yoon, J.; Sanghadasa, M.; Priya, S. Isothermally crystallized perovskites at room-temperature. Energy Environ. Sci. 2020, 13, 3412–3422. [Google Scholar] [CrossRef]
- Ardimas; Pakornchote, T.; Sukmas, W.; Chatraphorn, S.; Clark, S.J.; Bovornratanaraks, T. Phase transformations and vibrational properties of hybrid organic-inorganic perovskite MAPbI3 bulk at high pressure. Sci. Rep. 2023, 13, 16854. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sheng, W.; Li, R.; Gong, L.; Li, Y.; Tan, L.; Lin, Q.; Chen, Y. Uncovering the mechanism of poly(ionic-liquid)s multiple inhibition of ion migration for efficient and stable perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103652. [Google Scholar] [CrossRef]
- Zhang, H.; Pfeifer, L.; Zakeeruddin, S.M.; Chu, J.; Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023, 7, 632–652. [Google Scholar] [CrossRef]
- Zhu, H.; Teale, S.; Lintangpradipto, M.N.; Mahesh, S.; Chen, B.; McGehee, M.D.; Sargent, E.H.; Bakr, O.M. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 2023, 8, 569–586. [Google Scholar] [CrossRef]
- Park, S.M.; Wei, M.; Xu, J.; Atapattu, H.R.; Eickemeyer, F.T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Teale, S.; et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 2023, 381, 209–215. [Google Scholar] [CrossRef]
- Abate, S.Y.; Qi, Y.; Zhang, Q.; Jha, S.; Zhang, H.; Ma, G.; Gu, X.; Wang, K.; Patton, D.; Dai, Q. Eco-friendly solvent engineered CsPbI2.77Br0.23 ink for large-area and scalable high performance perovskite solar cells. Adv. Mater. 2023, 36, 2310279. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xue, X.; Wang, K.; Wen, Q.; Han, Y.; Wang, J.; Yao, H.; Lu, H.; Cui, L.; Ma, J.; et al. Intermediate phase modification enables high-performance iodine-rich inorganic perovskite solar cells with 3000-hour stability. Adv. Energy Mater. 2023, 14, 2303193. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, R.; Zhang, W.; Cheng, Q.; Zhou, H.; Zhang, Y. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance. Angew. Chem. Int. Ed. 2023, 63, e202315717. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, X.; Liu, D.; Liu, J.; Zhang, C.; Xie, H.; Yang, Y.; Que, W. Photoinduced self-healing of halide segregation in mixed-halide perovskites. ACS Energy Lett. 2021, 6, 2502–2511. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Que, M.; Zhang, J.; Wen, S.; Liu, D.; Xie, H.; Que, W. Quantum dot-modified CsPbIBr2 perovskite absorber for efficient and stable photovoltaics. Org. Electron. 2020, 86, 105917. [Google Scholar] [CrossRef]
- Zhang, J.; Hodes, G.; Jin, Z.; Liu, S. All-Inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem. Int. Ed. 2019, 58, 15596–15618. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef]
- Eperon, G.E.; Paternò, G.M.; Sutton, R.J.; Zampetti, A.; Haghighirad, A.A.; Cacialli, F.; Snaith, H.J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695. [Google Scholar] [CrossRef]
- Hutter, E.M.; Sutton, R.J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S.D.; Snaith, H.J.; Savenije, T.J. Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2017, 2, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Xiang, W.; Tian, Q.; Liu, S. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2021, 60, 23164–23170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, B.; Zhang, W.; Tui, R.; Chen, H.; Duan, Y.; Huang, H.; Duan, J.; Tang, Q. Defect-dependent crystal plane control on inorganic CsPbBr3 film by selectively anchoring (pseudo-) halide anions for 1.650 V voltage perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2206838. [Google Scholar] [CrossRef]
- Ho-Baillie, A.; Zhang, M.; Lau, C.F.J.; Ma, F.-J.; Huang, S. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 2019, 3, 938–955. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, W.; Liu, S. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144. [Google Scholar] [CrossRef]
- Yang, S.; Duan, Y.; Liu, Z.; Liu, S. Recent advances in CsPbX3 perovskite solar cells: Focus on crystallization characteristics and controlling strategies. Adv. Energy Mater. 2023, 13, 2201733. [Google Scholar] [CrossRef]
- Sutter-Fella, C.M.; Li, Y.; Amani, M.; Ager, J.W., III; Toma, F.M.; Yablonovitch, E.; Sharp, I.D.; Javey, A. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 2016, 16, 800–806. [Google Scholar] [CrossRef]
- Beal, R.E.; Slotcavage, D.J.; Leijtens, T.; Bowring, A.R.; Belisle, R.A.; Nguyen, W.H.; Burkhard, G.F.; Hoke, E.T.; McGehee, M.D. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7, 746–751. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Li, W.; Rothmann, M.U.; Liu, A.; Wang, Z.; Zhang, Y.; Pascoe, A.R.; Lu, J.; Jiang, L.; Chen, Y.; Huang, F.; et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 2017, 7, 1700946. [Google Scholar] [CrossRef]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, M.; Cai, W.; Zang, Z. Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells. Nano Lett. 2023, 23, 4479–4486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Teo, S.; Xu, Z.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 2019, 7, 1227–1232. [Google Scholar] [CrossRef]
- An, Y.; Zhang, N.; Zeng, Z.; Cai, Y.; Jiang, W.; Qi, F.; Ke, L.; Lin, F.R.; Tsang, S.W.; Shi, T. Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells. Adv. Mater. 2023, 2306568. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Ma, J.; Zhu, W.; Chen, D.; Xi, H.; Zhang, J.; Zhang, C.; Hao, Y. Suppressing halide phase segregation in CsPbIBr2 Films by polymer modification for hysteresis-less all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 2868–2878. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.-W.; Lu, T.; Gao, X.; Rothmann, M.U.; Jiang, Y.; Qiang, Z.-Y.; Du, H.-Q.; Guo, C.; Yang, L.-H.; Wang, C.-X.; et al. Heterogeneity of light-induced open-circuit voltage loss in perovskite/si tandem solar cells. ACS Energy Lett. 2024, 9, 1455–1465. [Google Scholar] [CrossRef]
- Liu, D.; Guo, Y.; Yin, X.; Yang, Y.; Que, W. Nucleation Regulation and Anchoring of Halide Ions in All-Inorganic Perovskite Solar Cells Assisted by CuInSe2 Quantum Dots. Adv. Funct. Mater. 2023, 33, 2210754. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv. Energy Mater. 2018, 8, 1802080. [Google Scholar] [CrossRef]
- Sanchez, S.; Christoph, N.; Grobety, B.; Phung, N.; Steiner, U.; Saliba, M.; Abate, A. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv. Energy Mater. 2018, 8, 1802060. [Google Scholar] [CrossRef]
Devices | VOC/V | JSC/mA cm−2 | FF | PCE/% |
---|---|---|---|---|
Pristine | 1.14 | 12.06 | 0.52 | 7.13 |
0.5 mg mL−1 | 1.13 | 11.97 | 0.54 | 7.36 |
1 mg mL−1 | 1.21 | 12.32 | 0.57 | 8.44 |
2 mg mL−1 | 1.19 | 11.39 | 0.59 | 8.03 |
3 mg mL−1 | 1.20 | 11.58 | 0.58 | 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Li, L.; Zhang, J.; Zhang, Y.; Pan, Y.; Xu, J.; Yin, X.; Que, W. [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules 2024, 29, 1476. https://doi.org/10.3390/molecules29071476
Xie H, Li L, Zhang J, Zhang Y, Pan Y, Xu J, Yin X, Que W. [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules. 2024; 29(7):1476. https://doi.org/10.3390/molecules29071476
Chicago/Turabian StyleXie, Haixia, Lei Li, Jiawei Zhang, Yihao Zhang, Yong Pan, Jie Xu, Xingtian Yin, and Wenxiu Que. 2024. "[BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation" Molecules 29, no. 7: 1476. https://doi.org/10.3390/molecules29071476
APA StyleXie, H., Li, L., Zhang, J., Zhang, Y., Pan, Y., Xu, J., Yin, X., & Que, W. (2024). [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules, 29(7), 1476. https://doi.org/10.3390/molecules29071476