Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = oral biofilm activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2630 KiB  
Article
Photodynamic Therapy in the Management of MDR Candida spp. Infection Associated with Palatal Expander: In Vitro Evaluation
by Cinzia Casu, Andrea Butera, Alessandra Scano, Andrea Scribante, Sara Fais, Luisa Ladu, Alessandra Siotto-Pintor and Germano Orrù
Photonics 2025, 12(8), 786; https://doi.org/10.3390/photonics12080786 - 4 Aug 2025
Viewed by 143
Abstract
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was [...] Read more.
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was used as a photosensitizer activated by a 460 nm diode LED lamp, with an 8 mm blunt tip for 2 min in each spot of interest. In vitro simulation: A palatal expander sterile device was inserted into a custom-designed orthodontic bioreactor, realized with 10 mL of Sabouraud dextrose broth plus 10% human saliva and infected with an MDR C. albicans clinical isolate CA95 strain to reproduce an oral palatal expander infection. After 48 h of incubation at 37 °C, the device was treated with the PDT protocol. Two samples before and 5 min after the PDT process were taken and used to contaminate a Petri dish with a Sabouraud field to evaluate Candida spp. CFUs (colony-forming units). Results: A nearly 99% reduction in C. albicans colonies in the palatal expander biofilm was found after PDT. Conclusion: The data showed the effectiveness of using aPDT to treat palatal infection; however, specific patient oral micro-environment reproduction (Ph values, salivary flow, mucosal adhesion of photosensitizer) must be further analyzed. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

14 pages, 2030 KiB  
Article
In Vitro Assessment of the Antimicrobial and Antibiofilm Activities of Commercial Toothpastes Against Streptococcus mutans
by Yun Ju Lee and Jeong Nam Kim
Appl. Biosci. 2025, 4(3), 38; https://doi.org/10.3390/applbiosci4030038 - 2 Aug 2025
Viewed by 214
Abstract
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy [...] Read more.
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy of 12 commercially available toothpaste products, including those with specialized functions. Statistical significance was assessed to validate the differences observed among the toothpaste samples. Their effects on Streptococcus mutans, the primary pathogen responsible for dental caries, were evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined, and bacterial growth was measured to compare antimicrobial activities. Toothpaste containing 1000 μg/mL fluoride and whitening toothpaste exhibited the strongest antimicrobial effects, effectively inhibiting S. mutans growth. Additionally, bamboo salt-enriched and tartar-control toothpaste demonstrated inhibitory effects on bacterial growth. Assays to evaluate the ability of cells to form biofilms and the expression of genes involved in biofilm formation revealed a partial correlation between biofilm formation and spaP, gtfB, gtfC, and gtfD expression, although some showed opposite trends. Collectively, this study provides valuable insights into the antimicrobial and biofilm inhibition capabilities of commercial toothpastes against S. mutans, offering a foundation for evaluating the efficacy of functional toothpaste products. Full article
Show Figures

Figure 1

14 pages, 8944 KiB  
Article
Nano-Hydroxyapatite-Based Mouthwash for Comprehensive Oral Care: Activity Against Bacterial and Fungal Pathogens with Antioxidant and Anti-Inflammatory Action
by Tomasz M. Karpiński, Magdalena Paczkowska-Walendowska and Judyta Cielecka-Piontek
Materials 2025, 18(15), 3567; https://doi.org/10.3390/ma18153567 - 30 Jul 2025
Viewed by 471
Abstract
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, [...] Read more.
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, licorice extract, and cetylpyridinium chloride, with particular focus on its efficacy against Staphylococcus aureus and its biofilm on various dental materials. Methods: The antimicrobial activities of the mouthwash KWT0000 and control product ELM were assessed via minimal inhibitory concentration (MIC) testing against selected Gram-positive and Gram-negative bacteria and Candida fungi. Antibiofilm activity was evaluated using fluorescence and digital microscopy following 1-h exposure to biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The efficacy was compared across multiple dental materials, including titanium, zirconia, and PMMA. Antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and anti-inflammatory potential via hyaluronidase inhibition. Results: KWT0000 exhibited strong antimicrobial activity against S. aureus and C. albicans (MICs: 0.2–1.6%) and moderate activity against Gram-negative strains. Fluorescence imaging revealed significant biofilm disruption and bacterial death after 1 h. On metallic surfaces, especially polished titanium and zirconia, KWT0000 reduced S. aureus biofilm density considerably. The formulation also demonstrated superior antioxidant (55.33 ± 3.34%) and anti-inflammatory (23.33 ± 3.67%) activity compared to a fluoride-based comparator. Conclusions: The tested nanoHAP-based mouthwash shows promising potential in antimicrobial and antibiofilm oral care, particularly for patients with dental implants. Its multifunctional effects may support not only plaque control but also soft tissue health. Full article
Show Figures

Figure 1

16 pages, 317 KiB  
Review
Combination Antibiotic Therapy for Orthopedic Infections
by Eric Bonnet and Julie Lourtet-Hascoët
Antibiotics 2025, 14(8), 761; https://doi.org/10.3390/antibiotics14080761 - 29 Jul 2025
Viewed by 302
Abstract
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may [...] Read more.
Background/Objectives: Limited robust data support the use of antibiotic combinations in the treatment of orthopedic infections. However, in certain situations, the combination of antibiotics seems to be beneficial. This review aims to outline the circumstances under which a combination of antibiotics may be utilized in the treatment of orthopedic infections. Methods: We reviewed the existing guidelines on orthopedic infections and focused on situations where antibiotic combinations are recommended or proposed optionally. We chose vitro and animal studies that provide evidence for the effectiveness of several widely recommended combinations. Results: The combinations serve multiple purposes: they provide empirical coverage while awaiting microbiological results, offer targeted treatment for difficult-to-treat infections, and facilitate oral treatment primarily for staphylococcal infections. The objectives include enhancing bacterial coverage against Gram-positive and Gram-negative bacteria, achieving synergistic effects with bactericidal agents, and reducing the risk of antibiotic resistance. The review outlines specific combinations for fracture-related infections, periprosthetic joint infections, spinal infections, and anterior cruciate ligament reconstruction infections, emphasizing the importance of tailoring antibiotic choices based on local epidemiology and patient history. The review also addresses potential drawbacks of combination therapy, such as toxicity, higher costs, and drug interactions, underscoring the complexity of managing orthopedic infections effectively. Conclusions: According to the guidelines, several different proposals are made, depending in part on the countries’ epidemiology. In a well-defined situation, various authors propose either monotherapy or a combination of antibiotics. When a combination is suggested, the choice of antibiotics is based on the expected effect: broadening the spectrum, enhancing bactericidal activity, achieving a synergistic effect, or reinforcing biofilm activity to optimize the treatment. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
17 pages, 2234 KiB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 442
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

8 pages, 549 KiB  
Review
Probiotics, Prebiotics, Synbiotics, and Postbiotics Against Oral Candida in Children: A Review of Clinical Trials
by Anna Turska-Szybka, Dorota Olczak-Kowalczyk and Svante Twetman
Nutrients 2025, 17(14), 2253; https://doi.org/10.3390/nu17142253 - 8 Jul 2025
Viewed by 698
Abstract
Background/Objectives: Children with an oral presence of Candida spp. have an elevated prevalence of dental caries. As an alternative to conventional antifungal drugs, the use of biofilm-modulating strategies, such as probiotic bacteria, may be a sustainable option. Probiotics are live microorganisms that have [...] Read more.
Background/Objectives: Children with an oral presence of Candida spp. have an elevated prevalence of dental caries. As an alternative to conventional antifungal drugs, the use of biofilm-modulating strategies, such as probiotic bacteria, may be a sustainable option. Probiotics are live microorganisms that have beneficial health effects, while prebiotics are compounds in food that foster the growth or activity of the beneficial microorganisms. The aim of this paper was to review current clinical findings regarding the antifungal effects of pre- and probiotic supplements, including syn- and postbiotics, in children. Methods: We searched two databases (PubMed and Google Scholar) for controlled clinical trials published in English up to 20 April 2025, and two authors scanned the abstracts independently for relevance. The selected full-text papers were reviewed and assessed for risk of bias. Results: Four articles published between 2013 and 2025 were included in this review, covering a total number of 208 caries-active children between 3 and 14 years of age. Study designs were heterogeneous, and we observed conflicting results: two studies with probiotic streptococci failed to demonstrate any beneficial effects on the counts of salivary C. albicans, while interventions with L. plantarum and L. rhamnosus significantly reduced C. albicans compared with controls. None of the included reports displayed a low risk of bias. No clinical studies utilizing prebiotics, synbiotics, or postbiotics were retrieved. Conclusions: We found insufficient evidence concerning the antifungal effects of probiotic supplements in children. Therefore, we recommend future clinical trials to explore the ability of pre-, pro-, and postbiotic interventions to affect cross-kingdom biofilms in order to support a balanced and health-associated composition of the dental biofilm in children. Full article
(This article belongs to the Section Prebiotics and Probiotics)
15 pages, 1338 KiB  
Article
The Effect of Limosilactobacillus fermentum MG4717 on Oral Health and Biosafety
by Jeong-Yong Park, Ji Yeon Lee, YongGyeong Kim, Byoung-Kook Kim and Soo-Im Choi
Microorganisms 2025, 13(7), 1600; https://doi.org/10.3390/microorganisms13071600 - 7 Jul 2025
Viewed by 395
Abstract
Oral diseases such as periodontitis and dental caries, as well as conditions related to oral health such as halitosis, are closely associated with dysbiosis of the oral microbiota and continue to pose significant public health challenges worldwide. With the increasing resistance to existing [...] Read more.
Oral diseases such as periodontitis and dental caries, as well as conditions related to oral health such as halitosis, are closely associated with dysbiosis of the oral microbiota and continue to pose significant public health challenges worldwide. With the increasing resistance to existing antibiotics and side effects of chemical disinfectants, probiotics have emerged as promising alternatives for oral healthcare. This study aimed to evaluate the oral health efficacy and probiotic properties of Limosilactobacillus fermentum (L. fermentum) MG4717 isolated from the human oral cavity. L. fermentum MG4717 showed notable antimicrobial activity against the key oral pathogens Streptococcus mutans (S. mutans), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) and effectively inhibited biofilm formation. Additionally, L. fermentum MG4717 significantly downregulated methionine gamma-lyase (mgl) mRNA expression in P. gingivalis, which is implicated in halitosis and pathogenicity. L. fermentum MG4717 strongly adhered to the KB and HT-29 epithelial cells and exhibited good resilience under simulated gastrointestinal conditions. Whole-genome sequencing (WGS) and average nucleotide identity (ANI) analysis confirmed strain identity (98.73% average nucleotide identity with L. fermentum DSM20052) and the absence of transferable antibiotic resistance genes. Safety assessments revealed no cytotoxicity, hemolytic activity, or bile salt hydrolase activity. These findings suggest that L. fermentum MG4717 has the potential to be used as a safe and effective oral probiotic beneficial for oral health. Full article
(This article belongs to the Special Issue The Oral Microbiota and Oral Health)
Show Figures

Figure 1

21 pages, 3621 KiB  
Article
Dual-Mode Antibacterial Orthodontic Composite: Contact-Killing QACs and Sustained CHX Release via Large-Pore Mesoporous Silica Nanoparticles
by Xiaotian Teng, Yingguang Cao, Jing Mao and Xiaojuan Luo
Int. J. Mol. Sci. 2025, 26(13), 6172; https://doi.org/10.3390/ijms26136172 - 26 Jun 2025
Viewed by 393
Abstract
This study develops a dual-mode antibacterial orthodontic adhesive by integrating quaternary ammonium salt-modified large-pore mesoporous silica nanoparticles (QLMSN@CHX). The material integrates two antibacterial mechanisms: (1) contact killing via covalently anchored quaternary ammonium salts (QACs) and (2) sustained release of chlorhexidine (CHX) from radially [...] Read more.
This study develops a dual-mode antibacterial orthodontic adhesive by integrating quaternary ammonium salt-modified large-pore mesoporous silica nanoparticles (QLMSN@CHX). The material integrates two antibacterial mechanisms: (1) contact killing via covalently anchored quaternary ammonium salts (QACs) and (2) sustained release of chlorhexidine (CHX) from radially aligned macropores. The experimental results demonstrated that QLMSN@CHX (5 wt%) achieved rapid biofilm eradication (near-complete biofilm eradication at 24 h) and prolonged antibacterial activity, while maintaining shear bond strength comparable to commercial adhesives (6.62 ± 0.09 MPa after 30-day aging). The large-pore structure enabled controlled CHX release without burst effects, and covalent grafting ensured negligible QAC leaching over 30 days. The composite demonstrated good biocompatibility with human dental pulp mesenchymal stem cells at clinically relevant concentrations. This dual-mode design provides a clinically viable strategy to combat bacterial contamination in orthodontic treatments, with potential applications in other oral infections. Future studies will focus on validating efficacy in complex in vivo biofilm models. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Antibacterial and Anti-Adherence Efficacy of Silver Nanoparticles Against Endodontic Biofilms: An In Vitro and Ex Vivo Study
by Mariana Goretti Pérez-Sáenz, Rita Elizabeth Martínez-Martínez, Erasto Armando Zaragoza-Contreras, Rubén Abraham Domínguez-Pérez, Simón Yobanny Reyes-López, Alejandro Donohue-Cornejo, Juan Carlos Cuevas-González, Karla Lizette Tovar-Carrillo, Erika de Lourdes Silva-Benítez, José Luis Ayala-Herrera and León Francisco Espinosa-Cristóbal
Pharmaceutics 2025, 17(7), 831; https://doi.org/10.3390/pharmaceutics17070831 - 26 Jun 2025
Viewed by 365
Abstract
Background/Objectives: Root canal infections represent a serious challenge to the success of endodontic treatment. The most commonly used antimicrobial irrigants, such as sodium hypochlorite (NaOCl), have certain limitations, while endodontic biofilms pose a significant microbiological complexity in the endodontic field. Silver nanoparticles (AgNPs) [...] Read more.
Background/Objectives: Root canal infections represent a serious challenge to the success of endodontic treatment. The most commonly used antimicrobial irrigants, such as sodium hypochlorite (NaOCl), have certain limitations, while endodontic biofilms pose a significant microbiological complexity in the endodontic field. Silver nanoparticles (AgNPs) have emerged as a promising irrigant option in root canal treatments; however, few studies are focusing on endodontic biofilms. This work aimed to evaluate the antimicrobial and anti-adherence properties of AgNPs against clinically isolated bacteria taken directly from patients with various pulp and periapical diseases. Methods: AgNPs of two sizes were synthesized and characterized. The bactericidal and anti-adherence activities of AgNPs were evaluated through microbiological assays using experimental in vitro and ex vivo tests on oral biofilms taken from patients with symptomatic apical periodontitis (AAP) and pulp necrosis (PN). NaOCl solution was used as the gold standard. Results: The size of AgNPs was uniformly distributed (13.2 ± 0.4 and 62.6 ± 14.9 nm, respectively) with a spherical shape. Both types of nanoparticles exhibited good antimicrobial and anti-adherence activities in all microbiological assays, with a significant difference from NaOCl for in vitro and ex vivo models (p < 0.05). The inhibitory activity of AgNPs is mainly related to the type of microbiological sample and the exposure time. The antibacterial substantivity of both nanoparticle sizes was time-dependent. Conclusions: AgNPs may represent a promising antimicrobial option as an endodontic irrigant during conventional root canal treatments to prevent and control endodontic infections. Full article
Show Figures

Graphical abstract

21 pages, 8141 KiB  
Article
Octahedral Fe3O4 Nanozymes Penetrate and Remove Biofilms on Implants via Photomagnetic Response
by Xingpu Yin, Bo Zhao, Lu Chen, Xuan Di, Baoe Li, Hongshui Wang, Donghui Wang and Chunyong Liang
Coatings 2025, 15(6), 728; https://doi.org/10.3390/coatings15060728 - 18 Jun 2025
Viewed by 460
Abstract
Dental implant papilla (DIP) is susceptible to bacterial adhesion and biofilm formation, and oral pathogenic biofilms can cause persistent oral infections. Enrichment of bacterial biofilms on implants can lead to soft tissue irritation and adjacent bone resorption, severely compromising dental health and potentially [...] Read more.
Dental implant papilla (DIP) is susceptible to bacterial adhesion and biofilm formation, and oral pathogenic biofilms can cause persistent oral infections. Enrichment of bacterial biofilms on implants can lead to soft tissue irritation and adjacent bone resorption, severely compromising dental health and potentially leading to periodontitis, implant loss and costly follow-up care. Nanozymes (NZs) are recently used in biofilm removal as they can induce the production of reactive oxygen species (ROS), which can kill bacteria. However, the short lifespan of ROS limits their diffusion distance, and affects their therapeutic efficacy. In this study, we prepared Fe3O4 nanoparticles (NZs) with different morphologies: flower-like (F-Fe3O4), hollow spherical (M-Fe3O4), octahedral (O-Fe3O4), and conventional nanoparticles (N-Fe3O4). The ferromagnetic properties of Fe3O4 NZs allow them to move and penetrate the biofilm under the action of a magnetic field. The saturation magnetic intensities of the four samples were as follows: F-Fe3O4 (23.1 emu g−1), M-Fe3O4 (73.34 emu g−1), O-Fe3O4 (96.06 emu g−1), and N-Fe3O4 (52.15 emu g−1). The synergistic combination of photothermal action and catalytic sterilization can effectively remove the biofilm. In addition, the prepared Fe3O4 nanozymes were able to maintain high biological activity on the implant surface with some osteogenic effect. Full article
(This article belongs to the Special Issue Bioactive Coatings on Elements Used in the Oral Cavity Environment)
Show Figures

Graphical abstract

10 pages, 233 KiB  
Review
The Reevaluation of Subgingival Calculus: A Narrative Review
by Stephen K. Harrel, Atsutoshi Yoshimura and Charles M. Cobb
Dent. J. 2025, 13(6), 257; https://doi.org/10.3390/dj13060257 - 9 Jun 2025
Viewed by 754
Abstract
Aim: Despite a persistent presence in periodontitis, calculus remains a paradox. This narrative review reevaluates the role of calculus in periodontitis based on in situ, ex vivo, and in vitro studies published over the last two decades. Review: Results from multiple studies argue [...] Read more.
Aim: Despite a persistent presence in periodontitis, calculus remains a paradox. This narrative review reevaluates the role of calculus in periodontitis based on in situ, ex vivo, and in vitro studies published over the last two decades. Review: Results from multiple studies argue for the reconsideration of calculus as an independent risk factor in periodontitis. The results of a human study suggest that calculus contributes more to inflammation than simply serving as a substrate for biofilm accumulation. Ultrastructure studies have revealed residual calculus embedded in cementum following scaling and root planing (SRP). In vitro studies show that calculus particles can stimulate IL-1β secretion via the NLRP3 inflammasome in human and mouse phagocytes, and the crystalline structure is partially responsible for the activation. Other studies indicate that calculus particles may promote bone resorption via IL-1β induction in patients with periodontitis. Further, heat-treated calculus particles and hydroxyapatite crystals induce cell death in epithelial cell lines, suggesting that calculus plays a role in the breakdown of pocket epithelial integrity. Conclusions: Studies have shown that particles of microscopic calculus persist following traditional SRP. In vitro studies report that sterile and calcined calculus particles free of proteinaceous material are cytotoxic to cultured oral epithelial cells. Collectively, these studies suggest that residual microscopic calculus may be a potential risk factor for the failure of periodontal therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Graphical abstract

17 pages, 2325 KiB  
Article
Exploring Antioxidant, Antimicrobial and Anti-Inflammatory Effects of Juglans regia and Pfaffia paniculata Extracts: Implications for Intestinal Dysbiosis and Colorectal Cancer Risk Associated with Oral Pathogens
by Diego Garcia Miranda, Lucas de Paula Ramos, Nina Attik, Nicole Van Der Heijde Fernandes Silva, Pyetra Claro Camargo, Gabriela Ferraz de Araujo, Nicole Fernanda dos Santos Lopes, Maria Cristina Marcucci, Cristina Pacheco-Soares, Bruno Henrique Godoi, Giovanna Arruda Caires, Hugo Vigerelli and Florence Carrouel
Pharmaceutics 2025, 17(6), 693; https://doi.org/10.3390/pharmaceutics17060693 - 25 May 2025
Viewed by 2690
Abstract
Background/Objectives: Colorectal neoplasms rank as the third most prevalent cancer globally and stand as the second leading cause of cancer-related mortality. Its etiology is multifaceted, pointing to the role of microorganisms within the human microbiota in its development. Notably, the high prevalence of [...] Read more.
Background/Objectives: Colorectal neoplasms rank as the third most prevalent cancer globally and stand as the second leading cause of cancer-related mortality. Its etiology is multifaceted, pointing to the role of microorganisms within the human microbiota in its development. Notably, the high prevalence of oral pathogens like Fusobacterium nucleatum and Parvimonas micra is implicated in inducing gut dysbiosis and stimulating the proliferation and metastasis of cancer cells. Therefore, this study aimed to evaluate in vitro the biological effects of extracts from Juglans regia and Pfaffia paniculata. Methods: Phytochemical analysis was carried out by HPLC, and the antioxidant effect was determined by DPPH. Antimicrobial activity was investigated on F. nucleatum and P. micra planktonic and biofilms. Metabolic activity and genotoxicity were performed. Results:J. regia and P. paniculata expressed CE50 37.26 and 1367.57 mcg, respectively. The extracts exhibited a minimum bactericidal concentration of 1.73 and 0.48 mg/mL for J. regia and P. paniculata, respectively. Reduction superiorly 90% of P. micra biofilms. Metabolic activity was varied proportionally to the extract concentration, and no genotoxic effects were observed. Conclusions: The J. regia extract has great antioxidant activity and could be used as an alternative in combating pathogens associated with the onset of dysbiosis and tumor progression in colorectal neoplasms. Nevertheless, further studies are needed to validate their clinical applicability. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

24 pages, 778 KiB  
Review
Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications
by Fatima Zahra Kamal, Alin Ciobica, Gabriel Dascalescu, Said Rammali, Mohamed El Aalaoui, Radu Lefter, Ioana Vata, Vasile Burlui and Bogdan Novac
Microorganisms 2025, 13(5), 1148; https://doi.org/10.3390/microorganisms13051148 - 16 May 2025
Viewed by 1050
Abstract
The formation of microbial colonies and biofilms are common on dental restorations. This can lead to secondary caries. Another common complication is the post-operative inflammation noted in patients. The traditionally used dental composites are designed without the inherent components having antimicrobial and inflammatory [...] Read more.
The formation of microbial colonies and biofilms are common on dental restorations. This can lead to secondary caries. Another common complication is the post-operative inflammation noted in patients. The traditionally used dental composites are designed without the inherent components having antimicrobial and inflammatory properties. This has become a major challenge in current restorative dentistry applications. In order to address these challenges, a possible approach is to incorporate eugenol nanoparticles (NPs) into dental composites. This approach can offer dual therapeutic benefits since eugenol possess both antimicrobial and inflammatory properties. In fact, compared to synthetic antimicrobial agents, eugenol exhibits antibacterial activity not only against Streptococcus mutans but also against a range of oral pathogens. It also exhibits anti-inflammatory effects that can promote healing by reducing post-operative sensitivity. In spite of the above benefits, eugenol cannot be incorporated directly into dental materials. This is because eugenol is highly volatile and has poor water solubility. The encapsulation of eugenol in suitable nano-materials can overcome these limitations. In addition, it can enable the controlled and sustained release of desirable agents for long-term therapeutic action. In this review, we explore the mechanisms, advantages and potential clinical applications of dental composites containing NP integrated with eugenol. We highlight the advantages of having antimicrobial and anti-inflammatory functions in a single restorative material. At the same time, we acknowledge the need for more in-depth research to optimize NP formulations with eugenol that does not compromise the mechanical properties of dental materials. Based on a thorough literature review, we believe that this approach has much potential in restorative dentistry procedures that will aid therapeutic outcomes in the future. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Nanoparticles)
Show Figures

Figure 1

16 pages, 10148 KiB  
Article
Bioinspired Janus Membrane with Dopamine-ZnO Coating for Antibacterial Filtration in Oral Applications
by Yumeng Guo, Qian Wang, Guoming Sun and Ying Zheng
Polymers 2025, 17(10), 1356; https://doi.org/10.3390/polym17101356 - 15 May 2025
Viewed by 410
Abstract
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine [...] Read more.
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine and zinc oxide nanoparticles (ZnO-NPs). Fabricated via a simple floating immersion method, this asymmetric bilayer structure consists of a hydrophobic PP layer and a hydrophilic PP/dopamine@30 nm ZnO layer, providing both antibacterial properties and enhanced fluid filtration. The mechanical properties of the PP/ZnO membrane were significantly enhanced, with an increase in the Young’s modulus and ultimate tensile strength, indicating improved strength. Antibacterial activity against Streptococcus mutans (S. mutans) demonstrated a significant reduction in biofilm formation on the PP/dopamine@30 nm ZnO surface compared to unmodified PP. Water flux tests confirmed a stable, high filtration rate, with increased permeability under rising pressure. In vivo experiments with miniature pigs confirmed reduced bacterial presence on the sterile side of the membrane. These findings highlight the potential of the membrane for oral exudate filtration, extending filtration time and minimizing infection risks under strict sterility conditions. Further improvements in barrier properties are necessary to optimize its clinical performance. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Graphical abstract

22 pages, 3117 KiB  
Article
New Curcumin Analogue (PAC) Inhibits Candida albicans Virulence, Restricts Its Adhesion Potential, and Relieves Oral Epithelial Cell Inflammation and Defense Mechanisms
by Ghazoua Mezni, Hawraa Issa, Manal Dahdah, Anaïs Poulin, Adam Daïch, Abdulaziz Alamri, Mahmoud Rouabhia and Abdelhabib Semlali
Antibiotics 2025, 14(5), 495; https://doi.org/10.3390/antibiotics14050495 - 12 May 2025
Viewed by 892
Abstract
Objectives: The oral cavity hosts one of the most complex microbial communities in the body. A disruption of the balance favors the growth of pathogenic species, contributing to oral diseases. The rise in microbial resistance has limited the effectiveness of conventional treatments, shifting [...] Read more.
Objectives: The oral cavity hosts one of the most complex microbial communities in the body. A disruption of the balance favors the growth of pathogenic species, contributing to oral diseases. The rise in microbial resistance has limited the effectiveness of conventional treatments, shifting the interest to natural product-based alternatives. Given its superior bioavailability and bioactivity in other models, this study investigates the antifungal potential of a novel curcumin derivative, PAC (3,5-bis(4-hydroxy-3-methoxybenzylidene)-N-methyl-4-piperidone), and studies its impact on host–pathogen dynamics and host defense mechanisms. Methods: Candida albicans was used as the model organism. Viability, growth kinetics, and colony formation were evaluated using optical density, agar culture, and MTT assay. Biofilm formation was assessed through electron microscopy and total sugar quantification. The morphological transition from hyphae to the less virulent blastospore was monitored using an optical microscope. The gene expression of adhesion factors and host defense markers was analyzed using RT-PCR. Results: PAC impairs C. albicans viability and reduces virulence by compromising biofilm formation and ensuring phenotypic transition to a blastospore form. Also, PAC controls C. albicans growth via necrosis/ROS pathways. As a result, PAC appears to repress host–pathogen interaction by downregulating SAPs, EAP1, and HWP1 adhesion genes, thus relieving the need to activate gingival epithelial cell defense mechanisms. This is highlighted by recording baseline levels of IL-6, IL-8, and IL-1β cytokines and antimicrobial β-defensin peptides in the presence of less virulent candida forms. Conclusions: PAC effectively reduces C. albicans virulence by limiting biofilm formation and adhesion while minimizing inflammatory responses. These findings support its potential as a promising therapeutic agent for infectious disease control. Full article
Show Figures

Figure 1

Back to TopTop