Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,451)

Search Parameters:
Keywords = optical temperature sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3505 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 (registering DOI) - 29 Aug 2025
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
35 pages, 6244 KB  
Review
Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications
by Ugis Senkans, Nauris Silkans, Sandis Spolitis and Janis Braunfelds
Sensors 2025, 25(17), 5283; https://doi.org/10.3390/s25175283 - 25 Aug 2025
Viewed by 318
Abstract
This study focuses on a comprehensive analysis of the common methods for road infrastructure monitoring, as well as the perspective of various fiber-optic sensor (FOS) realization solutions in road monitoring applications. Fiber-optic sensors are a topical technology that ensures multiple advantages such as [...] Read more.
This study focuses on a comprehensive analysis of the common methods for road infrastructure monitoring, as well as the perspective of various fiber-optic sensor (FOS) realization solutions in road monitoring applications. Fiber-optic sensors are a topical technology that ensures multiple advantages such as passive nature, immunity to electromagnetic interference, multiplexing capabilities, high sensitivity, and spatial resolution, as well as remote operation and multiple physical parameter monitoring, hence offering embedment potential within the road pavement structure for needed smart road solutions. The main key factors that affect FOS-based road monitoring scenarios and configurations are analyzed within this review. One such factor is technology used for optical sensing—fiber Bragg grating (FBG), Brillouin, Rayleigh, or Raman-based sensing. A descriptive comparison is made comparing typical sensitivity, spatial resolution, measurement distance, and applications. Technological approaches for monitoring physical parameters, such as strain, temperature, vibration, humidity, and pressure, as a means of assessing road infrastructure integrity and smart application integration, are also evaluated. Another critical aspect concerns spatial positioning, focusing on the point, quasi-distributed, and distributed methodologies. Lastly, the main topical FOS-based application areas are discussed, analyzed, and evaluated. Full article
Show Figures

Figure 1

23 pages, 5532 KB  
Article
Pulsed CO2 Laser-Fabricated Cascades of Double Resonance Long Period Gratings for Sensing Applications
by Tinko Eftimov, Sanaz Shoar Ghaffari, Georgi Dyankov, Veselin Vladev and Alla Arapova
Micromachines 2025, 16(8), 959; https://doi.org/10.3390/mi16080959 - 20 Aug 2025
Viewed by 216
Abstract
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn [...] Read more.
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn around point (TAP) gratings. A pulsed CO2 laser was used to fabricate ordinary and cascaded DR LPGs in a photosensitive optical fiber. The responses of the fabricated C DR LPGs to surrounding refractive index (SRI) temperature as well to longitudinal strain have been studied. A statistical comparison of the SRI sensitivities of ordinary and cascaded DR LPGs is presented to outline the capabilities and advantages of cascaded DR gratings. It was experimentally established that the temperature dependence of the wavelength split at the TAP follows a logarithmic dependence and the sensitivity to temperature is inversely proportional to the temperature itself. We evaluate the temperature stability needed for SRI-based sensing application and the importance of fine-tuning to the operational point slightly after the TAP to ensure maximum sensitivity of the sensor. Full article
Show Figures

Figure 1

12 pages, 5264 KB  
Article
A PDMS Coating-Based Balloon-Shaped Fiber Optic Respiratory Monitoring Sensor
by Qingfeng Shi, Yunkun Cui, Yu Zhang, Jie Zhang and Feng Peng
Sensors 2025, 25(16), 5174; https://doi.org/10.3390/s25165174 - 20 Aug 2025
Viewed by 364
Abstract
A respiratory monitoring sensor based on a balloon-shaped optical fiber is proposed. The sensor consists of a single-mode fiber (SMF) coated with polydimethylsiloxane (PDMS) bent into a balloon shape to form a fiber optic Mach–Zehnder interferometer. The sensor’s sensitivity to temperature enables monitoring [...] Read more.
A respiratory monitoring sensor based on a balloon-shaped optical fiber is proposed. The sensor consists of a single-mode fiber (SMF) coated with polydimethylsiloxane (PDMS) bent into a balloon shape to form a fiber optic Mach–Zehnder interferometer. The sensor’s sensitivity to temperature enables monitoring of breathing status by recognizing the temperature changes that occur during human respiration. By adjusting the bending radius of the balloon-shaped SMF, high-order modes can be effectively excited to interfere with the core mode. Due to the high thermo-optic coefficient and thermal expansion coefficient of PDMS itself, the balloon-shaped fiber optic sensor can achieve temperature sensitivity. The experimental results show that the temperature sensitivity is −166.29 pm/°C in a temperature range of 30 °C to 60 °C. Finally, the proposed sensor was mounted into a respiratory mask to monitor different breathing states (normal, fast, slow, and oral–nasal breathing transitions) and breathing frequencies. Full article
(This article belongs to the Special Issue Recent Advances in Micro- and Nanofiber-Optic Sensors)
Show Figures

Figure 1

22 pages, 3265 KB  
Article
A Novel Multi-Core Parallel Current Differential Sensing Approach for Tethered UAV Power Cable Break Detection
by Ziqiao Chen, Zifeng Luo, Ziyan Wang, Zhou Huang, Yongkang He, Zhiheng Wen, Yuanjun Ding and Zhengwang Xu
Sensors 2025, 25(16), 5112; https://doi.org/10.3390/s25165112 - 18 Aug 2025
Viewed by 304
Abstract
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a [...] Read more.
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a dual innovation: a real-time break detection method and a low-cost multi-core parallel sensing system design based on ACS712 Hall sensors, achieving high detection accuracy (100% with zero false positives in tests). Unlike conventional techniques, the approach leverages current differential (ΔI) monitoring across parallel cores, triggering alarms when ΔI exceeds Irate/2 (e.g., 0.3 A for 0.6 A rated current), corresponding to a voltage deviation ≥ 110 mV (normal baseline ≤ 3 mV). The core innovation lies in the integrated sensing system design: by optimizing the parallel deployment of ACS712 sensors and LMV324-based differential circuits, the solution reduces hardware cost to USD 3 (99.99% lower than fiber optic systems), payload by 18%, and power consumption by 23% compared to traditional methods. Post-fault cable temperatures remain ≤56 °C, ensuring safety margins. The 4-core architecture enhances mean time between failures (MTBF) by 83% over traditional systems, establishing a new paradigm for low-cost, high-reliability sensing systems in terrestrial tethered UAV cable health monitoring. Preliminary theoretical analysis suggests potential extensibility to underwater scenarios with further environmental hardening. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

21 pages, 7939 KB  
Article
Femtosecond Laser Single-Spot Welding of Sapphire/Invar Alloy
by Yuyang Chen, Yinzhi Fu, Xianshi Jia, Kai Li and Cong Wang
Materials 2025, 18(16), 3839; https://doi.org/10.3390/ma18163839 - 15 Aug 2025
Viewed by 294
Abstract
Ultrafast laser welding of glass/metal heterostructures has found extensive applications in sensors, medical devices, and optical systems. However, achieving high-stability, high-quality welds under non-optical contact conditions remains challenging due to severe internal damage within glass materials. This study addresses thermal management through synergistic [...] Read more.
Ultrafast laser welding of glass/metal heterostructures has found extensive applications in sensors, medical devices, and optical systems. However, achieving high-stability, high-quality welds under non-optical contact conditions remains challenging due to severe internal damage within glass materials. This study addresses thermal management through synergistic control of thermal accumulation effects and material ablation thresholds. Using the sapphire/Invar alloy system as a model for glass/metal welding, we investigated thermal accumulation effects during ultrafast laser ablation of Invar alloy through theoretical simulations. Under a repetition rate of 1 MHz, the femtosecond laser raised the lattice equilibrium temperature by 700 K within 10 microseconds, demonstrating that high repetition rate femtosecond lasers can induce effective heat accumulation in Invar alloy. Furthermore, ablation thresholds for both materials were determined across varying repetition rates via the D2 method, with corresponding threshold curves systematically constructed. Finally, based on the simulation and ablation threshold calculation results, laser parameters were selected for ultrafast laser single point welding of sapphire and Invar alloy. The experimental results demonstrate effective thermal effect mitigation, achieving a maximum shear strength of 63.37 MPa. Comparative analysis against traditional scan welding further validates the superiority of our approach in thermal management. This work provides foundational theoretical and methodological guidance for ultrafast laser welding of glass/metal heterostructures. Full article
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
by Tăchiță Vlad-Bubulac, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip and Marius-Andrei Olariu
Nanomaterials 2025, 15(16), 1251; https://doi.org/10.3390/nano15161251 - 14 Aug 2025
Viewed by 398
Abstract
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular [...] Read more.
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular interactions, as confirmed with FTIR spectroscopy. Morphological and optical analyses revealed a transition from homogeneous to phase-separated structures with birefringent textures in ChLC-rich films. Thermal studies demonstrated improved stability and increased glass transition and melting temperatures, particularly in samples with higher ChLC content. Mechanical and dielectric evaluations highlighted the tunability of stiffness, flexibility, permittivity, and dielectric losses depending on MXene and ChLC ratios. These multifunctional films exhibit flame-retardant behavior and show promise for use in stimuli-responsive, sustainable electronic devices such as flexible displays and sensors. Full article
Show Figures

Figure 1

12 pages, 2829 KB  
Article
Extreme Dual-Parameter Optical Fiber Sensor Composed of MgO Fabry–Perot Composite Cavities for Simultaneous Measurement of Temperature and Pressure
by Jia Liu, Lei Zhang, Ziyue Wang, Ruike Cao, Yunteng Dai and Pinggang Jia
Appl. Sci. 2025, 15(16), 8891; https://doi.org/10.3390/app15168891 - 12 Aug 2025
Viewed by 200
Abstract
A single-crystal magnesium oxide (MgO) dual-Fabry–Perot (FP)-cavity sensor based on MEMS technology and laser micromachining is proposed for simultaneous measurement of temperature and pressure. The pressure sensitive cavity is processed by wet chemical etching and direct bonding, which can improve machining efficiency, ensure [...] Read more.
A single-crystal magnesium oxide (MgO) dual-Fabry–Perot (FP)-cavity sensor based on MEMS technology and laser micromachining is proposed for simultaneous measurement of temperature and pressure. The pressure sensitive cavity is processed by wet chemical etching and direct bonding, which can improve machining efficiency, ensure the quality of the reflection surface and achieve thermal stress matching. Femtosecond laser and micromachining technologies are used to fabricate a rough surface and a through hole to reduce the reflect surface and fix the optical fiber. The bottom surface of the pressure cavity and the upper surface of the MgO wafer form a temperature cavity. A cross-correlation signal demodulation algorithm combined with a temperature decoupling method is proposed to achieve dual-cavity demodulation and eliminate the cross-sensitivity between temperature and pressure, improving the accuracy of pressure measurement. Experimental results show that the proposed sensor can stably operate at an ambient environment of 22–800 °C and 0–0.5 MPa with a pressure sensitivity of approximately 0.20 µm/MPa (room temperature), a repeatability error of 2.06% and a hysteresis error of 1.90%. After temperature compensation, thermal crosstalk is effectively eliminated and the pressure measurement accuracy is 2.01%F.S. Full article
Show Figures

Figure 1

16 pages, 6774 KB  
Article
Optical Fiber Performance for High Solar Flux Measurements in Concentrating Solar Power Applications
by Manuel Jerez, Alejandro Carballar, Ricardo Conceição and Jose González-Aguilar
Sensors 2025, 25(16), 4973; https://doi.org/10.3390/s25164973 - 11 Aug 2025
Viewed by 263
Abstract
Extreme operating conditions in solar receivers of concentrated solar thermal power plants, such as high temperatures, intense irradiance, and thermal cycling, pose significant challenges for conventional sensors. Optical fibers offer a promising alternative for flux measurement in such environments, but their long-term performance [...] Read more.
Extreme operating conditions in solar receivers of concentrated solar thermal power plants, such as high temperatures, intense irradiance, and thermal cycling, pose significant challenges for conventional sensors. Optical fibers offer a promising alternative for flux measurement in such environments, but their long-term performance and degradation mechanisms require detailed investigation and characterization. This work presents a proof of concept for high solar flux measurement by using optical fibers as photon-capturing elements and showcases the behavior and damage that these optical fibers undergo when exposed to relevant conditions, including temperatures over 600 °C and flux levels exceeding 400 kW/m2. Three fiber configurations, including polyimide and gold-coated fibers, were tested at a high-flux solar simulator and analyzed via scanning electron microscopy to assess structural integrity and material degradation. Results reveal significant coating deterioration, fiber retraction, and thermal-induced stress effects, which impact measurement reliability. These findings provide essential insights for improving the durability and accuracy of optical fiber-based sensing technologies in concentrating solar energy. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments: 2nd Edition)
Show Figures

Figure 1

13 pages, 1900 KB  
Article
Symmetric Taper Fiber Cleaving for Centered Waist-Inserted FPI: Temperature-Compensated High-Sensitivity Strain Sensor
by Xuntao Yu, Weijie Kong, Yunfeng Zhang, Hongqi Yuan, Jingwei Lv, Chao Liu, Miao Liu and Paul K. Chu
Symmetry 2025, 17(8), 1284; https://doi.org/10.3390/sym17081284 - 10 Aug 2025
Viewed by 320
Abstract
A highly sensitive Fabry–Pérot interferometer (FPI) is fabricated via symmetric taper fiber cleaving and centered waist-inserted assembly, a design where geometric symmetry is fundamental to the sensor’s performance. The FPI is fabricated by simple and cost-effective techniques, including fiber cleaving, splicing, and tapering. [...] Read more.
A highly sensitive Fabry–Pérot interferometer (FPI) is fabricated via symmetric taper fiber cleaving and centered waist-inserted assembly, a design where geometric symmetry is fundamental to the sensor’s performance. The FPI is fabricated by simple and cost-effective techniques, including fiber cleaving, splicing, and tapering. Due to the ultra-long cantilever beam with an effective length of 2.33 mm and the ultra-short Fabry–Pérot (FP) cavity with an actual length of 13.98 μm, the sensor exhibits an ultra-high strain sensitivity of 544.57 pm/με in experimental results. The sensor boasts a small temperature sensitivity of 1.02 pm/°C and a cross-temperature sensitivity of 0.0019 µε/°C in the temperature range of 25–200 °C. Furthermore, the sensor has good stability and repeatability. Owing to the symmetry-enhanced design, simple fabrication process, high strain sensitivity, as well as a stable, linearly proportional response over an extensive strain regime, the device has large potential in various sensing applications. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 4106 KB  
Article
Optical Sensing Technologies for Cryo-Tank Composite Structural Element Analysis and Maintenance
by Monica Ciminello, Carmine Carandente Tartaglia and Pietro Caramuta
Appl. Sci. 2025, 15(15), 8748; https://doi.org/10.3390/app15158748 - 7 Aug 2025
Viewed by 295
Abstract
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage [...] Read more.
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage for medium range vehicles. The system was ideated to be installed on board and operating during service, to provide early detection and localization of potential damage, critical both in terms of safety and maintenance. The use of optical fibers for strain measurement is justified, on one hand, by the capability of pure silica fiber to prevent hydrogen darkening effects and, on the other hand, by the absence of metal components, which eliminates the risk of embrittlement. In detail, distributed and fiber Bragg grating FBG sensors designed for this specific application have demonstrated reliable monitoring capabilities, even after exposure to hydrogen and at cryogenic temperatures. Furthermore, another key contribution of this preliminary activity is the analysis of thermoplastic material faults by correlating damage characteristics with static and dynamic response. This is due to the fact that the investigated physics strongly depend on the nature of occurring damage. Achievements lie in the demonstrated ability to assess the health status of the reference composite structure, establishing the first steps for a future qualification of the proprietary system, made of commercial and original hardware and software. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensors)
Show Figures

Figure 1

23 pages, 3479 KB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 - 6 Aug 2025
Viewed by 257
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
Show Figures

Figure 1

14 pages, 4144 KB  
Article
Analysis and Application of UV-LED Photoreactors for Phenol Removal
by Betsabé Ildefonso-Ojeda, Macaria Hernández-Chávez, Mayra A. Álvarez-Lemus, Rosendo López-González, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández and Diego A. Fabila-Bustos
Catalysts 2025, 15(8), 748; https://doi.org/10.3390/catal15080748 - 5 Aug 2025
Viewed by 465
Abstract
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same [...] Read more.
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same conditions. All photoreactors allow the adjustment of optical power and irradiation time and include a sensor for temperature monitoring in the solution. In this case, phenol was used as a model contaminant with TiO2 as a photocatalyst in a batch-type reactor at pH 7. The results showed that the highest degradation efficiency was achieved after 120 min, reaching 97.79% for the internal-radiation photoreactor, followed by 90.17% when the direct-radiation photoreactor was used, and 85.24% for the external-radiation photoreactor. Phenol degradation served as the basis for validating reactor performance, given its persistence and relevance as an indicator in advanced oxidation processes. It was concluded that the arrangement of LEDs in each photoreactor significantly influences phenol degradation under the same reaction conditions. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Graphical abstract

8 pages, 4923 KB  
Proceeding Paper
A Hardware Measurement Platform for Quantum Current Sensors
by Frederik Hoffmann, Ann-Sophie Bülter, Ludwig Horsthemke, Dennis Stiegekötter, Jens Pogorzelski, Markus Gregor and Peter Glösekötter
Eng. Proc. 2025, 101(1), 11; https://doi.org/10.3390/engproc2025101011 - 4 Aug 2025
Viewed by 375
Abstract
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, [...] Read more.
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, which are usually based on optically detected magnetic resonance (ODMR). The idea is to have a hardware that tracks up to four resonances simultaneously for the detection of the three-axis magnetic field components and the temperature. Normally, expensive scientific instruments are used for the measurement setup. In this work, we present an electronic device that is based on a Zynq 7010 FPGA (Red Pitaya) with an add-on board, which has been developed to control the excitation laser, the generation of the microwaves, and interfacing the photodiode, and which provides additional fast digital outputs. The T1 measurement was chosen to demonstrate the ability to read out the spin of the system. Full article
Show Figures

Figure 1

23 pages, 8942 KB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 425
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

Back to TopTop