Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications
Abstract
1. Introduction—Common Methods for Road Infrastructure Monitoring
1.1. Method 1. Visual Inspection of Road Infrastructure State
1.2. Method 2. Surface Condition Assessment with Imaging Technology
1.3. Method 3. Deflection Test for the Integrity Assessment
1.4. Method 4. Ground-Penetrating Radar (GPR) for Subsurface Condition Monitoring
1.5. Method 5. Infrared Thermography (IRT) for Temperature Variation Analysis
1.6. Traffic Monitoring Methods for Pavement Management Systems
2. Fiber-Optic Sensor Technologies in Road Monitoring Applications
2.1. FBG Fiber-Optic Sensors for Monitoring Applications
2.2. Raman Fiber-Optic Sensors for Monitoring Applications
2.3. Rayleigh Fiber-Optic Sensors for Monitoring Applications
2.4. Brillouin Fiber-Optic Sensors for Monitoring Applications
2.5. Fiber-Optic Sensor Technology Comparison
- Obtain data-based information on the condition and service life of the road surface (including inside the pavement, not just from the top layer)
- Fiber-optic distributed technologies provide the ability to perform real-time SHM of road pavement along the entire fiber length (from a few meters to 50 km and 100 km)
- Fiber-optic distributed sensing makes dense sensing (from mm to m scale, thousands of points).
3. Fiber-Optic Sensor Placement Within Road Infrastructure Monitoring Solutions
3.1. Single-Point Fiber-Optic Sensors
3.2. Quasi-Distributed Fiber-Optic Sensors
3.3. Distributed Fiber-Optic Sensors
3.4. Comparisons Between Single-Point, Quasi-Distributed, and Distributed Fiber-Optic Sensor Realization
3.5. Calibration and Long-Term Drift for Embedded Fiber-Optic Sensors in Asphalt Concrete
4. Discussion—Perspective Optical Sensor Solutions in Road Infrastructure Monitoring Applications
4.1. Traffic Volume Monitoring Using Fiber-Optic Sensors
4.2. Vehicle-Induced Strain Detection and Movement Speed Calculation with Fiber-Optic Sensor-Based Solutions
4.3. Traffic Density Monitoring with Fiber-Optic Sensors
4.4. Weigh-in-Motion with Fiber-Optic Sensors for Vehicle Identification and Big Data Processing
4.5. Structural Health Monitoring of Road Infrastructure with Fiber-Optic Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shuwen, Z.; Alhelyani, A. Maintenance Technologies for Roads and Its Prioritization. N. Am. Acad. Res. 2022, 5, 26–33. [Google Scholar] [CrossRef]
- Pavement Asset Management Guide; Transport Infrastructure Ireland (TII) TII Publications; AM-PAV-06060; Transport Infrastructure Ireland: Dublin, Ireland, 2023.
- Shahin, M.Y. Pavement Management for Airports, Roads, and Parking Lots; Springer: Boston, MA, USA, 2005; ISBN 978-0-387-23464-9. [Google Scholar]
- Loprencipe, G.; Pantuso, A.; Di Mascio, P. Sustainable Pavement Management System in Urban Areas Considering the Vehicle Operating Costs. Sustainability 2017, 9, 453. [Google Scholar] [CrossRef]
- Qureshi, W.S.; Hassan, S.I.; McKeever, S.; Power, D.; Mulry, B.; Feighan, K.; O’Sullivan, D. An Exploration of Recent Intelligent Image Analysis Techniques for Visual Pavement Surface Condition Assessment. Sensors 2022, 22, 9019. [Google Scholar] [CrossRef]
- Ragnoli, A.; De Blasiis, M.R.; Di Benedetto, A. Pavement Distress Detection Methods: A Review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef]
- AMS Consulting. Pavement Management Technical Assistance Program (P-TAP) Round 21 2020/2021 Pavement Management Report. Available online: https://www.ci.benicia.ca.us/vertical/sites/%7BF991A639-AAED-4E1A-9735-86EA195E2C8D%7D/uploads/COB_P-TAP_REPORT_-_Round_21_May_31_2021.pdf (accessed on 20 July 2025).
- Vukelić, K.; Šimun, M.; Dimter, S.; Čizmar, D. Assessment of the Load-Bearing Capacity of the State Road Pavement Structure. JCE 2025, 77, 353–365. [Google Scholar] [CrossRef]
- Hawkeye 1000. Available online: https://arrbsystems.com/product/hawkeye-1000/ (accessed on 19 July 2025).
- John, L.; Jean François, H.; Daniel, L.; Yves, S. Using 3D Laser Profiling Sensors for the Automated Measurement of Road Surface Conditions. In RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2012; pp. 157–167. ISBN 978-94-007-4565-0. [Google Scholar]
- Elseicy, A.; Alonso-Díaz, A.; Solla, M.; Rasol, M.; Santos-Assunçao, S. Combined Use of GPR and Other NDTs for Road Pavement Assessment: An Overview. Remote Sens. 2022, 14, 4336. [Google Scholar] [CrossRef]
- Feng, Z.; El Issaoui, A.; Lehtomäki, M.; Ingman, M.; Kaartinen, H.; Kukko, A.; Savela, J.; Hyyppä, H.; Hyyppä, J. Pavement Distress Detection Using Terrestrial Laser Scanning Point Clouds–Accuracy Evaluation and Algorithm Comparison. ISPRS Open J. Photogramm. Remote Sens. 2022, 3, 100010. [Google Scholar] [CrossRef]
- Elshamy, M.M.M.; Tiraturyan, A.N.; Uglova, E.V.; Zakari, M. Development of the Non-Destructive Monitoring Methods of the Pavement Conditions via Artificial Neural Networks. J. Phys. Conf. Ser. 2020, 1614, 012099. [Google Scholar] [CrossRef]
- Dynatest Datasheet Falling Weight Deflectometer (FWD). Available online: https://dynatest.com/wp-content/uploads/2021/06/8000FWD_US.pdf (accessed on 2 July 2025).
- Barbieri, D.M.; Lou, B. Instrumentation and Testing for Road Condition Monitoring–A State-of-the-Art Review. NDT E Int. 2024, 146, 103161. [Google Scholar] [CrossRef]
- Using Falling Weight Deflectometer Data With Mechanistic-Empirical Design and Analysis, Volume III: Guidelines for Deflection Testing, Analysis, and Interpretation. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/16011/002.cfm (accessed on 2 July 2025).
- Fahad, M.; Nagy, R.; Gosztola, D. Pavement Sensing Systems: Literature Review. Civ. Environ. Eng. 2022, 18, 603–630. [Google Scholar] [CrossRef]
- Calhoon, T.; Zegeye, E.; Velasquez, R.; Calvert, J. Using Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) to Monitor the Effects of Seasonal Moisture Variation on the Structural Capacity of Pavements. Constr. Build. Mater. 2022, 351, 128831. [Google Scholar] [CrossRef]
- Hamidi, A.; Mirhosseini, A.F.; Hoff, I.; Mork, H.; Grannes, K.R.B.; Aursand, P.O. Comparative Evaluation of Falling Weight Deflectometer, Traffic Speed Deflectometer and Rapid Pavement Tester in Deflection Measurement. Transp. Res. Rec. J. Transp. Res. Board. 2025, 2679, 1475–1494. [Google Scholar] [CrossRef]
- Xiao, F.; Xiang, Q.; Hou, X.; Amirkhanian, S.N. Utilization of Traffic Speed Deflectometer for Pavement Structural Evaluations. Measurement 2021, 178, 109326. [Google Scholar] [CrossRef]
- Flintsch, G.; Ferne, B.; Diefenderfer, B.; Katicha, S.; Bryce, J.; Nell, S.; Clark, T.; Strategic Highway Research Program; Strategic Highway Research Program Renewal Focus Area; Transportation Research Board; et al. Assessment of Continuous Pavement Deflection Measuring Technologies; Transportation Research Board: Washington, DC, USA, 2013; p. 22766. ISBN 978-0-309-43504-8. [Google Scholar]
- Zhang, M.; Jia, X.; Fu, G.; Polaczyk, P.A.; Ma, Y.; Xiao, R.; Huang, B. Traffic Speed Deflectometer for Network-Level Pavement Management in Tennessee. Transp. Res. Rec. J. Transp. Res. Board. 2024, 2678, 458–472. [Google Scholar] [CrossRef]
- Pedret Rodés, J.; Martínez Reguero, A.; Pérez-Gracia, V. GPR Spectra for Monitoring Asphalt Pavements. Remote Sens. 2020, 12, 1749. [Google Scholar] [CrossRef]
- AL-Qadi, I.L.; Lahouar, S. Measuring Layer Thicknesses with GPR–Theory to Practice. Constr. Build. Mater. 2005, 19, 763–772. [Google Scholar] [CrossRef]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best Practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Hou, F.; Rui, X.; Fan, X.; Zhang, H. Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications. Remote Sens. 2022, 14, 5972. [Google Scholar] [CrossRef]
- Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR Monitoring for Road Transport Infrastructure: A Systematic Review and Machine Learning Insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Yamashita, M.; Kawanishi, K.; Hashizume, K.; Chun, P. Infrared Thermography and 3D Pavement Surface Unevenness Measurement Algorithm for Damage Assessment of Concrete Bridge Decks. Comput. Civ. Infrastruct. Eng. 2024, 40, 2772–2792. [Google Scholar] [CrossRef]
- Sabato, A.; Tzuyang, Y.; Nitin Nagesh, K.; Dabetwar, S. Detecting Subsurface Voids in Road-Ways Using UAS with Infrared Thermal Imaging; Massachusetts Department of Transportation: Boston, MA, USA, 2022. [CrossRef]
- Tomita, K.; Chew, M.Y.L. A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings. Sensors 2022, 22, 423. [Google Scholar] [CrossRef]
- Vyas, V.; Patil, V.J.; Singh, A.P. Anshuman Debonding Detection in Asphalt Pavements Using Infrared Thermography. Transp. Res. Procedia 2020, 48, 3850–3859. [Google Scholar] [CrossRef]
- Klein, L.A.; Mills, M.K.; Gibson, D.R.P. Traffic Detector Handbook: Third Edition—Volume I; Federal Highway Administration: Washington, DC, USA, 2006; p. 288.
- Gajda, J.; Piwowar, P.; Sroka, R.; Stencel, M.; Zeglen, T. Application of Inductive Loops as Wheel Detectors. Transp. Res. Part C Emerg. Technol. 2012, 21, 57–66. [Google Scholar] [CrossRef]
- Southwest Technology Development Institute. A Summary of Vehicle Detection and Surveillance Technologies Use in Intelligent Transportation Systems. Available online: https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstits2007.pdf (accessed on 16 August 2025).
- Clyde, E.L.; Joseph, E.G. Collection and Analysis of Augmented Weigh-in-Motion DataTX-99/987-8; Center for Transportation Research, The University of Texas at Austin: Austin, TX, USA, 1996; p. 104. [Google Scholar]
- International Society for Weigh-in-Motion. Guide for Users of Weigh-in-Motion. Available online: https://www.is-wim.net/wp-content/uploads/2020/07/ISWIM_Guide-for-users_press.pdf (accessed on 16 August 2025).
- Zhao, J.; Wang, H.; Lu, P.; Chen, J. Mechanistic–Empirical Analysis of Pavement Performance Considering Dynamic Axle Load Spectra Due to Longitudinal Unevenness. Appl. Sci. 2022, 12, 2600. [Google Scholar] [CrossRef]
- Lepore, M.; Delfino, I. Optical Sensors Technology and Applications. Sensors 2022, 22, 7905. [Google Scholar] [CrossRef]
- Gangwar, R.; Pathak, A.; Chiavaioli, F.; Abu Bakar, M.; Kamil, Y.; Mahdi, M.; Singh, V. Optical fiber SERS sensors: Unveiling advances, challenges, and applications in a miniaturized technology. Co-ord. Chem. Rev. 2024, 510, 215861, ISSN 0010-8545. [Google Scholar] [CrossRef]
- Grenar, D.; Cucka, M.; Filka, M.; Slavicek, K.; Vavra, J.; Kyselak, M. Optical sensor based on birefringent fiber type PANDA used for tensile detection. In Proceedings of the 2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, 24–26 November 2022; pp. 57–63. [Google Scholar] [CrossRef]
- Htein, L.; Cui, J.; Cheng, X.; Tam, H.-Y. Low-Pressure Sensor Realized With 8-Shaped Birefringent Optical Fiber. J. Light. Technol. 2024, 42, 6204–6212. [Google Scholar] [CrossRef]
- Guo, K.; Wu, H.; Liang, Y.; Su, M.; Wang, H.; Chu, R.; Zhou, F.; Liu, Y. Highly Birefringent FBG Based on Femtosecond Laser-Induced Cladding Stress Region for Temperature and Strain Decoupling. Photonics 2025, 12, 502. [Google Scholar] [CrossRef]
- Braunfelds, J.; Senkans, U.; Skels, P.; Murans, I.; Porins, J.; Spolitis, S.; Bobrovs, V. Fiber Bragg Grating Optical Sensors for Road Infrastructure Monitoring Applications. In Technical Digest Series, Proceedings of the Applied Industrial Optics (AIO) 2022, Dublin, Ireland, 25–27 July 2022; paper W1A.2; Smith, A., Miller, G., Eds.; Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar]
- Li, J.; Zhang, M. Physics and applications of Raman distributed optical fiber sensing. Light. Sci. Appl. 2022, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-Based Distributed Optical Fiber Sensing. Sensors 2022, 22, 6811. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Zhou, Z.; Wang, Y. Review: Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX 2021, 2, 14. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Q.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Jin, B. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors. 2019, 19, 1862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Senkans, U.; Braunfelds, J.; Spolitis, S.; Bobrovs, V. Research of FBG Optical Sensors Network and Precise Peak Detection. In Proceedings of the 2018 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 15–16 November 2018; pp. 139–143. [Google Scholar] [CrossRef]
- Tosi, D.; Sypabekova, M.; Bekmurzayeva, A.; Molardi, C.; Dukenbayev, K. 3-Grating-based sensors. In Optical Fiber Biosensors; Daniele, T., Marzhan, S., Aliya, B., Carlo, M., Kanat, D., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 79–105. ISBN 9780128194676. [Google Scholar] [CrossRef]
- Theodosiou, A. Recent Advances in Fiber Bragg Grating Sensing. Sensors 2024, 24, 532. [Google Scholar] [CrossRef]
- Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V.M.N. Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef]
- Jeon, S.-J.; Park, S.Y.; Kim, S.T. Temperature Compensation of Fiber Bragg Grating Sensors in Smart Strand. Sensors 2022, 22, 3282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pereira, G.; McGugan, M.; Mikkelsen, L. Mikkelsen, Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors. Polym. Test. 2016, 50, 125–134, ISSN 0142-9418. [Google Scholar] [CrossRef]
- Soman, R.; Kim, J.M.; Boyer, A.; Peters, K. Optimal Design of a Sensor Network for Guided Wave-Based Structural Health Monitoring Using Acoustically Coupled Optical Fibers. Sensors 2024, 24, 6354. [Google Scholar] [CrossRef]
- Vandi, L.; Calcagni, M.T.; Belletti, F.; Pandarese, G.; Martarelli, M.; Revel, G.M.; Docter, V.; Pracucci, A. Structural Health Monitoring for Prefabricated Building Envelope under Stress Tests. Appl. Sci. 2024, 14, 3260. [Google Scholar] [CrossRef]
- Carani, L.B.; Humphrey, J.; Rahman, M.M.; Okoli, O.I. Advances in Embedded Sensor Technologies for Impact Monitoring in Composite Structures. J. Compos. Sci. 2024, 8, 201. [Google Scholar] [CrossRef]
- Suryandi, A.A.; Sarma, N.; Mohammed, A.; Peesapati, V.; Djurović, S. Fiber Optic Fiber Bragg Grating Sensing for Monitoring and Testing of Electric Machinery: Current State of the Art and Outlook. Machines 2022, 10, 1103. [Google Scholar] [CrossRef]
- Singh, M.J.; Choudhary, S.; Chen, W.-B.; Wu, P.-C.; Goyal, M.K.; Rajput, A.; Borana, L. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: A comprehensive review. Measurement 2023, 218, 113171, ISSN 0263-2241. [Google Scholar] [CrossRef]
- Braunfelds, J.; Senkans, U.; Skels, P.; Janeliukstis, R.; Porins, J.; Spolitis, S.; Bobrovs, V. Road Pavement Structural Health Monitoring by Embedded Fiber-Bragg-Grating-Based Optical Sensors. Sensors 2022, 22, 4581. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Wu, C.; Ren, H.; Zhou, Z.; Tang, S. Studies on the Validity of Strain Sensors for Pavement Monitoring: A Case Study for a Fiber Bragg Grating Sensor and Resistive Sensor. Constr. Build. Mater. 2022, 321, 126085. [Google Scholar] [CrossRef]
- Mustafa, S.; Sekiya, H.; Morichika, S.; Maeda, I.; Takaba, S.; Hamajima, A. Monitoring Internal Strains in Asphalt Pavements under Static Loads Using Embedded Distributed Optical Fibers. Opt. Fiber Technol. 2022, 68, 102829. [Google Scholar] [CrossRef]
- Hannusch, S.; Peretzki, E.; Schich, K.; Lehmann, T.; Ihlemann, J. Strain measurements with fibre Bragg grating sensors under inhomogeneous deformations. Technol. Lightweight Struct. 2019, 3, 50–59. [Google Scholar] [CrossRef]
- Wang, J.-N.; Tang, J.-L.; Chang, H.-P. Fiber Bragg grating sensors for use in pavement structural strain-temperature monitoring. In Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; 61743S; International Society for Optics and Photonics: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- De Maeijer, P.K.; Bergh, W.V.D.; Vuye, C. Fiber Bragg Grating Sensors in Three Asphalt Pavement Layers. Infrastructures 2018, 3, 16. [Google Scholar] [CrossRef]
- Rebelo, F.J.P.; Oliveira, J.R.M.; Silva, H.M.R.D.; Sá, J.O.e.; Marecos, V.; Afonso, J. Installation and Use of a Pavement Monitoring System Based on Fibre Bragg Grating Optical Sensors. Infrastructures 2023, 8, 149. [Google Scholar] [CrossRef]
- Silva, L.C.; Segatto, M.E.; Castellani, C.E. Castellani, Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues. Opt. Fiber Technol. 2022, 74, 103091, ISSN 1068-5200. [Google Scholar] [CrossRef]
- Anjana, K.; Herath, M.; Epaarachchi, J. Optical fibre sensors for geohazard monitoring—A review. Measurement 2024, 235, 114846, ISSN 0263-2241. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Zhou, X.; Cheng, Z.; Qiao, L.; Xue, X.; Zhang, M. Chaos Raman distributed optical fiber sensing. Light. Sci. Appl. 2023, 12, 213. [Google Scholar] [CrossRef]
- Pieracci, A.; Nanni, J.; Tartarini, G.; Lanzoni, M. A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications. Sensors 2024, 24, 2669. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.L.; Sharma, R.K.; Saxena, M.K.; Kher, S. Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor. Opt. Commun. 2007, 274, 396–402. [Google Scholar] [CrossRef]
- Muanenda, Y.; Oton, C.J.; Di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys. 2019, 7, 155. [Google Scholar] [CrossRef]
- He, Q.; Yue, Y.; Jia, X. Efficient design and implementation of a distributed temperature sensor for field apparatus. Meas. Sci. Technol. 2022, 33, 095204. [Google Scholar] [CrossRef]
- Pradhan, H.S.; Sahu, P.K. Characterisation of Raman distributed temperature sensor using deconvolution algorithms. IET Optoelectron. 2015, 9, 101–107. [Google Scholar] [CrossRef]
- Microw, J. Analysis of Parameters for a Distributed Temperature Sensing based on Raman Scattering. Optoelectron. Electromagn. Appl. 2017, 16, 259–272. [Google Scholar] [CrossRef]
- Wu, H.; Du, H.; Zhao, C.; Tang, M. 24 km High-Performance Raman Distributed Temperature Sensing Using Low Water Peak Fiber and Optimized Denoising Neural Network. Sensors 2022, 22, 2139. [Google Scholar] [CrossRef]
- Douglas Moser, Araceli Martin-Candilejo, Luis Cueto-Felgueroso, David Santillán, Use of fiber-optic sensors to monitor concrete dams: Recent breakthroughs and new opportunities. Structures 2024, 67, 106968, ISSN 2352-0124. [CrossRef]
- Janiak, T.; Becks, H.; Camps, B.; Classen, M.; Hegger, J. Evaluation of distributed fibre optic sensors in structural concrete. Mater. Struct. 2023, 56, 159. [Google Scholar] [CrossRef]
- Herbers, M.; Richter, B.; Marx, S. Rayleigh-based crack monitoring with distributed fiber optic sensors: Experimental study on the interaction of spatial resolution and sensor type. J. Civ. Struct. Health Monit. 2024, 15, 1439–1463. [Google Scholar] [CrossRef]
- Alj, I.; Quiertant, M.; Khadour, A.; Grando, Q.; Benzarti, K. Application of Distributed Optical Fiber Sensing Technology to the Detection and Monitoring of Internal Swelling Pathologies in Massive Concrete Blocks. Sensors 2022, 22, 7797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weisbrich, M.; Messerer, D.; Holzer, F.; Trommler, U.; Roland, U.; Holschemacher, K. The Impact of Liquids and Saturated Salt Solutions on Polymer-Coated Fiber Optic Sensors for Distributed Strain and Temperature Measurement. Sensors 2024, 24, 4659. [Google Scholar] [CrossRef]
- Brian, J.S.; Dawn, K.G.; Matthew, S.W.; Mark, E.F. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef]
- Kreger, S.T.; Klein, J.W.; Rahim, N.A.A.; Bos, J.J.; Pickrell, G.; Udd, E.; Du, H.H. Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry. In Fiber Optic Sensors and Applications XII; 948006; SPIE: Baltimore, MD, USA, 2015; Volume 9480. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Liu, Y.; Peng, W.; Song, Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors 2023, 23, 1877. [Google Scholar] [CrossRef]
- Wenhai, L.; Liang, C.; Xiaoyi, B. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry. Opt. Commun. 2013, 311, 26–32, ISSN 0030-4018. [Google Scholar] [CrossRef]
- Enbang, L. Rayleigh scattering based distributed optical fiber sensing. In Proceedings of the AOPC 2017: Fiber Optic Sensing and Optical Communications, Beijing, China, 4–6 June 2017; Volume 10464. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, T.; Zhang, F. Distributed optical fiber sensors for pavement Engineering: A-State-of-Art review. Measurement 2025, 246, 116732, ISSN 0263-2241. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Nasu, A.; Nagatani, H.; Imai, M.; Tanimura, D.; Ogu, R.; Zhang, C.; Ito, F. Dynamic strain sensing application with rapid OFDR for pavement health monitoring. In Technical Digest Series, Proceedings of the 28th International Conference on Optical Fiber Sensors, Hamamatsu, Japan, 20–24 November 2023; paper W4.93; Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar]
- Chapeleau, X.; Blanc, J.; Hornych, P.; Gautier, J.-L.; Carroget, J. Assessment of cracks detection in pavement by a distributed fiber optic sensing technology. J. Civ. Struct. Health Monit. 2017, 7, 459–470. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Yang, C.; Zhang, Z.; Zhang, Y.; Zhang, X. Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements. Sensors 2023, 23, 7116. [Google Scholar] [CrossRef]
- Maughan, S.M.; Kee, H.H.; Newson, T.P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 2001, 12, 834. [Google Scholar] [CrossRef]
- Zhou, D.-P.; Li, W.; Chen, L.; Bao, X. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber. Sensors 2013, 13, 1836–1845. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa. Photonic Sens. 2011, 1, 102–117. [Google Scholar] [CrossRef]
- Hisada, S.; Kodakamine, U.; Wada, D.; Murayama, H.; Igawa, H. Simultaneous Measurement of Strain and Temperature Distributions Using Optical Fibers with Different GeO2 and B2O3 Doping. Sensors 2023, 23, 1156. [Google Scholar] [CrossRef]
- Zrelli, A. Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems. IET Commun. 2019, 13, 3012–3019. [Google Scholar] [CrossRef]
- Bertulessi, M.; Bignami, D.F.; Boschini, I.; Brunero, M.; Ferrario, M.; Menduni, G.; Morosi, J.; Paganone, E.J.; Zambrini, F. Monitoring Strategic Hydraulic Infrastructures by Brillouin Distributed Fiber Optic Sensors. Water 2022, 14, 188. [Google Scholar] [CrossRef]
- Aljaroudi, A.; Aljaroudi, A. Theoretical Investigation of Distributed Fiber Optic Sensing: Brillouin Stimulated Scattering. In Optical Waveguide Technology and and Applications; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Coscetta, A.; Minardo, A.; Zeni, L. Distributed Dynamic Strain Sensing Based on Brillouin Scattering in Optical Fibers. Sensors 2020, 20, 5629. [Google Scholar] [CrossRef] [PubMed]
- Nerve-Sensors, Products. Available online: https://nerve-sensors.com/case-studies/ (accessed on 16 July 2025).
- Feng, C.; Emad Kadum, J.; Schneider, T. The State-of-the-Art of Brillouin Distributed Fiber Sensing. In Fiber Optic Sensing-Principle, Measurement and Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, X.; Kong, X.; Zhang, P.; Cui, Y.; Sun, C. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures. Sensors 2014, 14, 431–442. [Google Scholar] [CrossRef]
- Imai, M.; Igarashi, Y.; Shibata, M.; Miura, S. Experimental study on strain and deformation monitoring of asphalt structures using embedded fiber optic sensor. J. Civ. Struct. Health Monit. 2014, 4, 209–220. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, H.; Wang, B.; Zhao, Y.; Leng, Z.; Chen, X.; Li, L.; Wang, S.; Chen, Z. A subgrade cracking monitoring sensor based on optical fiber sensing technique. Struct. Control. Health Monit. 2018, 25, e2213. [Google Scholar] [CrossRef]
- Ou, R.; Luo, L.; Soga, K. Brillouin scattering spectrum-based crack measurement using distributed fiber optic sensing. Struct. Health Monit. 2021, 21, 1345–1366. [Google Scholar] [CrossRef]
- Kapogianni, E.; Sakellariou, M. Applications of Optical Fiber Sensors in Geotechnical Engineering: Laboratory Studies and Field Implementation at the Acropolis of Athens. Sensors 2025, 25, 1450. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, P.; Tan, X.; Huang, X. A Low-Frequency Fiber Bragg Grating Acceleration Sensor Based on Spring Support and Symmetric Compensation Structure with Flexible Hinges. Sensors 2024, 24, 2990. [Google Scholar] [CrossRef]
- Reghuprasad, A.E.; Colombero, C.; Godio, A. Serially Connected Cantilever Beam-Based FBG Accelerometers: Design, Optimization and Testing. Sensors 2023, 23, 3188. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Chiang, C.-C.; Tsai, L. Enhanced sensitivity of bare FBG pressure sensor based on oval-shaped 3D printed structure. Opt. Fiber Technol. 2022, 73, 103022, ISSN 1068-5200. [Google Scholar] [CrossRef]
- Xu, G.; He, B.; Li, H.; Gui, X.; Li, Z. FBG pressure sensor in pressure distribution monitoring of ship. Opt. Express 2022, 30, 21396–21409. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Wang, T.; Wang, X.; Liu, H. Fiber Bragg grating pressure sensors: A review. Opt. Eng. 2023, 62, 010902. [Google Scholar] [CrossRef]
- Pan, J.; Wang, L.; Hou, W.; Lv, H. Design and Investigation of a High-Sensitivity Tilt Sensor Based on FBG. Photonic Sens. 2023, 13, 230228. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, P.; Xiong, L.; Liu, K.; Zhou, W. Design and Investigation of a Fiber Bragg Grating Tilt Sensor with Vibration Damping. IEEE Sens. J. 2023, 23, 2193–2203. [Google Scholar] [CrossRef]
- Correia, S.F.H.; Antunes, P.; Pecoraro, E.; Lima, P.P.; Varum, H.; Carlos, L.D.; Ferreira, R.A.S.; André, P.S. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors 2012, 12, 8847–8860. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Lou, M.; Zhang, W.; Huang, W.; Yan, K.; Liao, B.; Zhang, W. Strain and Temperature Sensing Based on Different Temperature Coefficients fs-FBG Arrays for Intelligent Buoyancy Materials. Sensors 2024, 24, 2824. [Google Scholar] [CrossRef]
- Tosi, D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors 2018, 18, 2147. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, X.; Fu, C.; Xu, B.; He, J.; Li, P.; Meng, Y.; Du, C.; Chen, L.; Tang, J.; et al. Quasi-Distributed Temperature and Strain Sensors Based on Series-Integrated Fiber Bragg Gratings. Nanomaterials 2022, 12, 1540. [Google Scholar] [CrossRef]
- Murans, I.; Braunfelds, J.; Senkans, U.; Spolitis, S.; Bobrovs, V. Designing of FBG Based Sensor Networks for Long-Distance Monitoring Solutions. In Proceedings of the 2023 Photonics & Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, 3–6 July 2023; pp. 436–440. [Google Scholar] [CrossRef]
- Tang, Y.; Cang, J.; Zheng, B.; Tang, W. Deflection Monitoring Method for Simply Supported Girder Bridges Using Strain Response under Traffic Loads. Buildings 2024, 14, 70. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, G. Rayleigh scattering based, thermal-induced displacement measurement along a steel plate at high temperature. J. Infrastruct. Intell. Resil. 2022, 1, 100002, ISSN 2772-9915. [Google Scholar] [CrossRef]
- Luna. Vibration and Acceleration Measurements. Available online: https://lunainc.com/capability/vibration-and-acceleration-measurements (accessed on 20 May 2025).
- Miah, K.; Potter, D.K. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications. Sensors 2017, 17, 2511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Gao, C. Research on the Fabrication and Parameters of a Flexible Fiber Optic Pressure Sensor with High Sensitivity. Photonics 2024, 11, 919. [Google Scholar] [CrossRef]
- Meng, L.; Wang, L.; Hou, Y.; Yan, G. A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain Monitoring. Sensors 2017, 17, 2386. [Google Scholar] [CrossRef]
- Mądry, M.; Szczupak, B.; Śmigielski, M.; Matysiak, B. Simultaneous Temperature and Relative Humidity Measurement Using Machine Learning in Rayleigh-Based Optical Frequency Domain Reflectometry. Sensors 2024, 24, 7913. [Google Scholar] [CrossRef]
- Liehr, S.; Breithaupt, M.; Krebber, K. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths. Sensors 2017, 17, 738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, M.; Wang, Z.; Feng, Y.; Fan, J.; Wang, Y.; Lu, L. Distributed vibration and temperature sensing system by multiplexed fiber scattering spectra. Appl. Opt. 2024, 63, 6215–6223. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, H.; Chang, J. Detection Performance Improvement of Distributed Vibration Sensor Based on Curvelet Denoising Method. Sensors 2017, 17, 1380. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Amato, L.; Zeni, L. Bridge Monitoring Using Brillouin Fiber-Optic Sensors. IEEE Sens. J. 2011, 12, 145–150. [Google Scholar] [CrossRef]
- Peng, J.; Lu, Y.; Zhang, Y.; Zhang, Z. Distributed strain and temperature fast measurement in Brillouin optical time-domain reflectometry based on double-sideband modulation. Opt. Express 2022, 30, 1511–1520. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, X.; Li, Y.; Qin, Z.; Pang, Y.; Liu, Z. Simultaneous measurement of relative humidity and temperature based on forward Brillouin scattering in polyimide-overlaid fiber. Sens. Actuators B Chem. 2021, 348, 130702, ISSN 0925-4005. [Google Scholar] [CrossRef]
- Sheng, L.; Yan, J.; Li, L.; Yuan, M.; Zhou, S.; Xu, R.; Liu, J.; Nian, F.; Li, L.; Liu, Z.; et al. Distributed Temperature Sensing System Based on Brillouin Scattering Effect Using a Single-Photon Detector. Int. J. Opt. 2021, 2021, 6623987. [Google Scholar] [CrossRef]
- Soga, K.; Li, B.; Yan, J.; Luo, L.; Yu, Y. Distributed Dynamic Strain Fiber Optics Measurement by Brillouin Optical Time-Domain Reflectometry. U.S. Patent No. 10677616, 9 June 2020. Available online: https://patents.google.com/patent/US10677616B2/en (accessed on 11 July 2025).
- Fan, X.; Wang, B.; Yang, G.; He, Z. Slope-Assisted Brillouin-Based Distributed Fiber-Optic Sensing Techniques. Adv. Devices Instrum. 2021, 2021, 9756875. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, Z.; Wang, H.; Dong, Y.; Yan, J. Distributed optical fiber pressure sensor based on Brillouin scattering. In Proceedings of the Optics Frontiers Online 2020: Distributed Optical Fiber Sensing Technology and Applications, Online, 28–29 August 2020; Volume 11607, p. 1160707. [Google Scholar] [CrossRef]
- Zeni, L.; Picarelli, L.; Avolio, B.; Coscetta, A.; Papa, R.; Zeni, G.; Di Maio, C.; Vassallo, R.; Minardo, A. Brillouin optical time-domain analysis for geotechnical monitoring. J. Rock Mech. Geotech. Eng. 2015, 7, 458–462, ISSN 1674-7755. [Google Scholar] [CrossRef]
- Madjdabadi, B.; Valley, B.; Dusseault, M.B.; Kaiser, P.K. Experimental evaluation of a distributed Brillouin sensing system for measuring extensional and shear deformation in rock. Measurement 2016, 77, 54–66, ISSN 0263-2241. [Google Scholar] [CrossRef]
- Karapanagiotis, C.; Hicke, K.; Wosniok, A.; Krebber, K. Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach. Opt. Express 2022, 30, 12484–12494. [Google Scholar] [CrossRef]
- Minardo, A.; Catalano, E.; Coscetta, A.; Zeni, G.; Di Maio, C.; Vassallo, R.; Picarelli, L.; Coviello, R.; Macchia, G.; Zeni, L. Long-Term Monitoring of a Tunnel in a Landslide Prone Area by Brillouin-Based Distributed Optical Fiber Sensors. Sensors 2021, 21, 7032. [Google Scholar] [CrossRef]
- Kim, Y.H.; Song, K.Y. Recent Progress in Distributed Brillouin Sensors Based on Few-Mode Optical Fibers. Sensors 2021, 21, 2168. [Google Scholar] [CrossRef]
- Braunfelds, J.; Senkans, U.; Lyashuk, I.; Porins, J.; Spolitis, S.; Bobrovs, V. Unified Multi-channel Spectrum-sliced WDM-PON Transmission System with Embedded FBG Sensors Network. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 3327–3333. [Google Scholar] [CrossRef]
- Senkans, U.; Braunfelds, J.; Lyashuk, I.; Porins, J.; Spolitis, S.; Haritonovs, V.; Bobrovs, V. FBG Sensors Network Embedded in Spectrum-sliced WDM-PON Transmission System Operating on Single Shared Broadband Light Source. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 1632–1639. [Google Scholar] [CrossRef]
- Braunfelds, J.; Zvirbule, K.; Senkans, U.; Murnieks, R.; Lyashuk, I.; Porins, J.; Spolitis, S.; Bobrovs, V. Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network. Latv. J. Phys. Tech. Sci. 2023, 60, 61–76. [Google Scholar] [CrossRef]
- Distributed Fiber Optic Sensing (DFOS), TELEDYNE SP DEVICES. Available online: https://www.spdevices.com/what-we-do/applications/distributed-optical-fiber-sensing (accessed on 20 May 2025).
- Lu, X.; Thomas, P.J.; Hellevang, J.O. A Review of Methods for Fibre-Optic Distributed Chemical Sensing. Sensors 2019, 19, 2876. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, M.; Marazzi, L.; Boffi, P.; Righetti, A.; Martinelli, M. Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals. Opt. Express 2009, 17, 18110–18115. [Google Scholar] [CrossRef] [PubMed]
- Chamoin, L.; Farahbakhsh, S.; Poncelet, M. An educational review on distributed optic fiber sensing based on Rayleigh backscattering for damage tracking and structural health monitoring. Meas. Sci. Technol. 2022, 33, 124008. [Google Scholar] [CrossRef]
- Lee, T.; Beresna, M.; Masoudi, A.; Brambilla, G. Enhanced-Backscattering and Enhanced-Backreflection Fibers for Distributed Optical Fiber Sensors. J. Light. Technol. 2023, 41, 4051–4064. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Gotten, M.; Lochmann, S.; Ahrens, A.; Lindner, E.; Vlekken, J.; Van Roosbroeck, J. A CDMWDM Interrogation Scheme for Massive Serial FBG Sensor Networks. IEEE Sens. J. 2022, 22, 11290–11296. [Google Scholar] [CrossRef]
- Laffont, G.; Cotillard, R.; Roussel, N.; Desmarchelier, R.; Rougeault, S. Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors. Sensors 2018, 18, 1791. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Fu, S.; Xing, F. Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors 2020, 20, 4517. [Google Scholar] [CrossRef]
- Huang, L.-L.; Lin, J.-D.; Huang, W.-H.; Kuo, C.-H.; Huang, M.-Y. Application of Automated Pavement Inspection Technology in Provincial Highway Pavement Maintenance Decision-Making. Appl. Sci. 2024, 14, 6549. [Google Scholar] [CrossRef]
- Dynatest, Falling Weight Deflectometer (FWD). Available online: https://dynatest.com/equipment/falling-weight-deflectometer-fwd/ (accessed on 16 August 2025).
- Stefania, C. Radopoulou, Ioannis Brilakis, Improving Road Asset Condition Monitoring. Transp. Res. Procedia 2016, 14, 3004–3012, ISSN 2352-1465. [Google Scholar] [CrossRef]
- Gong, Z.; Bruno, M.; Pazzini, M.; Forte, A.; Girelli, V.A.; Vignali, V.; Lantieri, C. Low-Cost and Contactless Survey Technique for Rapid Pavement Texture Assessment Using Mobile Phone Imagery. Sustainability 2024, 16, 9630. [Google Scholar] [CrossRef]
- Braunfelds, J.; Senkans, U.; Skels, P.; Janeliukstis, R.; Salgals, T.; Redka, D.; Lyashuk, I.; Porins, J.; Spolitis, S.; Haritonovs, V.; et al. FBG-Based Sensing for Structural Health Monitoring of Road Infrastructure. J. Sens. 2021, 2021, 8850368. [Google Scholar] [CrossRef]
- Senkans, U.; Braunfelds, J.; Spolitis, S.; Bobrovs, V.; Porins, J. Analysis of FBG Based Sensing for Infrastructure Structural Health Monitoring Applications. In Proceedings of the 2023 Photonics & Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, 3–6 July 2023; pp. 744–753. [Google Scholar] [CrossRef]
- De Maeijer, P.K.; Luyckx, G.; Vuye, C.; Voet, E.; Bergh, W.V.D.; Vanlanduit, S.; Braspenninckx, J.; Stevens, N.; De Wolf, J. Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures 2019, 4, 36. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; He, J.; Xing, X.; Cao, D.; Gao, X.; Hao, X.; Cheng, H.; Zhou, Z. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring. Sensors 2014, 14, 8829–8850. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.Y.M.; Ullah, R.; Faisal, M. High-Temperature Sensing with Iron-Ceramic Enhanced Fiber Bragg Grating Sensors: Encapsulation Strategies and Concentration Dependencies. J. Opt. Photonics Res. 2024, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Liu, Y.; Huang, H. Femtosecond Laser Inscribed Multiwavelength Cascaded FBG Array Using Point-By-Point Method for Temperature Sensing Based on Swept Laser Demodulation Technique. Int. J. Opt. 2025, 2025, 3826450. [Google Scholar] [CrossRef]
- Yoshida, M.; Akiyama, S.; Moriyama, Y.; Takeshima, Y.; Kondo, Y.; Suwa, H.; Yasumoto, K. Traffic Census Sensor Using Vibration Caused by Passing Vehicles. Sens. Mater. 2021, 33, 1. [Google Scholar] [CrossRef]
- Oluwatobi, A.N.; Tayo, A.O.; Oladele, A.T.; Adesina, G.R. The Design of a Vehicle Detector and Counter System Using Inductive Loop Technology. Procedia Comput. Sci. 2021, 183, 493–503. [Google Scholar] [CrossRef]
- Bao, X.; Li, H.; Xu, D.; Jia, L.; Ran, B.; Rong, J. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors. Sensors 2016, 16, 1868. [Google Scholar] [CrossRef]
- Medina, J.C.; Ramezani, H.; Benekohal, R.F. Evaluation of Microwave Radar Vehicle Detectors at a Signalized Intersection under Adverse Weather Conditions. Transp. Res. Rec. J. Transp. Res. Board. 2013, 2366, 100–108. [Google Scholar] [CrossRef]
- Cao, S.; Wu, Y.-J.; Jin, F. Development of Intelligent Multimodal Traffic Monitoring Using Radar Sensor at Intersections; National Institute for Transportation and Communities (NITC): Portland, Oregon, 2021. [Google Scholar]
- Thompson, M.; Lowry, M.; Abdel-Rahim, A. Computer Vision For Traffic Monitoring; Pacific Northwest Transportation Consortium (PacTrans); Pacific Northwest Transportation Consortium (PacTrans) (UTC): Washington, DC, USA, 2024; p. 31. [Google Scholar]
- Rezaei, M.; Azarmi, M.; Mir, F.M.P. Traffic-Net: 3D Traffic Monitoring Using a Single Camera. arXiv 2021, arXiv:2109.09165. [Google Scholar] [CrossRef]
- Fernández-Sanjurjo, M.; Bosquet, B.; Mucientes, M.; Brea, V.M. Real-Time Visual Detection and Tracking System for Traffic Monitoring. Eng. Appl. Artif. Intell. 2019, 85, 410–420. [Google Scholar] [CrossRef]
- Luna OptaSense, CASE STUDY OptaSense Traffic Monitoring Solution Deployed on I-29 Highway, Fargo, North Dakota. Available online: https://www.optasense.com/case-study-optasense-traffic-monitoring-solution-deployed-on-us-highway/ (accessed on 15 July 2025).
Technology | Typical Sensitivity | Spatial Resolution | Monitoring Distance | Typical Application Type |
---|---|---|---|---|
Fiber Bragg Grating (FBG) | Strain: ∼1 pm/µε [51,105] | Point sensor: Typically, 1 mm to 1 cm [114,115,116] | From short (a few meters) up to 100 km: With the use of Wavelength Division Multiplexing (WDM) and appropriate amplification [87,117] | Localized strain, vibration, pressure, humidity, and temperature sensing: Commonly used in structural health monitoring, aerospace, and civil engineering applications [59,118] |
Temperature: Highly sensitive, typically 10 pm/°C [51,105] | ||||
Vibration: ~10–1000 pm/g [106,107] | ||||
Pressure: ~7–280 pm/kPa [108,109,110] | ||||
Displacement and Tilt: ~10–200 pm/° (tilt) [111,112] | ||||
Humidity: 0.1% RH [113] | ||||
Rayleigh Scattering | Strain: ∼0.5–1 µε [86,119] | High spatial resolution: 1 mm to 1 cm [45,80] or a few meters [126] | Short to medium distances: Typically, up to 30 m; specialized systems can reach up to 2 km [86] | High-resolution distributed strain and temperature sensing: Suitable for applications requiring detailed spatial information over shorter distances [126,127] |
Temperature: ∼0.05–0.1 °C [86,119] | ||||
Vibration: pm/g not available, up to 350–500 Hz [120,121] | ||||
Pressure: 7 με/kPa [122] | ||||
Displacement and Tilt: ~0.05–1 mm [119,123] | ||||
Humidity: 1–2% RH [124,125] | ||||
Brillouin Scattering | Strain: 10–50 µε [128,129] | Moderate spatial resolution: Typically, 0.2 m to 3 m [104,129,138] | Long distances: Ranges from 10 km up to 100 km, depending on system configuration [138,139] | Long-distance distributed strain and temperature sensing: suitable for monitoring large infrastructures like roads, pipelines, and bridges [102,103,104] |
Temperature: ∼0.28–1.3 °C [129,130,131] | ||||
Vibration: 55–60 Hz [46,132,133] | ||||
Pressure: 0.7–3.5 MHz/MPa [134] | ||||
Displacement and Tilt: 1 mm–15 cm over 1 m (displacement) [135,136] | ||||
Humidity: 0.4–1.65% RH [130,137] | ||||
Raman Scattering | Strain: N/A | Spatial resolution: Approximately 1 m in longer distances [74,75] or 1cm with a 3 m distance [44] | Moderate distances: Typically, up to 10 km (ROFDR) [74] or extended to 20+ km (ROTDR) [75] | Distributed temperature sensing: Commonly used in fire detection and environmental monitoring [67,71,76] |
Temperature: ∼0.1 °C (ROFDR)–1.8 °C (ROTDR) [74,75] | ||||
Vibration: N/A | ||||
Pressure: N/A | ||||
Displacement and Tilt: N/A | ||||
Humidity: N/A |
Method | Sensor Type/Technology | Measured Parameters | Cost Basis | Approx. Cost Per Sensing Point (€) * | Notes |
---|---|---|---|---|---|
Traditional Methods | Manual inspection | Cracks, surface defects, joints, drainage issues | Service (~200 €/km) | ~2–4 | Assumes ~50–100 inspected points per km. Cost per point estimated by dividing service cost by number of inspection points. |
Imaging (digital camera, laser profiler) | Surface roughness, rutting, cracks | Service (~110 €/km); system >€3000–5000 | ~1–3 | Assumes ~50–100 processed points per km. Excludes capital equipment amortization. | |
Falling Weight Deflectometer | Deflections | Geophones >€50 units; system >€50,000 | >50 | Cost per point = cost per sensor. Excluding the controller cost. | |
Weigh-in-motion (WIM) | Weight, traffic flow, vehicle geometry and motion, temperature | Sensor €3500–40,000 (sensor cost per lane), system >€20,000 | >3500 | Cost per point = cost per lane. Excluding full-scale trailer and FWD costs. | |
Inductive loop sensor system | Traffic flow, vehicle counts, speed | Sensor >€3000 per loop; system> 10,000 | >3000 | Cost per point = cost per loop. Excluding the controller cost. | |
Fiber-Optic Technologies | Quasi-distributed FBG sensors | Strain, temperature, pressure, displacement | FBG > €50 each; interrogator > €5000 | >50 | Cost per sensing point is the cost of an individual FBG, excluding the interrogator cost. |
Distributed Raman OTDR | Temperature | Sensing fiber: €0.3–few €/m; interrogator >€100,000 | ~0.3–few | Assumes 1 mm spatial resolution; cost per point = fiber price per meter. Excluding the interrogator cost. | |
Distributed Brillouin OTDR | Strain, temperature | Similar to Raman | Similar to Raman | Assumes 1 m spatial resolution. Excluding the interrogator cost. | |
Distributed Rayleigh OTDR | Strain, temperature | Similar to Raman | 100 times smaller than Raman | Assumes 1 cm spatial resolution. Excluding the interrogator cost. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senkans, U.; Silkans, N.; Spolitis, S.; Braunfelds, J. Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications. Sensors 2025, 25, 5283. https://doi.org/10.3390/s25175283
Senkans U, Silkans N, Spolitis S, Braunfelds J. Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications. Sensors. 2025; 25(17):5283. https://doi.org/10.3390/s25175283
Chicago/Turabian StyleSenkans, Ugis, Nauris Silkans, Sandis Spolitis, and Janis Braunfelds. 2025. "Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications" Sensors 25, no. 17: 5283. https://doi.org/10.3390/s25175283
APA StyleSenkans, U., Silkans, N., Spolitis, S., & Braunfelds, J. (2025). Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications. Sensors, 25(17), 5283. https://doi.org/10.3390/s25175283