Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,578)

Search Parameters:
Keywords = optical communication systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7469 KB  
Article
Generalized Vision-Based Coordinate Extraction Framework for EDA Layout Reports and PCB Optical Positioning
by Pu-Sheng Tsai, Ter-Feng Wu and Wen-Hai Chen
Processes 2026, 14(2), 342; https://doi.org/10.3390/pr14020342 (registering DOI) - 18 Jan 2026
Abstract
Automated optical inspection (AOI) technologies are widely used in PCB and semiconductor manufacturing to improve accuracy and reduce human error during quality inspection. While existing AOI systems can perform defect detection, they often rely on pre-defined camera positions and lack flexibility for interactive [...] Read more.
Automated optical inspection (AOI) technologies are widely used in PCB and semiconductor manufacturing to improve accuracy and reduce human error during quality inspection. While existing AOI systems can perform defect detection, they often rely on pre-defined camera positions and lack flexibility for interactive inspection, especially when the operator needs to visually verify solder pad conditions or examine specific layout regions. This study focuses on the front-end optical positioning and inspection stage of the AOI workflow, providing an automated mechanism to link digitally generated layout reports from EDA layout tools with real PCB inspection tasks. The proposed system operates on component-placement reports exported by EDA layout environments and uses them to automatically guide the camera to the corresponding PCB coordinates. Since PCB design reports may vary in format and structure across EDA tools, this study proposes a vision-based extraction approach that employs Hough transform-based region detection and a CNN-based digit recognizer to recover component coordinates from visually rendered design data. A dual-axis sliding platform is driven through a hierarchical control architecture, where coarse positioning is performed via TB6600 stepper control and Bluetooth-based communication, while fine alignment is achieved through a non-contact, gesture-based interface designed for clean-room operation. A high-resolution autofocus camera subsequently displays the magnified solder pads on a large screen for operator verification. Experimental results show that the proposed platform provides accurate, repeatable, and intuitive optical positioning, improving inspection efficiency while maintaining operator ergonomics and system modularity. Rather than replacing defect-classification AOI systems, this work complements them by serving as a positioning-assisted inspection module for interactive and semi-automated PCB quality evaluation. Full article
Show Figures

Figure 1

32 pages, 8754 KB  
Review
Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems
by Muhammad A. Butt
Micromachines 2026, 17(1), 119; https://doi.org/10.3390/mi17010119 - 16 Jan 2026
Viewed by 161
Abstract
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical [...] Read more.
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical nonlinearities, while MSs provide versatile and compact control over phase, amplitude, polarization, and dispersion through planar, nanostructured interfaces. Recent advances in materials, nanofabrication, and device engineering are increasingly enabling these technologies to be combined within unified planar and hybrid optical platforms. This review surveys the physical principles, material strategies, and device architectures that underpin plasmonic, MS, and hybrid plasmonic–dielectric systems, with an emphasis on interface-mediated optical functionality rather than long-range guided-wave propagation. Key developments in modulators, detectors, nanolasers, metalenses, beam steering devices, and programmable optical surfaces are discussed, highlighting how hybrid designs can leverage strong field localization alongside low-loss wavefront control. System-level challenges including optical loss, thermal management, dispersion engineering, and large-area fabrication are critically examined. Looking forward, plasmonic and MS technologies are poised to define a new generation of flat, multifunctional, and programmable optical systems. Applications spanning imaging, sensing, communications, augmented and virtual reality, and optical information processing illustrate the transformative potential of these platforms. By consolidating recent progress and outlining future directions, this review provides a coherent perspective on how plasmonics and MSs are reshaping the design space of next-generation planar optical hardware. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

24 pages, 1802 KB  
Article
Analysis of Noise Propagation Mechanisms in Wireless Optical Coherent Communication Systems
by Fan Ji and Xizheng Ke
Appl. Sci. 2026, 16(2), 916; https://doi.org/10.3390/app16020916 - 15 Jan 2026
Viewed by 71
Abstract
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It [...] Read more.
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It establishes the stepwise propagation process of signals and noise from the transmitter through the atmospheric turbulence channel to the coherent receiver, clarifying the coupling mechanisms and accumulation patterns of various noise sources within the propagation chain. From a signal propagation viewpoint, the study focuses on analyzing the impact mechanisms of factors, such as Mach–Zehnder modulator nonlinear distortion, atmospheric turbulence effects, 90° mixer optical splitting ratio imbalance, and dual-balanced detector responsivity mismatch, on system bit error rate performance and constellation diagrams under conditions of coexisting multiple noises. Simultaneously, by introducing differential and common-mode processes, the propagation and suppression characteristics of additive noise at the receiver end within the balanced detection structure were analyzed, revealing the dominant properties of different noise components under varying optical power conditions. Simulation results indicate that within the range of weak turbulence and engineering parameters, the impact of modulator nonlinearity on system bit error rate is relatively minor compared to channel noise. Atmospheric turbulence dominates system performance degradation through the combined effects of amplitude fading and phase perturbation, causing significant constellation spreading. Imbalanced optical splitting ratios and mismatched responsivity at the receiver weaken common-mode noise suppression, leading to variations in effective signal gain and constellation stretching/distortion. Under different signal light power and local oscillator light power conditions, the system noise exhibits distinct dominant characteristics. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
17 pages, 3960 KB  
Article
Tunable Narrow-Linewidth Si3N4 Cascaded Triple-Ring External-Cavity Semiconductor Laser for Coherent Optical Communications
by Tong Wang, Yuchen Hu, Wen Zhou and Ye Wang
Photonics 2026, 13(1), 72; https://doi.org/10.3390/photonics13010072 - 13 Jan 2026
Viewed by 75
Abstract
We propose an external-cavity laser that combines wide tunability with narrow linewidth. The design utilizes a low-loss Si3N4 waveguide and a thermally tuned cascaded triple-ring resonator to enable continuous wavelength tuning. The numerical simulations indicate that the proposed laser exhibits [...] Read more.
We propose an external-cavity laser that combines wide tunability with narrow linewidth. The design utilizes a low-loss Si3N4 waveguide and a thermally tuned cascaded triple-ring resonator to enable continuous wavelength tuning. The numerical simulations indicate that the proposed laser exhibits a tuning range of 64 nm with a sub-kHz linewidth, an SMSR of more than 80 dB, an output power of 24 mW and a linewidth of 193 Hz at 1550 nm. Furthermore, we perform comparative system-level simulations using QPSK and 16QAM coherent optical fiber links at 50 Gbaud over 100 km. Under identical conditions, when the laser linewidth is reduced from 1 MHz level to 193 Hz, the BER of 16QAM decreases from 1.5 × 10−3 to 5.3 × 10−5. These results indicate that a narrow linewidth effectively mitigates phase noise degradation in high-order modulation formats. With its narrow linewidth, wide tuning range, high SMSR, and high output power, this laser serves as a promising on-chip light source for high-resolution sensing and coherent optical communications. Full article
Show Figures

Figure 1

25 pages, 7150 KB  
Article
Integrating Frequency-Spatial Features for Energy-Efficient OPGW Target Recognition in UAV-Assisted Mobile Monitoring
by Lin Huang, Xubin Ren, Daiming Qu, Lanhua Li and Jing Xu
Sensors 2026, 26(2), 506; https://doi.org/10.3390/s26020506 - 12 Jan 2026
Viewed by 167
Abstract
Optical Fiber Composite Overhead Ground Wire (OPGW) cables serve dual functions in power systems, lightning protection and critical communication infrastructure for real-time grid monitoring. Accurate OPGW identification during UAV inspections is essential to prevent miscuts and maintain power-communication functionality. However, detecting small, twisted [...] Read more.
Optical Fiber Composite Overhead Ground Wire (OPGW) cables serve dual functions in power systems, lightning protection and critical communication infrastructure for real-time grid monitoring. Accurate OPGW identification during UAV inspections is essential to prevent miscuts and maintain power-communication functionality. However, detecting small, twisted OPGW segments among visually similar ground wires is challenging, particularly given the computational and energy constraints of edge-based UAV platforms. We propose OPGW-DETR, a lightweight detector based on the D-FINE framework, optimized for low-power operation to enable reliable detection. The model incorporates two key innovations: multi-scale convolutional global average pooling (MC-GAP), which fuses spatial features across multiple receptive fields and integrates spectrally motivated features for enhanced fine-grained representation, and a hybrid gating mechanism that dynamically balances global and spatial features while preserving original information through residual connections. By enabling real-time inference with minimal energy consumption, OPGW-DETR addresses UAV battery and bandwidth limitations while ensuring continuous detection capability. Evaluated on a custom OPGW dataset, the S-scale model achieves 3.9% improvement in average precision (AP) and 2.5% improvement in AP50 over the baseline. By mitigating misidentification risks, these gains improve communication reliability. As a result, uninterrupted grid monitoring becomes feasible in low-power UAV inspection scenarios, where accurate detection is essential to ensure communication integrity and safeguard the power grid. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 1398 KB  
Review
Microwave Photonic Techniques in Phase-Noise Measurements of Microwave Sources: A Review of Fiber-Optic Delay-Line Methods
by Andrej Lavrič, Matjaž Vidmar and Boštjan Batagelj
Photonics 2026, 13(1), 60; https://doi.org/10.3390/photonics13010060 - 8 Jan 2026
Viewed by 299
Abstract
Microwave photonics has recently come to the forefront as a valuable approach to generating, processing, and measuring signals in high-performance domains such as communication, radar, and timing systems. Recent studies have introduced a range of photonics-based phase-noise analyzers (PNAs) that utilize a variety [...] Read more.
Microwave photonics has recently come to the forefront as a valuable approach to generating, processing, and measuring signals in high-performance domains such as communication, radar, and timing systems. Recent studies have introduced a range of photonics-based phase-noise analyzers (PNAs) that utilize a variety of architectures, including phase detection, frequency discrimination, and hybrid mechanisms that combine optical with electronic processing. This review focuses on microwave photonic techniques for phase-noise measurement based on the fiber-optic delay-line method, by exploring their fundamental principles, system design frameworks, and performance indicators. The fiber-optic delay-line method is examined as the core architecture, due to the exceptionally low loss and wide bandwidth of the optical fiber, which enable long delays and high measurement sensitivity. Through the integration of insights garnered from recent publications, our objective is to deliver a comprehensive understanding of the strengths and limitations associated with fiber-optic delay-line-based PNAs and to pinpoint new and promising areas for advancing research in the field of oscillator metrology. Full article
(This article belongs to the Special Issue Microwave Photonics: Devices, Systems and Emerging Applications)
Show Figures

Figure 1

10 pages, 1503 KB  
Article
High Spectrum Efficiency and High Security Radio-Over-Fiber Systems with Compressive-Sensing-Based Chaotic Encryption
by Zhanhong Wang, Lu Zhang, Jiahao Zhang, Oskars Ozolins, Xiaodan Pang and Xianbin Yu
Micromachines 2026, 17(1), 80; https://doi.org/10.3390/mi17010080 - 7 Jan 2026
Viewed by 149
Abstract
With the increasing demand for high throughput and ultra-dense small cell deployment in the next-generation communication networks, spectrum resources are becoming increasingly strained. At the same time, the security risks posed by eavesdropping remain a significant concern, particularly due to the broadcast-access property [...] Read more.
With the increasing demand for high throughput and ultra-dense small cell deployment in the next-generation communication networks, spectrum resources are becoming increasingly strained. At the same time, the security risks posed by eavesdropping remain a significant concern, particularly due to the broadcast-access property of optical fronthaul networks. To address these challenges, we propose a high-security, high-spectrum efficiency radio-over-fiber (RoF) system in this paper, which leverages compressive sensing (CS)-based algorithms and chaotic encryption. An 8 Gbit/s RoF system is experimentally demonstrated, with 10 km optical fiber transmission and 20 GHz radio frequency (RF) transmission. In our experiment, spectrum efficiency is enhanced by compressing transmission data and reducing the quantization bit requirements, while security is maintained with minimal degradation in signal quality. The system could recover the signal correctly after dequantization with 6-bit fronthaul quantization, achieving a structural similarity index (SSIM) of 0.952 for the legitimate receiver (Bob) at a compression ratio of 0.75. In contrast, the SSIM for the unauthorized receiver (Eve) is only 0.073, highlighting the effectiveness of the proposed security approach. Full article
Show Figures

Figure 1

19 pages, 3900 KB  
Article
Low-Noise Amplification of Coherent Single-Mode Squeezed States
by Shaojie Li, Jiachen Liu, Changchang Zhang, Zhaolu Wang, Wenqi Xu, Wenjuan Shi and Hongjun Liu
Photonics 2026, 13(1), 51; https://doi.org/10.3390/photonics13010051 - 6 Jan 2026
Viewed by 162
Abstract
Quantum noise fundamentally limits the performance of fiber-optic systems beyond the standard quantum limit (SQL), restricting long-distance quantum key distribution, quantum communication, and precision quantum sensing. To overcome these limitations, quantum-squeezed states enable quadrature-dependent noise suppression, yet their benefits rapidly degrade under fiber [...] Read more.
Quantum noise fundamentally limits the performance of fiber-optic systems beyond the standard quantum limit (SQL), restricting long-distance quantum key distribution, quantum communication, and precision quantum sensing. To overcome these limitations, quantum-squeezed states enable quadrature-dependent noise suppression, yet their benefits rapidly degrade under fiber attenuation, necessitating low-noise amplification. Since conventional phase-insensitive amplifiers (PIAs) impose a minimum 3 dB noise figure (NF) penalty and disrupt quantum correlations, phase-sensitive amplification (PSA) becomes essential. In this work, we propose a PSA based on dual-pump frequency-degenerate four-wave mixing (FWM) to amplify weak coherent squeezed states. Here, the PSA is seeded by an information-carrying single-mode squeezed state, where the information is encoded in the displacement degree of freedom, rather than in the squeezing itself. By optimizing the relative phases among the squeezed state, pump fields, and weak signal, the scheme maintains proper squeezing alignment and preserves the encoded quantum correlations during propagation. Under low-loss conditions, it is shown that the effective NF reaches −7.787 dB, demonstrating that the scheme enables quantum-limited amplification suitable for long-haul transmission and offering a viable path toward scalable fiber-based quantum technologies. Full article
Show Figures

Figure 1

15 pages, 1160 KB  
Article
Expanding Access to Retinal Imaging Through Patient-Operated Optical Coherence Tomography in a Veterans Affairs Retina Clinic
by Alan B. Dogan, Katherine G. Barber, Brigid C. Devine, Blanche Kuo, Colin K. Drummond, Ankur A. Mehra, Eric S. Eleff and Warren M. Sobol
Bioengineering 2026, 13(1), 61; https://doi.org/10.3390/bioengineering13010061 - 5 Jan 2026
Viewed by 330
Abstract
This study evaluated the feasibility, image quality, and referral accuracy of a patient-operated optical coherence tomography (OCT) device (SightSync) compared with technician-acquired Heidelberg OCT. This study was conducted in a Veterans Affairs retina clinic (Cleveland, Ohio), resulting in a predominantly male (98%) study [...] Read more.
This study evaluated the feasibility, image quality, and referral accuracy of a patient-operated optical coherence tomography (OCT) device (SightSync) compared with technician-acquired Heidelberg OCT. This study was conducted in a Veterans Affairs retina clinic (Cleveland, Ohio), resulting in a predominantly male (98%) study population representative of the local veteran demographics. One hundred patients attempted self-administered OCT imaging after brief instruction, yielding 118 successful scans (59% of eyes) with no significant association between scan success and age, visual acuity, or diagnosis. Quantitative analysis of 142 paired images showed that SightSync produced interpretable scans with comparable sharpness to Heidelberg OCT, though signal- and intensity-based metrics (signal-to-noise ratio; SNR, contrast-to-noise ratio; CNR, entropy, pixel intensity; p90) were lower, consistent with hardware differences between a compact patient-operated prototype and a clinical-grade system. Among 121 high-quality SightSync scans, referral decisions demonstrated strong agreement with Heidelberg OCT, with a sensitivity of 83.9%, specificity of 75.6%, and a negative predictive value of 93.2%, indicating reliable exclusion of clinically significant pathology. These findings demonstrate that patients can independently acquire clinically interpretable OCT images and that SightSync provides safe, conservative triage performance—supporting its potential as a scalable community-based retinal imaging solution—while a review of unsuccessful scans has identified prototype modifications expected to further improve device feasibility. Full article
(This article belongs to the Special Issue Optical Imaging for Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

24 pages, 2372 KB  
Article
The Provision of Physical Protection of Information During the Transmission of Commands to a Group of UAVs Using Fiber Optic Communication Within the Group
by Dina Shaltykova, Aruzhan Kadyrzhan, Yelizaveta Vitulyova and Ibragim Suleimenov
Drones 2026, 10(1), 24; https://doi.org/10.3390/drones10010024 - 1 Jan 2026
Viewed by 221
Abstract
This paper presents a novel method for the precise localization of remote radio-signal sources using a formation of unmanned aerial vehicles (UAVs). The approach is based on time-difference-of-arrival (TDoA) measurements and the geometric analysis of hyperbolas formed by pairs of UAVs. By studying [...] Read more.
This paper presents a novel method for the precise localization of remote radio-signal sources using a formation of unmanned aerial vehicles (UAVs). The approach is based on time-difference-of-arrival (TDoA) measurements and the geometric analysis of hyperbolas formed by pairs of UAVs. By studying the asymptotic intersections of these hyperbolas, the method ensures unique determination of the source position, even in the presence of multiple intersection points. Theoretical analysis confirms that the correct intersection point is located at a significantly larger distance from the UAV formation center compared to spurious intersections, providing a rigorous criterion for resolving localization ambiguity. The proposed framework also addresses secure inter-UAV communication via optical-fiber links and supports expansion of UAV groups with directional antennas and low-power signal relays. Additionally, the study discusses practical UAV configurations, including hybrid propulsion and jet-assisted kamikaze platforms, demonstrating the applicability of the method in contested environments. The results indicate that this approach provides a robust mathematical basis for unambiguous emitter localization and enables scalable, secure, and resilient multi-UAV systems, with potential applications in electronic-warfare scenarios, surveillance, and tactical operations. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

12 pages, 2357 KB  
Article
Real-Time Cr(VI) Concentration Monitoring in Chrome Plating Wastewater Using RGB Sensor and Machine Learning
by Hanui Yang and Donghee Park
Eng 2026, 7(1), 17; https://doi.org/10.3390/eng7010017 - 1 Jan 2026
Viewed by 173
Abstract
The transition to the 4th Industrial Revolution (4IR) in the electroplating industry necessitates intelligent, real-time monitoring systems to replace traditional, time-consuming offline analysis. In this study, we developed a cost-effective, automated measurement system for hexavalent chromium (Cr(VI)) in plating wastewater using an Arduino-based [...] Read more.
The transition to the 4th Industrial Revolution (4IR) in the electroplating industry necessitates intelligent, real-time monitoring systems to replace traditional, time-consuming offline analysis. In this study, we developed a cost-effective, automated measurement system for hexavalent chromium (Cr(VI)) in plating wastewater using an Arduino-based RGB sensor. Unlike conventional single-variable approaches, we conducted a comprehensive feature sensitivity analysis on multi-sensor data (including pH, ORP, and EC). While electrochemical sensors were found to be susceptible to pH interference, the analysis identified that the Red and Green optical channels are the most critical indicators due to the distinct chromatic characteristics of Cr(VI). Specifically, the combination of these two channels effectively functions as a dual-variable sensing mechanism, compensating for potential interferences. To optimize prediction accuracy, a systematic machine learning strategy was employed. While the Convolutional Neural Network (CNN) achieved the highest classification accuracy of 89% for initial screening, a polynomial regression algorithm was ultimately implemented to model the non-linear relationship between sensor outputs and concentration. The derived regression model achieved an excellent determination coefficient (R2 = 0.997), effectively compensating for optical saturation effects at high concentrations. Furthermore, by integrating this sensing model with the chemical stoichiometry of the reduction process, the proposed system enables the precise, automated dosing of reducing agents. This capability facilitates the establishment of a “Digital Twin” for wastewater treatment, offering a practical ICT (Information and Communication Technology)-based solution for autonomous process control and strict environmental compliance. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

14 pages, 1049 KB  
Article
IQ-Modulation Using Phase and Amplitude Modulators and Multimode Interference
by Frank H. Peters
Photonics 2026, 13(1), 44; https://doi.org/10.3390/photonics13010044 - 31 Dec 2025
Viewed by 260
Abstract
Optical amplitude and phase modulators are an integral part of modern optical communications systems. As optical data formats transitioned from encoding amplitude exclusively to both amplitude and phase, several different methods for creating the quadrature amplitude modulation (QAM) have been proposed, demonstrated and [...] Read more.
Optical amplitude and phase modulators are an integral part of modern optical communications systems. As optical data formats transitioned from encoding amplitude exclusively to both amplitude and phase, several different methods for creating the quadrature amplitude modulation (QAM) have been proposed, demonstrated and employed. This paper will provide an overview and analysis of current techniques for creating these signals and will then show how a more elegant and efficient design is possible by taking advantage of the phase properties of multimode interference devices (MMIs). Using two 2 × 2 MMIs in a Mach Zehnder configuration is a well-known technique for creating a BPSK signal using phase modulators and has also been shown to work with amplitude modulators. This paper will also show how two 4 × 4 MMIs can be used to create QAM signals using either phase or amplitude modulation. Full article
(This article belongs to the Special Issue Advances in Photonic–Electronic Integration)
Show Figures

Figure 1

10 pages, 2281 KB  
Communication
Photonic Nyquist Pulse Generation Based on Phase-Modulated Fiber Bragg Gratings in Transmission
by Xin Liu, Xuewen Shu and Lin Zhang
Photonics 2026, 13(1), 30; https://doi.org/10.3390/photonics13010030 - 30 Dec 2025
Viewed by 182
Abstract
Nyquist pulses are critical in optical communication networks and signal processing systems. We present, to our best knowledge, the first demonstration of all-optical Nyquist pulse generation using phase-modulated fiber Bragg gratings (PM-FBGs) in transmission. PM-FBGs are a class of fiber gratings that have [...] Read more.
Nyquist pulses are critical in optical communication networks and signal processing systems. We present, to our best knowledge, the first demonstration of all-optical Nyquist pulse generation using phase-modulated fiber Bragg gratings (PM-FBGs) in transmission. PM-FBGs are a class of fiber gratings that have a nearly uniform coupling strength and a spatially varying grating period. As examples, we have designed and numerically simulated photonic Nyquist pulses with roll-off factors of 0.9, 0.5, and 0.1, respectively. The grating profiles are obtained employing numerical optimization algorithms. Numerical simulations confirm that the generated pulses are in good agreement with ideal Nyquist pulses over a 500 GHz bandwidth and have a good tolerance to the variations in the input pulse width. Full article
Show Figures

Figure 1

36 pages, 1402 KB  
Review
A Comprehensive Review of Bio-Inspired Approaches to Coordination, Communication, and System Architecture in Underwater Swarm Robotics
by Shyalan Ramesh, Scott Mann and Alex Stumpf
J. Mar. Sci. Eng. 2026, 14(1), 59; https://doi.org/10.3390/jmse14010059 - 29 Dec 2025
Viewed by 431
Abstract
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural [...] Read more.
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural systems, such as fish schools and insect colonies, bio-inspired swarm approaches enable distributed decision-making, adaptability, and resilience under challenging marine conditions. Yet research in this field remains fragmented, with limited integration across algorithmic, communication, and hardware design perspectives. This review synthesises bio-inspired coordination mechanisms, communication strategies, and system design considerations for underwater swarm robotics. It examines key marine-specific algorithms, including the Artificial Fish Swarm Algorithm, Whale Optimisation Algorithm, Coral Reef Optimisation, and Marine Predators Algorithm, highlighting their applications in formation control, task allocation, and environmental interaction. The review also analyses communication constraints unique to the underwater domain and emerging acoustic, optical, and hybrid solutions that support cooperative operation. Additionally, it examines hardware and system design advances that enhance system efficiency and scalability. A multi-dimensional classification framework evaluates existing approaches across communication dependency, environmental adaptability, energy efficiency, and swarm scalability. Through this integrated analysis, the review unifies bio-inspired coordination algorithms, communication modalities, and system design approaches. It also identifies converging trends, key challenges, and future research directions for real-world deployment of underwater swarm systems. Full article
(This article belongs to the Special Issue Wide Application of Marine Robotic Systems)
Show Figures

Figure 1

9 pages, 940 KB  
Communication
Evaluation of Optical Receiver Modes Using a Schrödinger Equation
by Kyung Hee Seo and Jae Seung Lee
Photonics 2026, 13(1), 25; https://doi.org/10.3390/photonics13010025 - 27 Dec 2025
Viewed by 241
Abstract
In optical receiver mode (ORM) division multiplexing optical communication systems, which can ultimately achieve a very high spectral efficiency, an accurate evaluation of the ORMs is crucial. Conventionally, to find the mode functions and the eigenvalues of ORMs, we have to solve an [...] Read more.
In optical receiver mode (ORM) division multiplexing optical communication systems, which can ultimately achieve a very high spectral efficiency, an accurate evaluation of the ORMs is crucial. Conventionally, to find the mode functions and the eigenvalues of ORMs, we have to solve an integral equation numerically. Here, we introduce a new method that solves a Schrödinger equation instead. This method assumes that the optical receiver uses an optical Fabry–Perot filter to select an optical channel from the received optical channels. The time-reversed impulse response of the optical receiver’s electrical filter is proportional to the potential in the Schrödinger equation. We show two potential cases that have exact solutions. One is the square-well potential case and the other is the exponential-well potential case. Full article
(This article belongs to the Special Issue Optical Fiber Communication: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop