Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,803)

Search Parameters:
Keywords = optic simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 (registering DOI) - 17 Jul 2025
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 80
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
by Meet Kumari and Satyendra K. Mishra
Photonics 2025, 12(7), 712; https://doi.org/10.3390/photonics12070712 - 14 Jul 2025
Viewed by 126
Abstract
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication [...] Read more.
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication system integrated with fiber-end is designed and investigated using the Bennett–Brassard 1984 quantum key distribution (BB84-QKD) protocol. Simulation results show that reliable transmission can be achieved over a 10–15 km fiber length with a signal power of −19.54 dBm and high optical-to-signal noise of 72.28–95.30 dB over a 550 m FSO range under clear air, haze, fog, and rain conditions at a data rate of 1 Gbps. Also, the system using rectilinearly and circularly polarized signals exhibits a Stokes parameter intensity of −4.69 to −35.65 dBm and −7.7 to −35.66 dBm Stokes parameter intensity, respectively, over 100–700 m FSO range under diverse weather conditions. Likewise, for the same scenario, an FSO range of 100 m incorporating 2.5–4 mrad beam divergence provides the Stokes power intensity of −6.03 to −11.1 dBm and −9.04 to −14.12 dBm for rectilinearly and circularly polarized signals, respectively. Moreover, compared to existing works, this work allows faithful and secure signal transmission in free space, considering FSO–fiber link losses. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

25 pages, 8751 KiB  
Article
Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations
by Jiakun Liang and Jennifer D. Small Griswold
Remote Sens. 2025, 17(14), 2439; https://doi.org/10.3390/rs17142439 - 14 Jul 2025
Viewed by 87
Abstract
Aerosols are critical to the Earth’s atmosphere, influencing climate through interactions with solar radiation and clouds. However, accurately replicating the interactions between aerosols and clouds remains challenging due to the complexity of the physical processes involved. This study evaluated the performance of Coupled [...] Read more.
Aerosols are critical to the Earth’s atmosphere, influencing climate through interactions with solar radiation and clouds. However, accurately replicating the interactions between aerosols and clouds remains challenging due to the complexity of the physical processes involved. This study evaluated the performance of Coupled Model Intercomparison Project phase 6 (CMIP6) models in simulating aerosol optical depth (AOD), cloud fraction (CF), and liquid water path (LWP) by comparing them with satellite observations from MODIS and AMSR-E. Using 30 years of CMIP6 model simulations and available satellite observations during the satellite era, the results show that most CMIP6 models underestimate CF and LWP by 24.3% for LWP in the Northern Hemisphere. An assessment of spatial patterns indicates that models generally align more closely with observations in the Northern Hemisphere than in the Southern Hemisphere. Latitudinal profiles reveal that while most models capture the overall distribution patterns, they struggle to accurately reproduce observed magnitudes. A quantitative scoring system is applied to evaluate each model’s ability to replicate the spatial characteristics of multi-year mean aerosol and cloud properties. Overall, the findings suggest that CMIP6 models perform better in simulating AOD and CF than LWP, particularly in the Southern Hemisphere. Full article
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Power-Independent Microwave Photonic Instantaneous Frequency Measurement System
by Ruiqiong Wang and Yongjun Li
Sensors 2025, 25(14), 4382; https://doi.org/10.3390/s25144382 - 13 Jul 2025
Viewed by 210
Abstract
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) [...] Read more.
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) curve, achieved by introducing a frequency-dependent time delay via an optical tunable delay line (OTDL) for the signal under test (SUT). System simulation demonstrates the measurement capability across a wide bandwidth of 0.1–40 GHz with high precision, exhibiting frequency errors ranging from −0.03 to 0.04 GHz. The scheme also maintains consistent performance under varying input power levels. Key implementation aspects, including single-sideband modulation selection and system extension methods, are analyzed in detail to optimize measurement accuracy. Notably, the proposed architecture features a simple and compact design with excellent integration potential. These characteristics, combined with its wide operational bandwidth and high measurement precision, make this approach particularly suitable for demanding applications in electronic reconnaissance and communication. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

17 pages, 8874 KiB  
Article
Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation
by Mingqing Zuo, Huitong Yang, Yi Liu, Zhengyang Xie, Dong Wang, Shan Cao, Zheng Zheng and Han Li
Photonics 2025, 12(7), 704; https://doi.org/10.3390/photonics12070704 - 11 Jul 2025
Viewed by 170
Abstract
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even [...] Read more.
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even divergence and resulting in huge computational efforts in A-DBP. In this paper, an improved A-DBP algorithm with long-term memory (LTM) is proposed, employing root mean square propagation (RMSProp) to achieve low-complexity and high-robustness compensation performances. The A-DBP-LTM algorithm based on RMSProp was numerically validated through the simulated transmission of 69 Gbaud DP-16QAM over 2000 km and further verified through an experiment involving 26-λ 63 Gbaud DP-16QAM transmission over 1200 km. Compared with conventional digital back-propagation and A-DBP based on a gradient-descent algorithm, our proposed method allows substantial complexity reductions of 31.35% and 58.47%, respectively. Furthermore, high robustness in only a few iterations and a 0.33 dB improvement in the optical signal–noise ratio penalty were also experimentally demonstrated. Full article
(This article belongs to the Special Issue Next-Generation Optical Networks Communication)
Show Figures

Figure 1

17 pages, 5754 KiB  
Article
Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction
by Xuan Qi, Yudong Lian, Yulei Wang and Zhiwei Lu
Photonics 2025, 12(7), 702; https://doi.org/10.3390/photonics12070702 - 11 Jul 2025
Viewed by 200
Abstract
White-light interferometry is essential for surface topography measurement in precision manufacturing, yet existing algorithms face challenges in accuracy, speed, and robustness. Motivated by the application of deep learning in optical metrology, this study presents a novel simulation-driven, end-to-end deep learning approach that significantly [...] Read more.
White-light interferometry is essential for surface topography measurement in precision manufacturing, yet existing algorithms face challenges in accuracy, speed, and robustness. Motivated by the application of deep learning in optical metrology, this study presents a novel simulation-driven, end-to-end deep learning approach that significantly advances white-light interference topography reconstruction. Validation with 200 simulated interferograms shows strong agreement with reference measurements. The neural network processes interferograms in <0.4 s with <0.3% calculation error, demonstrating real-time capability and noise robustness. Using simulated and experimental data from trapezoidal gratings, the method achieves a reconstruction error of 47.12 nm (<λ/8, λ ≈ 550 nm), outperforming traditional techniques by 9.0%. These results confirm the method’s superior accuracy, speed, and reliability for industrial metrology applications. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

16 pages, 5752 KiB  
Article
Hybrid-Integrated Multi-Lines Optical-Phased-Array Chip
by Shengmin Zhou, Mingjin Wang, Jingxuan Chen, Zhaozheng Yi, Jiahao Si and Wanhua Zheng
Photonics 2025, 12(7), 699; https://doi.org/10.3390/photonics12070699 - 10 Jul 2025
Viewed by 209
Abstract
We propose a hybrid-integrated III–V-silicon optical-phased-array (OPA) based on passive alignment flip–chip bonding technology and provide new solutions for LiDAR. To achieve a large range of vertical beam steering in a hybrid-integrated OPA, a multi-lines OPA in a single chip is introduced. The [...] Read more.
We propose a hybrid-integrated III–V-silicon optical-phased-array (OPA) based on passive alignment flip–chip bonding technology and provide new solutions for LiDAR. To achieve a large range of vertical beam steering in a hybrid-integrated OPA, a multi-lines OPA in a single chip is introduced. The system allows parallel hybrid integration of multiple dies onto a single wafer, achieving a multi-fold improvement in tuning efficiency. In order to increase the range of horizontal beam steering, we propose a half-wavelength pitch waveguide emitter with non-uniform width to reduce the crosstalk, which can remove the higher-order grating lobes in free space. In this work, we simulate OPA individually for four-lines and eight-lines. As a result, we simultaneously achieved a beam steering with nearly ±90° (horizontal) × 17.2° (vertical, when four-line OPA) or 39.6° (vertical, when eight-line OPA) field of view (FOV) and a high tuning efficiency with 1.13°/nm (when eight-line OPA). Full article
Show Figures

Figure 1

18 pages, 1900 KiB  
Article
Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis
by Suraj Rajasekhar and Karthik Vishwanath
Photonics 2025, 12(7), 698; https://doi.org/10.3390/photonics12070698 - 10 Jul 2025
Viewed by 237
Abstract
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered [...] Read more.
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered media from TD reflectance generated via Monte Carlo (MC) simulations. Optical properties for 384 bilayered tissue models representing human head or limb tissues were obtained from the literature at three near-infrared wavelengths. MC data were fit using the layered DT model to simultaneously recover transport coefficients in both layers. Bottom-layer absorption was recovered with errors under 0.02 cm−1, and top-layer scattering was retrieved within 3 cm−1 of input values. In contrast, recovered bottom-layer scattering had mean errors exceeding 50%. Total hemoglobin concentration and oxygen saturation were reconstructed for the bottom layer to within 10 μM and 5%, respectively. Extracted transport coefficients were significantly more accurate when obtained using layered DT compared to the conventional, semi-infinite DT model. Our results suggest using improved theoretical modeling to analyze TD reflectance analysis significantly improves recovery of deep-layer absorption. Full article
(This article belongs to the Special Issue Optical Technologies for Biomedical Science)
Show Figures

Figure 1

13 pages, 3647 KiB  
Article
Near-Infrared Synaptic Responses of WSe2 Artificial Synapse Based on Upconversion Luminescence from Lanthanide Doped Nanoparticles
by Yaxian Lu, Chuanwen Chen, Qi Sun, Ni Zhang, Kun Lv, Zhiling Chen, Yuelan He, Haowen Tang and Ping Chen
Inorganics 2025, 13(7), 236; https://doi.org/10.3390/inorganics13070236 - 10 Jul 2025
Viewed by 218
Abstract
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly [...] Read more.
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly NIR synapse was fabricated based on lanthanide-doped upconversion nanoparticles (UCNPs) and two-dimensional (2D) WSe2 via solution spin coating technology. Biological synaptic functions were simulated successfully through 975 nm laser regulation, including paired-pulse facilitation (PPF), spike rate-dependent plasticity, and spike timing-dependent plasticity. Handwritten digital images were also recognized by an artificial neural network based on device characteristics with a high accuracy of 97.24%. In addition, human and animal identification in foggy and low-visibility surroundings was proposed by the synaptic response of the device combined with an NIR laser and visible simulation. These findings might provide promising strategies for developing a 24/7 visual response of humanoid robots. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

18 pages, 736 KiB  
Article
Collaborative Split Learning-Based Dynamic Bandwidth Allocation for 6G-Grade TDM-PON Systems
by Alaelddin F. Y. Mohammed, Yazan M. Allawi, Eman M. Moneer and Lamia O. Widaa
Sensors 2025, 25(14), 4300; https://doi.org/10.3390/s25144300 - 10 Jul 2025
Viewed by 155
Abstract
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt [...] Read more.
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt to dynamic traffic conditions, resulting in suboptimal performance under varying load scenarios. This work suggests a Collaborative Split Learning-Based DBA (CSL-DBA) framework that utilizes the recently emerging Split Learning (SL) technique between the OLT and ONUs for the objective of optimizing predictive traffic adaptation and reducing communication overhead. Instead of requiring centralized learning at the OLT, the proposed approach decentralizes the process by enabling ONUs to perform local traffic analysis and transmit only model updates to the OLT. This cooperative strategy guarantees rapid responsiveness to fluctuating traffic conditions. We show by extensive simulations spanning several traffic scenarios, including low, fluctuating, and high traffic load conditions, that our proposed CSL-DBA achieves at least 99% traffic prediction accuracy, with minimal inference latency and scalable learning performance, and it reduces communication overhead by approximately 60% compared to traditional federated learning approaches, making it a strong candidate for next-generation 6G-grade TDM-PON systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

23 pages, 9229 KiB  
Article
Magnetopause Boundary Detection Based on a Deep Image Prior Model Using Simulated Lobster-Eye Soft X-Ray Images
by Fei Wei, Zhihui Lyu, Songwu Peng, Rongcong Wang and Tianran Sun
Remote Sens. 2025, 17(14), 2348; https://doi.org/10.3390/rs17142348 - 9 Jul 2025
Viewed by 178
Abstract
This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of [...] Read more.
This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of the magnetosphere based on the Solar Wind Charge Exchange (SWCX) mechanism. However, several factors are expected to hinder future in-orbit observations, including the intrinsically low signal-to-noise ratio (SNR) of soft-X-ray emission, pronounced vignetting, and the non-uniform effective-area distribution of lobster-eye optics. These limitations could severely constrain the accurate interpretation of magnetospheric structures—especially the magnetopause boundary. To address these challenges, a boundary detection approach is developed that combines image calibration with denoising based on deep image prior (DIP). The method begins with calibration procedures to correct for vignetting and effective area variations in the SXI images, thereby restoring the accurate brightness distribution and improving spatial uniformity. Subsequently, a DIP-based denoising technique is introduced, which leverages the structural prior inherent in convolutional neural networks to suppress high-frequency noise without pretraining. This enhances the continuity and recognizability of boundary structures within the image. Experiments use ideal magnetospheric images generated from magnetohydrodynamic (MHD) simulations as reference data. The results demonstrate that the proposed method significantly improves the accuracy of magnetopause boundary identification under medium and high solar wind number density conditions (N = 10–20 cm−3). The extracted boundary curves consistently achieve a normalized mean squared error (NMSE) below 0.05 compared to the reference models. Additionally, the DIP-processed images show notable improvements in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), indicating enhanced image quality and structural fidelity. This method provides adequate technical support for the precise extraction of magnetopause boundary structures in soft X-ray observations and holds substantial scientific and practical value. Full article
Show Figures

Figure 1

30 pages, 9360 KiB  
Article
Dynamic Positioning and Optimization of Magnetic Target Based on Binocular Vision
by Jing Li, Yang Wang, Ligang Qu, Guangming Lv and Zhenyu Cao
Machines 2025, 13(7), 592; https://doi.org/10.3390/machines13070592 - 8 Jul 2025
Viewed by 136
Abstract
Aiming at the problems of visual occlusion, reduced positioning accuracy and pose loss in the dynamic scanning process of aviation large components, this paper proposes a binocular vision dynamic positioning method based on magnetic target. This method detects the spatial coordinates of the [...] Read more.
Aiming at the problems of visual occlusion, reduced positioning accuracy and pose loss in the dynamic scanning process of aviation large components, this paper proposes a binocular vision dynamic positioning method based on magnetic target. This method detects the spatial coordinates of the magnetic target in real time through the binocular camera, extracts the target center to construct a unified reference system of the measurement platform, and uses MATLAB simulation to analyze the influence of different target layouts on the scanning stability and positioning accuracy. On this basis, a dual-objective optimization model with the objectives of ‘minimizing the number of targets’ and ‘spatial distribution uniformity’ is established, and Monte Carlo simulation is used to evaluate the robustness under Gaussian noise and random frame loss interference. The experimental results on the C-Track optical tracking platform show that the optimized magnetic target layout reduces the rotation error of the dynamic scanning from 0.055° to 0.035°, the translation error from 0.31 mm to 0.162 mm, and the scanning efficiency is increased by 33%, which significantly improves the positioning accuracy and tracking stability of the system under complex working conditions. This method provides an effective solution for high-precision dynamic measurement of aviation large components. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 7140 KiB  
Article
Preparation of Carbon Fiber Electrodes Modified with Silver Nanoparticles by Electroplating Method
by Yuhang Wang, Rui Li, Tianyuan Hou, Zhenming Piao, Yanxin Lv, Changsheng Liu and Yi Xin
Materials 2025, 18(13), 3201; https://doi.org/10.3390/ma18133201 - 7 Jul 2025
Viewed by 277
Abstract
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare [...] Read more.
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare a CF electric field sensor. The surface morphology of the as-prepared AgNP-CF electric field sensor was characterized via optical microscopy, scanning electron microscopy, XPS, and energy-dispersive spectroscopy, and its impedance, polarization drift, self-noise, and temperature drift values were determined. Results show that the surface modification of the AgNP-CF electric field sensor is uniform, and its specific surface area is considerably increased. The electrode potential drift, characteristic impedance, self-noise, and temperature drift are 52.1 µV/24 h, 3.6 Ω, 2.993 nV/√Hz@1 Hz, and less than 70 µV/°C, respectively. Additionally, the AgNP-CF electric field sensor demonstrates low polarization and high stability. In field and simulated ocean tests, the AgNP-CF electrode exhibits excellent performance in the field and underwater environments, which renders it promising for the measurement of the ocean and geoelectric fields owing to its advantages, such as low noise and high stability. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

7 pages, 837 KiB  
Communication
Dielectric Catenary Metasurface for Broadband and High-Efficiency Anomalous Reflection
by Xinjian Lu, Wenxin Li, Guiyong Chen, Bo Liu, Xin Xie, Zhongming Zang, Kuo Hai and Zhu Li
Photonics 2025, 12(7), 684; https://doi.org/10.3390/photonics12070684 - 7 Jul 2025
Viewed by 180
Abstract
This paper proposes a broadband and high-efficiency anomalous reflection device based on a dielectric catenary metasurface, addressing the bottleneck problems of low efficiency and narrow bandwidth in traditional discrete metasurfaces. By designing a silicon-based equal-strength catenary structure, the efficient control of circularly polarized [...] Read more.
This paper proposes a broadband and high-efficiency anomalous reflection device based on a dielectric catenary metasurface, addressing the bottleneck problems of low efficiency and narrow bandwidth in traditional discrete metasurfaces. By designing a silicon-based equal-strength catenary structure, the efficient control of circularly polarized light beams within a wide angular range in the infrared band has been achieved. Simulation results show that the designed metasurface exhibits excellent beam steering performance when the deflection angle reaches 65°. Furthermore, to characterize the diffraction efficiency of the metasurface within a large angular range, the results indicate that under oblique incidence (0–60°), the diffraction efficiency of the ±1st order exceeds 80%, and the undesired higher-order diffractions are significantly suppressed. This ultrahigh working efficiency is attributed to the nearly perfect polarization conversion and continuous phase profile of the dielectric catenary structure. By combining catenary optics with the low-loss properties of the dielectric material, this design provides a new solution for the design of efficient, broadband, and wide-angle planar optical devices. Full article
Show Figures

Figure 1

Back to TopTop