Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations
Abstract
1. Introduction
2. Data
2.1. CMIP6 Climate Models
Model | Resolution | Variables |
---|---|---|
CSIRO-ARCCSS, ACCESS-CM2 [28] | 1.25° × 1.875°, (144 × 192) | AOD, CF |
CSIRO-ARCCSS, ACCESS-ESM1-5 [29] | 1.25° × 1.875°, (144 × 192) | AOD, CF |
AWI, CM-1-1-MR [30] | 0.9375° × 0.9375°, (192 × 384) | CF, LWP 1 |
AWI, ESM-1-1-LR [31] | 1.875° × 1.875°, (96 × 192) | AOD, CF, LWP 1 |
AWI, ESM-1-REcoM [32] | 1.875° × 1.875°, (96 × 192) | AOD, CF, LWP 1 |
BCC, CSM2-MR [33] | 1.125° × 1.125°, (160 × 320) | CF, LWP 1 |
BCC, ESM1 [34] | 2.8125° × 2.8125°, (64 × 128) | AOD, CF, LWP 1 |
CAMS, CSM 1-0 [35] | 1.125° × 1.125°, (160 × 320) | CF, LWP 1 |
CAS, ESM2-0 [36] | 1.40625° × 1.40625°, (128 × 256) | CF, LWP 1 |
NCAR, CESM2 [37] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP |
NCAR, CESM2-WACCM [37] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP |
NCAR, CESM2-FV2 [37] | 1.875° × 2.5°, (96 × 144) | AOD, CF, LWP |
NCAR, CESM2-WACCM-FV2 [37] | 1.875° × 2.5°, (96 × 144) | AOD, CF, LWP |
THU Department of Earth System Science China, CIESM [38] | 0.9375° × 1.25°, (192 × 288) | CF, LWP 1 |
CMCC, CM2-HR4 [39] | 0.9375° × 1.25°, (192 × 288) | CF, LWP 1 |
CMCC, CM2-SR5 [39] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP 1 |
CMCC, ESM2 [39] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP 1 |
CCCMa, CanESM5 [40] | 2.8125° × 2.8125°, (64 × 128) | AOD, CF, LWP |
CCCMa, CanESM5-1 [40] | 2.8125° × 2.8125°, (64 × 128) | AOD, CF, LWP |
E3SM-Project, E3SM-1-0 [41] | 1° × 1°, (180 × 360) | AOD, CF, LWP 1 |
E3SM-Project, E3SM-1-1 [41] | 1° × 1°, (180 × 360) | AOD, CF, LWP 1 |
E3SM-Project, E3SM-1-1-ECA [41] | 1° × 1°, (180 × 360) | AOD, CF, LWP 1 |
E3SM-Project, E3SM-2-0 [41] | 1° × 1°, (180 × 360) | AOD, CF, LWP 1 |
EC-Earth3, EC-Earth3 [42] | 0.703125° × 0.703125°, (256 × 512) | AOD, CF, LWP 1 |
EC-Earth3, EC-Earth3-AerChem [42] | 0.703125° × 0.703125°, (256 × 512) | AOD, CF, LWP |
EC-Earth3, EC-Earth3-CC [42] | 0.703125° × 0.703125°, (256 × 512) | CF, LWP 1 |
EC-Earth3, EC-Earth3-Veg [42] | 0.703125° × 0.703125°, (256 × 512) | AOD, CF, LWP 1 |
EC-Earth3, EC-Earth3-Veg-LR [42] | 1.125° × 1.125°, (160 × 320) | CF, LWP |
CAS, FGOALS-f3-L [43] | 1° × 1.25°, (180 × 288) | CF, LWP 1 |
CAS, FGOALS-g3 [44] | 2.25° × 2°, (80 × 180) | CF, LWP 1 |
FIO-QNLM, FIO-ESM-2-0 [45] | 0.9375° × 1.25°, (192 × 288) | CF, LWP 1 |
GFDL, CM4 [46] | 1° × 1.25°, (180 × 288) | AOD |
GFDL, ESM4 [47] | 1° × 1.25°, (180 × 288) | AOD, CF, LWP |
GISS, E2-1-G [48] | 2° × 2.5°, (90 × 144) | CF, LWP 1 |
GISS, E2-1-H [48] | 2° × 2.5°, (90 × 144) | CF, LWP 1 |
GISS, E2-2-G [49] | 2° × 2.5°, (90 × 144) | CF, LWP 1 |
GISS, E2-2-H [48] | 2° × 2.5°, (90 × 144) | CF, LWP 1 |
GISS, E3-G [48] | 1° × 1.25°, (180 × 288) | CF |
CCCR, IITM-ESM [50] | ~1.915° × 1.875°, (94 × 192) | CF, LWP 1 |
INM, CM4-8 [51] | 1.5° × 2°, (120 × 180) | AOD, CF, LWP |
INM, CM5-0 [52] | 1.5° × 2°, (120 × 180) | AOD, CF, LWP |
IPSL, CM5A2-INCA [53] | ~1.259° × 2.5°, (143 × 144) | LWP 1 |
IPSL, CM6A-LR [53] | ~1.259° × 2.5°, (143 × 144) | AOD, CF, LWP |
IPSL, CM6A-LR-INCA [53] | ~1.259° × 2.5°, (143 × 144) | AOD, CF, LWP |
NIMS-KMA, KACE-1-0-G [54] | 1.25° × 1.875°, (144 × 192) | AOD, CF, LWP 1 |
KIOST, ESM [55] | 1.875° × 1.875°, (96 × 192) | CF, LWP 1 |
MIROC6 [56] | 1.40625° × 1.40625°, (128 × 256) | AOD, CF, LWP 1 |
MPI, ESM1.2-HAM [57] | 1.875° × 1.875°, (96 × 192) | AOD, CF, LWP |
MPI, ESM1.2-HR [58] | 0.9375° × 0.9375°, (192 × 384) | AOD, CF, LWP 1 |
MPI, ESM1.2-LR [57] | 1.875° × 1.875°, (96 × 192) | AOD, CF, LWP 1 |
MRI, ESM2-0 [59] | 1.125° × 1.125°, (160 × 320) | AOD, CF, LWP 1 |
NUIST, NESM3 [60] | 1.875° × 1.875°, (96 × 192) | CF, LWP 1 |
NCC, NorESM2-LM [61] | 1.875° × 2.5°, (96 × 144) | AOD, CF, LWP |
NCC, NorESM2-MM [61] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP |
SNU, SAM0-UNICON [62] | 0.9375° × 1.25°, (192 × 288) | CF, LWP 1 |
AS-RCEC, TaiESM [63] | 0.9375° × 1.25°, (192 × 288) | AOD, CF, LWP |
2.2. Satellite Data
2.2.1. MODIS Data
2.2.2. AMSR-E Data
3. Methodology
4. Comparisons of CMIP6 Models’ Simulations and Satellite Observations
4.1. Multi-Year Averages of AOD, CF, and LWP
4.2. Latitude Profiles of AOD, CF, and LWP
4.3. CF–AOD Relationship
5. Quantitative Assessments of CMIP6 Models’ Performances
5.1. Performance of the CMIP6 Models in Terms of Spatial Averaging
5.2. Statistical Evaluation of Model Performance
5.3. The Scoring System
6. Conclusions
7. Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosenfeld, D. Aerosols, Clouds, and Climate. Science 2006, 312, 1323–1324. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (Ed.) Anthropogenic and Natural Radiative Forcing. In Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; pp. 659–740. [Google Scholar]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and Absorbing Aerosols in the Climate System. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Remer, L.; Hirsch, E. Review: Cloud Invigoration by Aerosols—Coupling between Microphysics and Dynamics. Atmos. Res. 2014, 140–141, 38–60. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative Forcing and Climate Response. J. Geophys. Res. Atmos. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.W.; Siddall, M. Climate Change and Trace Gases. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 1925–1954. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving Our Fundamental Understanding of the Role of Aerosol−Cloud Interactions in the Climate System. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef]
- Proske, U.; Ferrachat, S.; Lohmann, U. Developing a Climatological Simplification of Aerosols to Enter the Cloud Microphysics of a Global Climate Model. Atmos. Chem. Phys. 2024, 24, 5907–5933. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Wu, L.; Zhai, C.; Schiro, K.A. Improvements in Cloud and Water Vapor Simulations Over the Tropical Oceans in CMIP6 Compared to CMIP5. Earth Space Sci. 2021, 8, e2020EA001520. [Google Scholar] [CrossRef]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 589–662. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Stephens, G.L.; L’ECuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary State of Precipitation in Global Models. J. Geophys. Res. Atmos. 2010, 115, 2010JD014532. [Google Scholar] [CrossRef]
- Golaz, J.; Horowitz, L.W.; Levy, H. Cloud Tuning in a Coupled Climate Model: Impact on 20th Century Warming. Geophys. Res. Lett. 2013, 40, 2246–2251. [Google Scholar] [CrossRef]
- Suzuki, K.; Stephens, G.L.; Lebsock, M.D. Aerosol Effect on the Warm Rain Formation Process: Satellite Observations and Modeling. J. Geophys. Res. Atmos. 2013, 118, 170–184. [Google Scholar] [CrossRef]
- Bony, S.; Dufresne, J. Marine Boundary Layer Clouds at the Heart of Tropical Cloud Feedback Uncertainties in Climate Models. Geophys. Res. Lett. 2005, 32, 2005GL023851. [Google Scholar] [CrossRef]
- Turner, D.D.; Clough, S.A.; Liljegren, J.C.; Clothiaux, E.E.; Cady-Pereira, K.E.; Gaustad, K.L. Retrieving Liquid Wat0er Path and Precipitable Water Vapor from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3680–3690. [Google Scholar] [CrossRef]
- Koren, I.; Martins, J.V.; Remer, L.A.; Afargan, H. Smoke Invigoration Versus Inhibition of Clouds over the Amazon. Science 2008, 321, 946–949. [Google Scholar] [CrossRef]
- Huang, J.; Lin, B.; Minnis, P.; Wang, T.; Wang, X.; Hu, Y.; Yi, Y.; Ayers, J.K. Satellite-based Assessment of Possible Dust Aerosols Semi-direct Effect on Cloud Water Path Over East Asia. Geophys. Res. Lett. 2006, 33, 2006GL026561. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Annex II: Glossary (Table AII.5). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 2247–2258. [Google Scholar] [CrossRef]
- Wang, C.; Soden, B.J.; Yang, W.; Vecchi, G.A. Compensation Between Cloud Feedback and Aerosol-Cloud Interaction in CMIP6 Models. Geophys. Res. Lett. 2021, 48, e2020GL091024. [Google Scholar] [CrossRef]
- Chen, G.; Wang, W.; Bao, Q.; Li, J. Evaluation of Simulated Cloud Diurnal Variation in CMIP6 Climate Models. J. Geophys. Res. Atmos. 2022, 127, e2021JD036422. [Google Scholar] [CrossRef]
- Zhao, A.; Ryder, C.L.; Wilcox, L.J. How Well Do the CMIP6 Models Simulate dust Aerosols? Atmos. Chem. Phys. 2022, 22, 2095–2119. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’fArrell, S.; Sullivan, A.; Bodman, R.; Law, R.; Harman, I.; Srbinovsky, J.; Rashid, H.A.; et al. Configuration and Spin-up of ACCESS-CM2, the New Generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 225–251. [Google Scholar] [CrossRef]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.-P.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 193–214. [Google Scholar] [CrossRef]
- Sidorenko, D.; Rackow, T.; Jung, T.; Semmler, T.; Barbi, D.; Danilov, S.; Dethloff, K.; Dorn, W.; Fieg, K.; Goessling, H.F.; et al. Towards Multi-Resolution Global Climate Modeling with ECHAM6–FESOM. Part I: Model Formulation and Mean Climate. Clim. Dyn. 2014, 44, 757–780. [Google Scholar] [CrossRef]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Danek, C.; Gürses, Ö.; Gierz, P.; Andrés-Martínez, M.; Hauck, J. AWI AWI-ESM1REcoM Model Output Prepared for CMIP6 ScenarioMIP ssp245, Version 20200212; Earth System Grid Federation, 2023. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, F.; Zhang, J.; Jie, W.; Zhang, Y.; Wu, F.; Li, L.; Yan, J.; Liu, X.; Lu, X.; et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): Model Description and Evaluation of Aerosol Simulations. Geosci. Model Dev. 2020, 13, 977–1005. [Google Scholar] [CrossRef]
- Rong, X.; Li, J.; Chen, H.; Xin, Y.; Su, J.; Hua, L.; Zhou, T.; Qi, Y.; Zhang, Z.; Zhang, G.; et al. The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. J. Meteorol. Res. 2018, 32, 839–861. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. WCRP CMIP6: Chinese Academy of Sciences (CAS) FGOALS-g3 Model Output for the "Hist-GHG" Experiment. 2021. Available online: https://catalogue.ceda.ac.uk/uuid/0f392b23d8934abc86c005feb15240f1 (accessed on 12 July 2025).
- Danabasoglu, G.; Lamarque, J.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001916. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, X.; Liang, Y.; Qin, Y.; Xu, S.; Huang, W.; Xu, F.; Liu, L.; Wang, Y.; Peng, Y.; et al. Community Integrated Earth System Model (CIESM): Description and Evaluation. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002036. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model Version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Golaz, J.; Caldwell, P.M.; Van Roekel, L.P.; Petersen, M.R.; Tang, Q.; Wolfe, J.D.; Abeshu, G.; Anantharaj, V.; Asay-Davis, X.S.; Bader, D.C.; et al. The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. J. Adv. Model. Earth Syst. 2019, 11, 2089–2129. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Bernardello, R.; Boussetta, S.; Caron, L.-P.; Carver, G.; et al. The EC-Earth3 Earth System Model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- He, B.; Yu, Y.; Bao, Q.; Lin, P.; Liu, H.; Li, J.; Wang, L.; Liu, Y.; Wu, G.; Chen, K.; et al. CAS FGOALS-f3-L Model Dataset Descriptions for CMIP6 DECK Experiments. Atmos. Ocean. Sci. Lett. 2020, 13, 582–588. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Tang, Y.; Lin, P.; Xie, J.; Song, M.; Dong, L.; Zhou, T.; Liu, L.; Wang, L.; et al. The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002012. [Google Scholar] [CrossRef]
- Bao, Y.; Song, Z.; Qiao, F. FIO-ESM Version 2.0: Model Description and Evaluation. J. Geophys. Res. Oceans 2020, 125, e2019JC016036. [Google Scholar] [CrossRef]
- Held, I.M.; Guo, H.; Adcroft, A.; Dunne, J.P.; Horowitz, L.W.; Krasting, J.; Shevliakova, E.; Winton, M.; Zhao, M.; Bushuk, M.; et al. Structure and Performance of GFDL’s CM4.0 Climate Model. J. Adv. Model. Earth Syst. 2019, 11, 3691–3727. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Kelley, M.; Schmidt, G.A.; Nazarenko, L.S.; Bauer, S.E.; Ruedy, R.; Russell, G.L.; Ackerman, A.S.; Aleinov, I.; Bauer, M.; Bleck, R.; et al. GISS-E2.1: Configurations and Climatology. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002025. [Google Scholar] [CrossRef]
- Rind, D.; Orbe, C.; Jonas, J.; Nazarenko, L.; Zhou, T.; Kelley, M.; Lacis, A.; Shindell, D.; Faluvegi, G.; Romanou, A.; et al. GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—Model Structure, Climatology, Variability, and Climate Sensitivity. J. Geophys. Res. Atmos. 2020, 125, e2019JD032204. [Google Scholar] [CrossRef]
- Swapna, P.; Krishnan, R.; Sandeep, N.; Prajeesh, A.G.; Ayantika, D.C.; Manmeet, S.; Vellore, R. Long-Term Climate Simulations Using the IITM Earth System Model (IITM-ESMv2) with Focus on the South Asian Monsoon. J. Adv. Model. Earth Syst. 2018, 10, 1127–1149. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G.; Shestakova, A.A.; et al. Simulation of the Modern Climate Using the INM-CM48 Climate Model. Russ. J. Numer. Anal. Math. Model. 2018, 33, 367–374. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G. Simulation of the Present-Day Climate with the Climate Model INMCM5. Clim. Dyn. 2017, 49, 3715–3734. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Sun, M.-A.; Kim, B.-H.; Moon, H.; Sung, H.M.; Kim, J.; Byun, Y.-H. Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia-Pacific J. Atmos. Sci. 2019, 56, 381–395. [Google Scholar] [CrossRef]
- Pak, G.; Noh, Y.; Lee, M.-I.; Yeh, S.-W.; Kim, D.; Kim, S.-Y.; Lee, J.-L.; Lee, H.J.; Hyun, S.-H.; Lee, K.-Y.; et al. Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics. Ocean Sci. J. 2021, 56, 18–45. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and Basic Evaluation of Simulated Mean State, Internal Variability, and Climate Sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; et al. Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. J. Meteorol. Soc. Jpn. Ser. II 2012, 90A, 233–258. [Google Scholar] [CrossRef]
- Cao, J.; Wang, B.; Yang, Y.-M.; Ma, L.; Li, J.; Sun, B.; Bao, Y.; He, J.; Zhou, X.; Wu, L. The NUIST Earth System Model (NESM) Version 3: Description and Preliminary Evaluation. Geosci. Model Dev. 2018, 11, 2975–2993. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and Key Climate Response of CMIP6 DECK, Historical, and Scenario Simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Park, S.; Shin, J. SNU SAM0-UNICON Model Output Prepared for CMIP6 CMIP, Version 20230720; World Data Center for Climate (WDCC): Hamburg, Germany, 2019. [Google Scholar] [CrossRef]
- Tsai, I.-C.; Lee, W.-L.; Hsu, H.-H. AS-RCEC TaiESM1.0 Model Output Prepared for CMIP6 AerChemMIP, Version 20220610; World Data Center for Climate (WDCC): Hamburg, Germany, 2020. [Google Scholar] [CrossRef]
- Barnes, W.; Pagano, T.; Salomonson, V. Prelaunch Characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples from Terra and Aqua. IEEE Trans. Geosci. Remote. Sens. 2016, 55, 502–525. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Calibration of Global MODIS Cloud Amount Using CALIOP Cloud Profiles. Atmos. Meas. Tech. 2020, 13, 4995–5012. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 Aerosol Products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “Merged” Data Sets, and Usage Recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Greenwald, T.J. A 2 Year Comparison of AMSR-E and MODIS Cloud Liquid Water Path Observations. Geophys. Res. Lett. 2009, 36, 2009GL040394. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Matrosov, S.; Baum, B. Ice Water Path–Optical Depth Relationships for Cirrus and Deep Stratiform Ice Cloud Layers. J. Appl. Meteorol. Clim. 2003, 42, 1369–1390. [Google Scholar] [CrossRef]
- Sengupta, M.; Clothiaux, E.E.; Ackerman, T.P.; Kato, S.; Min, Q. Importance of Accurate Liquid Water Path for Estimation of Solar Radiation in Warm Boundary Layer Clouds: An Observational Study. J. Clim. 2003, 16, 2997–3009. [Google Scholar] [CrossRef]
- Shupe, M.D.; Intrieri, J.M. Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle. J. Clim. 2004, 17, 616–628. [Google Scholar] [CrossRef]
- Nakajima, T.; King, M.D. Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory. J. Atmos. Sci. 1990, 47, 1878–1893. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Kato, S.; Marshak, A. Solar Zenith and Viewing Geometry-Dependent Errors in Satellite Retrieved Cloud Optical Thickness: Marine Stratocumulus Case. J. Geophys. Res. Atmos. 2009, 114, 2008JD010579. [Google Scholar] [CrossRef]
- Seethala, C.; Horváth, Á. Global Assessment of AMSR-E and MODIS Cloud Liquid Water Path Retrievals in Warm Oceanic Clouds. J. Geophys. Res. Atmos. 2010, 115, 2009JD012662. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Wood, R. The Effect of Solar Zenith Angle on MODIS Cloud Optical and Microphysical Retrievals Within Marine Liquid Water Clouds. Atmos. Chem. Phys. 2014, 14, 7291–7321. [Google Scholar] [CrossRef]
- Khanal, S.; Wang, Z. Uncertainties in MODIS-Based Cloud Liquid Water Path Retrievals at High Latitudes Due to Mixed-Phase Clouds and Cloud Top Height Inhomogeneity. J. Geophys. Res. Atmos. 2018, 123, 11154–11172. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Zhai, C.; Perun, V.S.; Del Genio, A.; Nazarenko, L.S.; Donner, L.J.; Horowitz, L.; Seman, C.; Cole, J.; et al. Evaluation of Cloud and Water Vapor Simulations in CMIP5 Climate Models Using NASA “A-Train” Satellite Observations. J. Geophys. Res. Atmos. 2012, 117, 2011JD017237. [Google Scholar] [CrossRef]
- Lauer, A.; Hamilton, K. Simulating Clouds with Global Climate Models: A Comparison of CMIP5 Results with CMIP3 and Satellite Data. J. Clim. 2013, 26, 3823–3845. [Google Scholar] [CrossRef]
- Wentz, F.J. A Well-calibrated Ocean Algorithm for Special Sensor Microwave/Imager. J. Geophys. Res. Ocean. 1997, 102, 8703–8718. [Google Scholar] [CrossRef]
- Wentz, F.; Meissner, T. AMSR-E/Aqua L2B Global Swath Ocean Products Derived from Wentz Algorithm, Version 2; NASA National Snow and Ice Data Center: Boulder, CO, USA, 2004. [Google Scholar] [CrossRef]
- Deeter, M.N.; Vivekanandan, J. New Dual-frequency Microwave Technique for Retrieving Liquid Water Path Over Land. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Douglass, A.R.; Prather, M.J.; Hall, T.M.; Strahan, S.E.; Rasch, P.J.; Sparling, L.C.; Coy, L.; Rodriguez, J.M. Choosing Meteorological Input for the Global Modeling Initiative Assessment of High-speed Aircraft. J. Geophys. Res. Atmos. 1999, 104, 27545–27564. [Google Scholar] [CrossRef]
- Ali, A.; Bilal, M.; Wang, Y.; Qiu, Z.; Nichol, J.E.; de Leeuw, G.; Ke, S.; Mhawish, A.; Almazroui, M.; Mazhar, U.; et al. Evaluation and Comparison of CMIP6 Models and MERRA-2 Reanalysis AOD Against Satellite Observations from 2000 to 2014 over China. Geosci. Front. 2022, 13, 101325. [Google Scholar] [CrossRef]
- Vignesh, P.P.; Jiang, J.H.; Kishore, P.; Su, H.; Smay, T.; Brighton, N.; Velicogna, I. Assessment of CMIP6 Cloud Fraction and Comparison with Satellite Observations. Earth Space Sci. 2020, 7, e2019EA000975. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef]
- Jin, S.; Ma, Y.; Li, H.; Liu, B.; Fan, R.; Zhang, M.; Lopatin, A.; Dubovik, O.; Hu, X.; Gong, W.; et al. Characterizing Aerosol Optical Properties and Direct Radiative Effects from the Perspective of Components: A Synergy Retrieval Study Based on Sun Photometer and Lidar in Central China. Geophys. Res. Lett. 2025, 52, e2024GL113448. [Google Scholar] [CrossRef]
- Wang, L.; Su, X.; Wang, Y.; Cao, M.; Lang, Q.; Li, H.; Sun, J.; Zhang, M.; Qin, W.; Li, L.; et al. Towards Long-Term, High-Accuracy, and Continuous Satellite Total and Fine-Mode Aerosol Records: Enhanced Land General Aerosol (e-LaGA) Retrieval Algorithm for VIIRS. ISPRS J. Photogramm. Remote Sens. 2024, 214, 261–281. [Google Scholar] [CrossRef]
- Wang, L.; Lang, Q.; Wang, Z.; Feng, L.; Zhang, M.; Qin, W. Quantifying and Mitigating Errors in Estimating Downward Surface Shortwave Radiation Caused by Cloud Mask Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance Metrics for Climate Models. J. Geophys. Res. Atmos. 2008, 113, 2007JD008972. [Google Scholar] [CrossRef]
Model | Global | Northern Hemisphere | Southern Hemisphere | |||
---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | |
AWI, ESM-1-1-LR | 0.741 | 27 | 0.777 | 23 | 0.686 | 27 |
AWI, ESM-1-REcoM | 0.732 | 29 | 0.770 | 25 | 0.677 | 28 |
BCC, ESM1 | 0.853 | 16 | 0.886 | 13 | 0.805 | 16 |
CESM2 | 0.917 | 5 | 0.921 | 4 | 0.901 | 3 |
CESM2-WACCM | 0.918 | 4 | 0.921 | 4 | 0.897 | 4 |
CESM2-FV2 | 0.898 | 7 | 0.906 | 8 | 0.875 | 5 |
CESM2-WACCM-FV2 | 0.891 | 9 | 0.898 | 10 | 0.861 | 10 |
CMCC, CM2-SR5 | 0.748 | 24 | 0.763 | 26 | 0.726 | 21 |
CMCC, ESM2 | 0.747 | 25 | 0.762 | 27 | 0.724 | 22 |
CanESM5 | 0.893 | 8 | 0.901 | 9 | 0.827 | 12 |
CanESM5-1 | 0.889 | 10 | 0.907 | 7 | 0.831 | 11 |
E3SM-1-0 | 0.876 | 13 | 0.883 | 14 | 0.868 | 7 |
E3SM-1-1 | 0.885 | 11 | 0.898 | 10 | 0.866 | 8 |
E3SM-1-1-ECA | 0.875 | 14 | 0.887 | 12 | 0.863 | 9 |
E3SM-2-0 | 0.889 | 10 | 0.908 | 6 | 0.870 | 6 |
EC-Earth3 | 0.773 | 21 | 0.811 | 19 | 0.708 | 25 |
EC-Earth3-AerChem | 0.791 | 18 | 0.835 | 16 | 0.720 | 23 |
EC-Earth3-Veg | 0.773 | 21 | 0.810 | 20 | 0.710 | 24 |
GFDL, ESM4 | 0.867 | 15 | 0.890 | 11 | 0.811 | 15 |
INM, CM4-8 | 0.751 | 22 | 0.826 | 18 | 0.609 | 30 |
INM, CM5-0 | 0.749 | 23 | 0.828 | 17 | 0.601 | 31 |
IPSL, CM6A-LR | 0.778 | 20 | 0.756 | 28 | 0.797 | 17 |
IPSL, CM6A-LR-INCA | 0.882 | 12 | 0.855 | 15 | 0.909 | 1 |
KACE-1-0-G | 0.834 | 17 | 0.835 | 16 | 0.784 | 18 |
MIROC6 | 0.741 | 27 | 0.716 | 29 | 0.751 | 20 |
MPI, ESM1.2-HAM | 0.915 | 6 | 0.917 | 5 | 0.902 | 2 |
MPI, ESM1.2-HR | 0.733 | 28 | 0.776 | 24 | 0.668 | 29 |
MPI, ESM1.2-LR | 0.743 | 26 | 0.780 | 22 | 0.689 | 26 |
MRI, ESM2-0 | 0.931 | 1 | 0.928 | 3 | 0.902 | 2 |
NorESM2-LM | 0.919 | 3 | 0.931 | 2 | 0.820 | 14 |
NorESM2-MM | 0.923 | 2 | 0.941 | 1 | 0.825 | 13 |
TaiESM | 0.790 | 19 | 0.789 | 21 | 0.767 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Griswold, J.D.S. Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations. Remote Sens. 2025, 17, 2439. https://doi.org/10.3390/rs17142439
Liang J, Griswold JDS. Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations. Remote Sensing. 2025; 17(14):2439. https://doi.org/10.3390/rs17142439
Chicago/Turabian StyleLiang, Jiakun, and Jennifer D. Small Griswold. 2025. "Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations" Remote Sensing 17, no. 14: 2439. https://doi.org/10.3390/rs17142439
APA StyleLiang, J., & Griswold, J. D. S. (2025). Assessment of Aerosol Optical Depth, Cloud Fraction, and Liquid Water Path in CMIP6 Models Using Satellite Observations. Remote Sensing, 17(14), 2439. https://doi.org/10.3390/rs17142439