Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = opportunistic mobile social networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3660 KiB  
Article
Context-Aware Trust Prediction for Optimal Routing in Opportunistic IoT Systems
by Abdulkadir Abdulahi Hasan, Xianwen Fang, Sohaib Latif and Adeel Iqbal
Sensors 2025, 25(12), 3672; https://doi.org/10.3390/s25123672 - 12 Jun 2025
Viewed by 565
Abstract
The Social Opportunistic Internet of Things (SO-IoT) is a rapidly emerging paradigm that enables mobile, ad-hoc device communication based on both physical and social interactions. In such networks, routing decisions heavily depend on the selection of intermediate nodes to ensure secure and efficient [...] Read more.
The Social Opportunistic Internet of Things (SO-IoT) is a rapidly emerging paradigm that enables mobile, ad-hoc device communication based on both physical and social interactions. In such networks, routing decisions heavily depend on the selection of intermediate nodes to ensure secure and efficient data dissemination. Traditional approaches relying solely on reliability or social interest fail to capture the multifaceted trustworthiness of nodes in dynamic SO-IoT environments. This paper proposes a trust-based route optimization framework that integrates social interest and behavioral reliability using Bayesian inference and Jeffrey’s conditioning. A composite trust level is computed for each intermediate node to determine its suitability for data forwarding. To validate the framework, we conduct a two-phase simulation-based analysis: a scenario-driven evaluation that demonstrates the model’s behavior in controlled settings, and a large-scale NS-3-based simulation comparing our method with benchmark routing schemes, including random, greedy, and AI-based protocols. Results confirm that our proposed model achieves up to an 88.9% delivery ratio with minimal energy consumption and the highest trust accuracy (86.5%), demonstrating its robustness and scalability in real-world-inspired IoT environments. Full article
(This article belongs to the Special Issue Data Engineering in the Internet of Things—Second Edition)
Show Figures

Figure 1

28 pages, 8697 KiB  
Article
Efficient Privacy-Aware Forwarding for Enhanced Communication Privacy in Opportunistic Mobile Social Networks
by Azizah Assiri and Hassen Sallay
Future Internet 2024, 16(2), 48; https://doi.org/10.3390/fi16020048 - 31 Jan 2024
Cited by 2 | Viewed by 2084
Abstract
Opportunistic mobile social networks (OMSNs) have become increasingly popular in recent years due to the rise of social media and smartphones. However, message forwarding and sharing social information through intermediary nodes on OMSNs raises privacy concerns as personal data and activities become more [...] Read more.
Opportunistic mobile social networks (OMSNs) have become increasingly popular in recent years due to the rise of social media and smartphones. However, message forwarding and sharing social information through intermediary nodes on OMSNs raises privacy concerns as personal data and activities become more exposed. Therefore, maintaining privacy without limiting efficient social interaction is a challenging task. This paper addresses this specific problem of safeguarding user privacy during message forwarding by integrating a privacy layer on the state-of-the-art OMSN routing decision models that empowers users to control their message dissemination. Mainly, we present three user-centric privacy-aware forwarding modes guiding the selection of the next hop in the forwarding path based on social metrics such as common friends and exchanged messages between OMSN nodes. More specifically, we define different social relationship strengths approximating real-world scenarios (familiar, weak tie, stranger) and trust thresholds to give users choices on trust levels for different social contexts and guide the routing decisions. We evaluate the privacy enhancement and network performance through extensive simulations using ONE simulator for several routing schemes (Epidemic, Prophet, and Spray and Wait) and different movement models (random way, bus, and working day). We demonstrate that our modes can enhance privacy by up to 45% in various network scenarios, as measured by the reduction in the likelihood of unintended message propagation, while keeping the message-delivery process effective and efficient. Full article
(This article belongs to the Special Issue Information and Future Internet Security, Trust and Privacy II)
Show Figures

Figure 1

32 pages, 5429 KiB  
Article
Efficient Data Transfer by Evaluating Closeness Centrality for Dynamic Social Complex Network-Inspired Routing
by Manuel A. López-Rourich and Francisco J. Rodríguez-Pérez
Appl. Sci. 2023, 13(19), 10766; https://doi.org/10.3390/app131910766 - 27 Sep 2023
Cited by 3 | Viewed by 1712
Abstract
Social Complex Networks in communication networks are pivotal for comprehending the impact of human-like interactions on information flow and communication efficiency. These networks replicate social behavior patterns in the digital realm by modeling device interactions, considering friendship, influence, and information-sharing frequency. A key [...] Read more.
Social Complex Networks in communication networks are pivotal for comprehending the impact of human-like interactions on information flow and communication efficiency. These networks replicate social behavior patterns in the digital realm by modeling device interactions, considering friendship, influence, and information-sharing frequency. A key challenge in communication networks is their dynamic topologies, driven by dynamic user behaviors, fluctuating traffic patterns, and scalability needs. Analyzing these changes is essential for optimizing routing and enhancing the user experience. This paper introduces a network model tailored for Opportunistic Networks, characterized by intermittent device connections and disconnections, resulting in sporadic connectivity. The model analyzes node behavior, extracts vital properties, and ranks nodes by influence. Furthermore, it explores the evolution of node connections over time, gaining insights into changing roles and their impact on data exchange. Real-world datasets validate the model’s effectiveness. Applying it enables the development of refined routing protocols based on dynamic influence rankings. This approach fosters more efficient, adaptive communication systems that dynamically respond to evolving network conditions and user behaviors. Full article
(This article belongs to the Special Issue Artificial Intelligence in Complex Networks)
Show Figures

Figure 1

16 pages, 1783 KiB  
Article
Improving Delivery Probability in Mobile Opportunistic Networks with Social-Based Routing
by Manuel Jesús-Azabal, José García-Alonso, Vasco N. G. J. Soares and Jaime Galán-Jiménez
Electronics 2022, 11(13), 2084; https://doi.org/10.3390/electronics11132084 - 2 Jul 2022
Cited by 12 | Viewed by 2968
Abstract
There are contexts where TCP/IP is not suitable for performing data transmission due to long delays, timeouts, network partitioning, and interruptions. In these scenarios, mobile opportunistic networks (MONs) are a valid option, providing asynchronous transmissions in dynamic topologies. These architectures exploit physical encounters [...] Read more.
There are contexts where TCP/IP is not suitable for performing data transmission due to long delays, timeouts, network partitioning, and interruptions. In these scenarios, mobile opportunistic networks (MONs) are a valid option, providing asynchronous transmissions in dynamic topologies. These architectures exploit physical encounters and persistent storage to communicate nodes that lack a continuous end-to-end path. In recent years, many routing algorithms have been based on social interactions. Smartphones and wearables are in vogue, applying social information to optimize paths between nodes. This work proposes Refine Social Broadcast (RSB), a social routing algorithm. RSB uses social behavior and node interests to refine the message broadcast in the network, improving the delivery probability while reducing redundant data duplication. The proposal combines the identification of the most influential nodes to carry the information toward the destination with interest-based routing. To evaluate the performance, RSB is applied to a simulated case of use based on a realistic loneliness detection methodology in elderly adults. The obtained delivery probability, latency, overhead, and hops are compared with the most popular social-based routers, namely, EpSoc, SimBet, and BubbleRap. RSB manifests a successful delivery probability, exceeding the second-best result (SimBet) by 17% and reducing the highest overhead (EpSoc) by 97%. Full article
(This article belongs to the Special Issue Emerging Trends, Issues and Challenges in Smart Cities)
Show Figures

Figure 1

23 pages, 4032 KiB  
Article
Improving Traffic Load Distribution Fairness in Mobile Social Networks
by Bambang Soelistijanto and Vittalis Ayu
Algorithms 2022, 15(7), 222; https://doi.org/10.3390/a15070222 - 22 Jun 2022
Cited by 1 | Viewed by 2511
Abstract
Mobile social networks suffer from an unbalanced traffic load distribution due to the heterogeneity in mobility of nodes (humans) in the network. A few nodes in these networks are highly mobile, and the proposed social-based routing algorithms are likely to choose these most [...] Read more.
Mobile social networks suffer from an unbalanced traffic load distribution due to the heterogeneity in mobility of nodes (humans) in the network. A few nodes in these networks are highly mobile, and the proposed social-based routing algorithms are likely to choose these most “social” nodes as the best message relays. Finally, this could lead to inequitable traffic load distribution and resource utilisation, such as faster battery drain and/or storage consumption of the most (socially) popular nodes. We propose a framework called Traffic Load Distribution Aware (TraLDA) to improve traffic load balancing across network nodes. We present a novel method for calculating node popularity which takes into account both node inherent and social-relations popularity. The former is purely determined by the node’s sociability level in the network, and in TraLDA is computed using the Kalman prediction which considers the node’s periodicity behaviour. However, the latter takes the benefit of interactions with more popular neighbours (acquaintances) to boost the popularity of lower (social) level nodes. Using extensive simulations in the Opportunistic Network Environment (ONE) driven by real human mobility scenarios, we show that our proposed strategy enhances the traffic load distribution fairness of the classical, yet popular social-aware routing algorithms BubbleRap and SimBet without negatively impacting the overall delivery performance. Full article
(This article belongs to the Special Issue Algorithms for Communication Networks)
Show Figures

Figure 1

27 pages, 4891 KiB  
Article
Node Screening Method Based on Federated Learning with IoT in Opportunistic Social Networks
by Yedong Shen, Fangfang Gou and Jia Wu
Mathematics 2022, 10(10), 1669; https://doi.org/10.3390/math10101669 - 13 May 2022
Cited by 25 | Viewed by 3330
Abstract
With the advent of the 5G era, the number of Internet of Things (IoT) devices has surged, and the population’s demand for information and bandwidth is increasing. The mobile device networks in IoT can be regarded as independent “social nodes”, and a large [...] Read more.
With the advent of the 5G era, the number of Internet of Things (IoT) devices has surged, and the population’s demand for information and bandwidth is increasing. The mobile device networks in IoT can be regarded as independent “social nodes”, and a large number of social nodes are combined to form a new “opportunistic social network”. In this network, a large amount of data will be transmitted and the efficiency of data transmission is low. At the same time, the existence of “malicious nodes” in the opportunistic social network will cause problems of unstable data transmission and leakage of user privacy. In the information society, these problems will have a great impact on data transmission and data security; therefore, in order to solve the above problems, this paper first divides the nodes into “community divisions”, and then proposes a more effective node selection algorithm, i.e., the FL node selection algorithm based on Distributed Proximal Policy Optimization in IoT (FABD) algorithm, based on Federated Learning (FL). The algorithm is mainly divided into two processes: multi-threaded interaction and a global network update. The device node selection problem in federated learning is constructed as a Markov decision process. It takes into account the training quality and efficiency of heterogeneous nodes and optimizes it according to the distributed near-end strategy. At the same time, malicious nodes are screened to ensure the reliability of data, prevent data loss, and alleviate the problem of user privacy leakage. Through experimental simulation, compared with other algorithms, the FABD algorithm has a higher delivery rate and lower data transmission delay and significantly improves the reliability of data transmission. Full article
(This article belongs to the Special Issue Complex Network Modeling: Theory and Applications)
Show Figures

Figure 1

20 pages, 4811 KiB  
Article
Routing Algorithm Based on User Adaptive Data Transmission Scheme in Opportunistic Social Networks
by Yu Lu, Liu Chang, Jingwen Luo and Jia Wu
Electronics 2021, 10(10), 1138; https://doi.org/10.3390/electronics10101138 - 11 May 2021
Cited by 22 | Viewed by 2867
Abstract
With the rapid popularization of 5G communication and internet of things technologies, the amount of information has increased significantly in opportunistic social networks, and the types of messages have become more and more complex. More and more mobile devices join the network as [...] Read more.
With the rapid popularization of 5G communication and internet of things technologies, the amount of information has increased significantly in opportunistic social networks, and the types of messages have become more and more complex. More and more mobile devices join the network as nodes, making the network scale increase sharply, and the tremendous amount of datatransmission brings a more significant burden to the network. Traditional opportunistic social network routing algorithms lack effective message copy management and relay node selection methods, which will cause problems such as high network delay and insufficient cache space. Thus, we propose an opportunistic social network routing algorithm based on user-adaptive data transmission. The algorithm will combine the similarity factor, communication factor, and transmission factor of the nodes in the opportunistic social network and use information entropy theory to adaptively assign the weights of decision feature attributes in response to network changes. Also, edge nodes are effectively used, and the nodes are divided into multiple communities to reconstruct the community structure. The simulation results show that the algorithm demonstrates good performance in improving the information transmission’s success rate, reducing network delay, and caching overhead. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

23 pages, 2362 KiB  
Article
Opportunistic Network Algorithms for Internet Traffic Offloading in Music Festival Scenarios
by Aida-Ștefania Manole, Radu-Ioan Ciobanu, Ciprian Dobre and Raluca Purnichescu-Purtan
Sensors 2021, 21(10), 3315; https://doi.org/10.3390/s21103315 - 11 May 2021
Cited by 3 | Viewed by 2533
Abstract
Constant Internet connectivity has become a necessity in our lives. Hence, music festival organizers allocate part of their budget for temporary Wi-Fi equipment in order to sustain the high network traffic generated in such a small geographical area, but this naturally leads to [...] Read more.
Constant Internet connectivity has become a necessity in our lives. Hence, music festival organizers allocate part of their budget for temporary Wi-Fi equipment in order to sustain the high network traffic generated in such a small geographical area, but this naturally leads to high costs that need to be decreased. Thus, in this paper, we propose a solution that can help offload some of that traffic to an opportunistic network created with the attendees’ smartphones, therefore minimizing the costs of the temporary network infrastructure. Using a music festival-based mobility model that we propose and analyze, we introduce two routing algorithms which can enable end-to-end message delivery between participants. The key factors for high performance are social metrics and limiting the number of message copies at any given time. We show that the proposed solutions are able to offer high delivery rates and low delivery delays for various scenarios at a music festival. Full article
(This article belongs to the Special Issue Device to Device (D2D) Communication)
Show Figures

Figure 1

27 pages, 4801 KiB  
Article
An Adaptive Delay-Tolerant Routing Algorithm for Data Transmission in Opportunistic Social Networks
by Shupei Chen, Zhigang Chen, Jia Wu and Kanghuai Liu
Electronics 2020, 9(11), 1915; https://doi.org/10.3390/electronics9111915 - 13 Nov 2020
Cited by 4 | Viewed by 2192
Abstract
In opportunistic networks, the requirement of QoS (quality of service) poses several major challenges to wireless mobile devices with limited cache and energy. This implies that energy and cache space are two significant cornerstones for the structure of a routing algorithm. However, most [...] Read more.
In opportunistic networks, the requirement of QoS (quality of service) poses several major challenges to wireless mobile devices with limited cache and energy. This implies that energy and cache space are two significant cornerstones for the structure of a routing algorithm. However, most routing algorithms tackle the issue of limited network resources from the perspective of a deterministic approach, which lacks an adaptive data transmission mechanism. Meanwhile, these methods show a relatively low scalability because they are probably built up based on some special scenarios rather than general ones. To alleviate the problems, this paper proposes an adaptive delay-tolerant routing algorithm (DTCM) utilizing curve-trapezoid Mamdani fuzzy inference system (CMFI) for opportunistic social networks. DTCM evaluates both the remaining energy level and the remaining cache level of relay nodes (two-factor) in opportunistic networks and makes reasonable decisions on data transmission through CMFI. Different from the traditional fuzzy inference system, CMFI determines three levels of membership functions through the trichotomy law and evaluates the fuzzy mapping from two-factor fuzzy input to data transmission by curve-trapezoid membership functions. Our experimental results show that within the error interval of 0.05~0.1, DTCM improves delivery ratio by about 20% and decreases end-to-end delay by approximate 25% as compared with Epidemic, and the network overhead from DTCM is in the middle horizon. Full article
(This article belongs to the Special Issue Delay Tolerant Networks and Applications)
Show Figures

Figure 1

13 pages, 1768 KiB  
Article
Data Transmission and Management Based on Node Communication in Opportunistic Social Networks
by Yutong Xiao and Jia Wu
Symmetry 2020, 12(8), 1288; https://doi.org/10.3390/sym12081288 - 3 Aug 2020
Cited by 24 | Viewed by 3166
Abstract
Due to the rapid popularization of various short distance communication mobile devices, the use scenarios of opportunistic networks are increasing day by day. However, in opportunistic networks, because of the complexity of community structure, many methods lack of symmetry between application and theoretical [...] Read more.
Due to the rapid popularization of various short distance communication mobile devices, the use scenarios of opportunistic networks are increasing day by day. However, in opportunistic networks, because of the complexity of community structure, many methods lack of symmetry between application and theoretical research. Thus, the connection strength between nodes is different, and the degree of message diffusion is different. If the above factors cannot be accurately estimated and analyzed, and effective data forwarding and scheduling strategies cannot be formulated, the delivery ratio will be low, the delay will be relatively high, and the network overhead will be large. In light of improving symmetry problems in opportunistic networks, this paper establishes the message duplicate adaptive allocation and spray routing strategy (MDASRS) algorithm model, measures the connection strength between nodes through social pressure, and estimates the diffusion of current messages in the network through the probability of messages leaving the current node successfully, so as to develop the self-adaptive control replication transmission mode and achieve the effect of reducing the network burden and network overhead. This is done through experiments and comparison of social network algorithms, comparing the MDASRS with Epidemic, Spray and Wait, and EIMST algorithms. The experiment results showed that this method improves the cache utilization of nodes, reduces data transmission delay, and improves the network’s overall efficiency. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 1456 KiB  
Article
SRMM: A Social Relationship-Aware Human Mobility Model
by Dat Van Anh Duong and Seokhoon Yoon
Electronics 2020, 9(2), 221; https://doi.org/10.3390/electronics9020221 - 28 Jan 2020
Cited by 3 | Viewed by 3053
Abstract
Since human movement patterns are important for validating the performance of wireless networks, several traces of human movements in real life have been collected. However, collecting data about human movements is costly and time-consuming. Moreover, multiple traces are demanded to test various network [...] Read more.
Since human movement patterns are important for validating the performance of wireless networks, several traces of human movements in real life have been collected. However, collecting data about human movements is costly and time-consuming. Moreover, multiple traces are demanded to test various network scenarios. As a result, a lot of synthetic models of human movement have been proposed. Nevertheless, most of the proposed models were often based on random generation, and cannot produce realistic human movements. Although there have been a few models that tried to capture the characteristics of human movement in real life (e.g., flights, inter-contact times, and pause times following the truncated power-law distribution), those models still cannot reflect realistic human movements due to a lack of consideration for social context among people. To address those limitations, in this paper, we propose a novel human mobility model called the social relationship–aware human mobility model (SRMM), which considers social context as well as the characteristics of human movement. SRMM partitions people into social groups by exploiting information from a social graph. Then, the movements of people are determined by considering the distances to places and social relationships. The proposed model is first evaluated by using a synthetic map, and then a real road map is considered. The results of SRMM are compared with a real trace and other synthetic mobility models. The obtained results indicate that SRMM is consistently better at reflecting both human movement characteristics and social relationships. Full article
(This article belongs to the Special Issue Opportunistic Networks)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
MSSN: An Attribute-Aware Transmission Algorithm Exploiting Node Similarity for Opportunistic Social Networks
by Mei Guo and Min Xiao
Information 2019, 10(10), 299; https://doi.org/10.3390/info10100299 - 26 Sep 2019
Cited by 7 | Viewed by 3367
Abstract
Recently, with the development of big data and 5G networks, the number of intelligent mobile devices has increased dramatically, therefore the data that needs to be transmitted and processed in the networks has grown exponentially. It is difficult for the end-to-end communication mechanism [...] Read more.
Recently, with the development of big data and 5G networks, the number of intelligent mobile devices has increased dramatically, therefore the data that needs to be transmitted and processed in the networks has grown exponentially. It is difficult for the end-to-end communication mechanism proposed by traditional routing algorithms to implement the massive data transmission between mobile devices. Consequently, opportunistic social networks propose that the effective data transmission process could be implemented by selecting appropriate relay nodes. At present, most existing routing algorithms find suitable next-hop nodes by comparing the similarity degree between nodes. However, when evaluating the similarity between two mobile nodes, these routing algorithms either consider the mobility similarity between nodes, or only consider the social similarity between nodes. To improve the data dissemination environment, this paper proposes an effective data transmission strategy (MSSN) utilizing mobile and social similarities in opportunistic social networks. In our proposed strategy, we first calculate the mobile similarity between neighbor nodes and destination, set a mobile similarity threshold, and compute the social similarity between the nodes whose mobile similarity is greater than the threshold. The nodes with high mobile similarity degree to the destination node are the reliable relay nodes. After simulation experiments and comparison with other existing opportunistic social networks algorithms, the results show that the delivery ratio in the proposed algorithm is 0.80 on average, the average end-to-end delay is 23.1% lower than the FCNS algorithm (A fuzzy routing-forwarding algorithm exploiting comprehensive node similarity in opportunistic social networks), and the overhead on average is 14.9% lower than the Effective Information Transmission Based on Socialization Nodes (EIMST) algorithm. Full article
(This article belongs to the Special Issue Applications in Opportunistic Networking)
Show Figures

Figure 1

24 pages, 1585 KiB  
Article
An Adaptive Routing-Forwarding Control Scheme Based on an Intelligent Fuzzy Decision-Making System for Opportunistic Social Networks
by Yian Zhu, Lin Zhang, Haobin Shi, Kao-Shing Hwang, Xianchen Shi and Shuyan Luo
Symmetry 2019, 11(9), 1095; https://doi.org/10.3390/sym11091095 - 2 Sep 2019
Cited by 5 | Viewed by 2780
Abstract
Routing selection in opportunistic social networks is a complex and challenging issue due to intermittent communication connections among mobile devices and dynamic network topologies. The structural characteristics of opportunistic social networks indicate that the social attributes of mobile nodes play a significant role [...] Read more.
Routing selection in opportunistic social networks is a complex and challenging issue due to intermittent communication connections among mobile devices and dynamic network topologies. The structural characteristics of opportunistic social networks indicate that the social attributes of mobile nodes play a significant role on data dissemination. To this end, in this paper, we propose an adaptive routing-forwarding control scheme (FPRDM) based on an intelligent fuzzy decision-making system. On the foundation of the conception of fuzzy inference logic, two techniques are used in the proposed routing algorithm. Information fusion of social characteristics of message users and node identification are implemented based on the fuzzy recognition strategy, and the fuzzy decision-making mechanism is applied to control message replication and optimize data transmission. Simulation results demonstrate that, in the best case, the proposed scheme presents an average delivery ratio of 0.8, reduces the average end-to-end delay by nearly 45% as compared with the Epidemic routing protocol, and lowers the network overhead by about 75% as compared to the Spray and Wait routing algorithm. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Aid methods in fuzzy decision problems)
Show Figures

Figure 1

26 pages, 1640 KiB  
Article
FSF: Applying Machine Learning Techniques to Data Forwarding in Socially Selfish Opportunistic Networks
by Camilo Souza, Edjair Mota, Diogo Soares, Pietro Manzoni, Juan-Carlos Cano, Carlos T. Calafate and Enrique Hernández-Orallo
Sensors 2019, 19(10), 2374; https://doi.org/10.3390/s19102374 - 23 May 2019
Cited by 10 | Viewed by 3792
Abstract
Opportunistic networks are becoming a solution to provide communication support in areas with overloaded cellular networks, and in scenarios where a fixed infrastructure is not available, as in remote and developing regions. A critical issue, which still requires a satisfactory solution, is the [...] Read more.
Opportunistic networks are becoming a solution to provide communication support in areas with overloaded cellular networks, and in scenarios where a fixed infrastructure is not available, as in remote and developing regions. A critical issue, which still requires a satisfactory solution, is the design of an efficient data delivery solution trading off delivery efficiency, delay, and cost. To tackle this problem, most researchers have used either the network state or node mobility as a forwarding criterion. Solutions based on social behaviour have recently been considered as a promising alternative. Following the philosophy from this new category of protocols, in this work, we present our “FriendShip and Acquaintanceship Forwarding” (FSF) protocol, a routing protocol that makes its routing decisions considering the social ties between the nodes and both the selfishness and the device resources levels of the candidate node for message relaying. When a contact opportunity arises, FSF first classifies the social ties between the message destination and the candidate to relay. Then, by using logistic functions, FSF assesses the relay node selfishness to consider those cases in which the relay node is socially selfish. To consider those cases in which the relay node does not accept receipt of the message because its device has resource constraints at that moment, FSF looks at the resource levels of the relay node. By using the ONE simulator to carry out trace-driven simulation experiments, we find that, when accounting for selfishness on routing decisions, our FSF algorithm outperforms previously proposed schemes, by increasing the delivery ratio up to 20%, with the additional advantage of introducing a lower number of forwarding events. We also find that the chosen buffer management algorithm can become a critical element to improve network performance in scenarios with selfish nodes. Full article
Show Figures

Figure 1

11 pages, 869 KiB  
Article
FollowMe: One Social Importance-Based Collaborative Scheme in MONs
by Peiyan Yuan, Xiaoxiao Pang, Ping Liu and En Zhang
Future Internet 2019, 11(4), 98; https://doi.org/10.3390/fi11040098 - 17 Apr 2019
Cited by 1 | Viewed by 3634
Abstract
The performance of mobile opportunistic networks mainly relies on collaboration among nodes. Thus far, researchers have ignored the influence of node sociality on the incentive process, leading to poor network performance. Considering the fact that followers always imitate the behavior of superstars, this [...] Read more.
The performance of mobile opportunistic networks mainly relies on collaboration among nodes. Thus far, researchers have ignored the influence of node sociality on the incentive process, leading to poor network performance. Considering the fact that followers always imitate the behavior of superstars, this paper proposes FollowMe, which integrates the social importance of nodes with evolutionary game theory to improve the collaborative behavior of nodes. First, we use the prisoner’s dilemma model to establish the matrix of game gains between nodes. Second, we introduce the signal reference as a game rule between nodes. The number of nodes choosing different strategies in a game round is used to calculate the cumulative income of the node in combination with the probability formula. Finally, the Fermi function is used to determine whether the node updates the strategy. The simulation results show that, compared with the random update rule, the proposed strategy is more capable of promoting cooperative behavior between nodes to improve the delivery rate of data packets. Full article
(This article belongs to the Section Techno-Social Smart Systems)
Show Figures

Figure 1

Back to TopTop