Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,676)

Search Parameters:
Keywords = operating cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 (registering DOI) - 2 Aug 2025
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 (registering DOI) - 2 Aug 2025
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
30 pages, 1130 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 (registering DOI) - 2 Aug 2025
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 (registering DOI) - 2 Aug 2025
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
A Biased–Randomized Iterated Local Search with Round-Robin for the Periodic Vehicle Routing Problem
by Juan F. Gomez, Antonio R. Uguina, Javier Panadero and Angel A. Juan
Mathematics 2025, 13(15), 2488; https://doi.org/10.3390/math13152488 (registering DOI) - 2 Aug 2025
Abstract
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional [...] Read more.
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional features such as depot configurations, tight visitation frequency constraints, and heterogeneous fleets. In this paper, we present a two-phase biased–randomized algorithm that addresses these complexities. In the first phase, a round-robin assignment quickly generates feasible and promising solutions, ensuring each customer’s frequency requirement is met across the multi-day horizon. The second phase refines these assignments via an iterative search procedure, improving route efficiency and reducing total operational costs. Extensive experimentation on standard PVRP benchmarks shows that our approach is able to generate solutions of comparable quality to established state-of-the-art algorithms in relatively low computational times and stands out in many instances, making it a practical choice for real life multi-day vehicle routing applications. Full article
Show Figures

Figure 1

27 pages, 2496 KiB  
Article
A Context-Aware Tourism Recommender System Using a Hybrid Method Combining Deep Learning and Ontology-Based Knowledge
by Marco Flórez, Eduardo Carrillo, Francisco Mendes and José Carreño
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 194; https://doi.org/10.3390/jtaer20030194 (registering DOI) - 2 Aug 2025
Abstract
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and [...] Read more.
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and ontology-based semantic modeling. The proposed system delivers personalized recommendations—such as activities, accommodations, and ecological routes—by processing user preferences, geolocation data, and contextual features, including cost and popularity. The architecture combines a trained TensorFlow Lite model with a domain ontology enriched with GeoSPARQL for geospatial reasoning. All inference operations are conducted locally on Android devices, supported by SQLite for offline data storage, which ensures functionality in connectivity-restricted environments and preserves user privacy. Additionally, the system employs geofencing to trigger real-time environmental notifications when users approach ecologically sensitive zones, promoting responsible behavior and biodiversity awareness. By incorporating structured semantic knowledge with adaptive machine learning, the system enables low-latency, personalized, and conservation-oriented recommendations. This approach contributes to the sustainable management of natural reserves by aligning individual tourism experiences with ecological protection objectives, particularly in remote areas like the Santurbán paramo. Full article
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Vibratory Pile Driving in High Viscous Soil Layers: Numerical Analysis of Penetration Resistance and Prebored Hole of CEL Method
by Caihui Li, Changkai Qiu, Xuejin Liu, Junhao Wang and Xiaofei Jing
Buildings 2025, 15(15), 2729; https://doi.org/10.3390/buildings15152729 (registering DOI) - 2 Aug 2025
Abstract
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. [...] Read more.
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. This study addresses two critical mechanical challenges during vibratory pile driving in Fujian Province’s hydraulic engineering project: prolonged high-frequency driving durations, and severe U-shaped steel sheet pile head damage in high-viscosity stratified soils. Employing the Coupled Eulerian–Lagrangian (CEL) numerical method, a systematic investigation was conducted into the penetration resistance, stress distribution, and damage patterns during vibratory pile driving under varying conditions of cohesive soil layer thickness, predrilled hole spacing, and aperture dimensions. The correlation between pile stress and penetration depth was established, with the influence mechanisms of key factors on driving-induced damage in high-viscosity stratified strata under multi-factor coupling effects elucidated. Finally, the feasibility of predrilling techniques for resistance reduction was explored. This study applies the damage prediction model based on the CEL method to U-shaped sheet piles in high-viscosity stratified formations, solving the problem of mesh distortion in traditional finite element methods. The findings provide scientific guidance for steel sheet pile construction in high-viscosity stratified formations, offering significant implications for enhancing construction efficiency, ensuring operational safety, and reducing costs in such challenging geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 (registering DOI) - 1 Aug 2025
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

15 pages, 560 KiB  
Article
Exploring the Material Feasibility of a LiFePO4-Based Energy Storage System
by Caleb Scarlett and Vivek Utgikar
Energies 2025, 18(15), 4102; https://doi.org/10.3390/en18154102 (registering DOI) - 1 Aug 2025
Abstract
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a [...] Read more.
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a 50/50 mix of wind and solar power generation, is assumed to satisfy projected world electrical demand in 2050, incorporating the electrification of transportation. The battery electrical storage capacity needed to support this grid is estimated and translated into the required number of nominal 10 MWh LFP storage plants similar to the ones currently in operation. The total lithium required for the global storage system is determined from the number of nominal plants and the inventory of lithium in each plant. The energy required to refine this amount of lithium is accounted for in the estimation of the total lithium requirement. Comparison of the estimated lithium requirements with known global lithium resources indicates that a global storage system consisting only of LFP plants would require only around 12.3% of currently known lithium reserves in a high-economic-growth scenario. The overall cost for a global LFP-based grid-scale energy storage system is estimated to be approximately USD 17 trillion. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 (registering DOI) - 1 Aug 2025
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 (registering DOI) - 1 Aug 2025
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

Back to TopTop