Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,566)

Search Parameters:
Keywords = open dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 7422 KB  
Article
Adaptive–Predictive Lateral Web Movement Control Algorithm for Flexible Material Winding Systems
by Piotr Urbanek, Andrzej Fraczyk and Jacek Kucharski
Appl. Sci. 2025, 15(19), 10638; https://doi.org/10.3390/app151910638 - 1 Oct 2025
Abstract
Various industrial technologies require flexible material webs to undergo processes such as thermal treatment (e.g., drying), printing, or laminating. Such processes are usually performed within winding systems, where the web goes through a set of rolls, and the precision of the web movement [...] Read more.
Various industrial technologies require flexible material webs to undergo processes such as thermal treatment (e.g., drying), printing, or laminating. Such processes are usually performed within winding systems, where the web goes through a set of rolls, and the precision of the web movement determines the quality of the final product. Therefore, high accuracy in the control of both the longitudinal and lateral movement of the web is of paramount importance. Designing the proper control system requires insightful analysis of the technological setup and precise modeling of its dynamic properties. In this paper, the transfer function model of the roll-to-roll system with closed-loop web circulation has been developed based on the mathematical description of the open-loop system. It has been proven that the analyzed system can be efficiently represented by an integral block with negligible inertia. Having established this, several control algorithms have been analyzed, and, as a result, the dedicated adaptive–predictive control algorithm has been proposed. The developed solutions have been verified both by simulations and real experiments performed using the semi-industrial laboratory setup. The high control quality of the proposed algorithm (e.g., considerable reductions in overshoot and settling time compared to PI control), outperforming classical approaches, has been confirmed under various disturbances. Full article
Show Figures

Figure 1

15 pages, 4805 KB  
Article
Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands)
by Anne-Lise Montreuil, Sebastian Dan, Rik Houthuys and Toon Verwaest
J. Mar. Sci. Eng. 2025, 13(10), 1876; https://doi.org/10.3390/jmse13101876 - 30 Sep 2025
Abstract
Tidal inlets regulate the exchange of water and sediment between the open sea and adjacent basins. In many locations, engineering interventions combined with coastal protections and polders have intensified erosion and scouring. This study reports on a three-year monitoring program following the implementation [...] Read more.
Tidal inlets regulate the exchange of water and sediment between the open sea and adjacent basins. In many locations, engineering interventions combined with coastal protections and polders have intensified erosion and scouring. This study reports on a three-year monitoring program following the implementation of a Nature-based Solution (NbS) at a previous engineering tidal inlet in the Zwin, located along the Belgian–Dutch coast. In 2019, large-scale modifications to the intertidal zone and the opening of a dyke doubled the surface area of the tidal inlet and its associated tidal marsh. Results revealed rapid and substantial morphological adjustments: the main channel deepened, widened, and migrated eastward. Sediment balance analyses showed stability at the inlet entrance but material loss further inland. Tidal prism and cross-sectional measurements indicated a fourfold increase in tidal prism immediately after NbS implementation, triggering strong channel responses. Within a year, the channel cross-sectional area reached a new equilibrium, which remained stable in the following years. These patterns highlight active sediment transport driven by coupled hydrodynamic and morphodynamic processes. Using an extensive data set, a conceptual model is presented to illustrate how the NbS influenced tidal inlet dynamics through the interaction of flow and sedimentation processes. Full article
(This article belongs to the Special Issue Nature-Based Solutions in Coastal Systems)
Show Figures

Figure 1

17 pages, 1767 KB  
Article
Too Bright to Focus? Influence of Brightness Illusions and Ambient Light Levels on the Dynamics of Ocular Accommodation
by Antonio Rodán, Angélica Fernández-López, Jesús Vera, Pedro R. Montoro, Beatriz Redondo and Antonio Prieto
Vision 2025, 9(4), 81; https://doi.org/10.3390/vision9040081 - 30 Sep 2025
Abstract
Can brightness illusions modulate ocular accommodation? Previous studies have shown that brightness illusions can influence pupil size as if caused by actual luminance increases. However, their effects on other ocular responses—such as accommodative or focusing dynamics—remain largely unexplored. This study investigates the influence [...] Read more.
Can brightness illusions modulate ocular accommodation? Previous studies have shown that brightness illusions can influence pupil size as if caused by actual luminance increases. However, their effects on other ocular responses—such as accommodative or focusing dynamics—remain largely unexplored. This study investigates the influence of brightness illusions, under two ambient lighting conditions, on accommodative and pupillary dynamics (physiological responses), and on perceived brightness and visual comfort (subjective responses). Thirty-two young adults with healthy vision viewed four stimulus types (blue bright and non-bright, yellow bright and non-bright) under low- and high-contrast ambient lighting while ocular responses were recorded using a WAM-5500 open-field autorefractor. Brightness and comfort were rated after each session. The results showed that high ambient contrast (mesopic) and brightness illusions increased accommodative variability, while yellow stimuli elicited a greater lag under photopic condition. Pupil size decreased only under mesopic lighting. Perceived brightness was enhanced by brightness illusions and blue color, whereas visual comfort decreased for bright illusions, especially under low light. These findings suggest that ambient lighting and visual stimulus properties modulate both physiological and subjective responses, highlighting the need for dynamic accommodative assessment and visually ergonomic display design to reduce visual fatigue during digital device use. Full article
Show Figures

Figure 1

20 pages, 726 KB  
Article
Suržyk as a Transitional Stage from Russian to Ukrainian: The Perspective of Ukrainian Migrants and War Refugees in Finland
by Yan Kapranov, Anna Verschik, Liisa-Maria Lehto and Maria Frick
Languages 2025, 10(10), 254; https://doi.org/10.3390/languages10100254 - 30 Sep 2025
Abstract
This article examines how Ukrainian migrants and war refugees in Finland perceive and use Suržyk, a cluster of intermediate varieties between Ukrainian and Russian, as a transitional stage facilitating the shift from Russian-dominant to Ukrainian-dominant speech. Drawing on 1615 survey responses collected between [...] Read more.
This article examines how Ukrainian migrants and war refugees in Finland perceive and use Suržyk, a cluster of intermediate varieties between Ukrainian and Russian, as a transitional stage facilitating the shift from Russian-dominant to Ukrainian-dominant speech. Drawing on 1615 survey responses collected between November 2022 and January 2023, the study reveals that 42 respondents view Suržyk as a bridge that supports the gradual acquisition of standard Ukrainian. Qualitative content analysis of open-ended responses shows repeated references to Suržyk as a “stepping stone”, “temporary means” or “bridge”, highlighting its role in maintaining intelligibility and fluency for speakers who are not confident in standard Ukrainian. Although some respondents acknowledge the stigma associated with mixed speech, they also stress Suržyk’s practical advantages in contexts shaped by the 2022 full-scale war and heightened purist discourses. Speakers report pressure to adhere to purist language norms in formal settings, whereas in informal spaces, they consider Suržyk a natural outcome of bilingual backgrounds. These findings illuminate the interplay between language ideologies, sociopolitical dynamics, and individual agency, suggesting that for many Ukrainians in Finland, Suržyk serves as a temporary yet functional means to align with Ukrainian identity under rapidly changing circumstances. Full article
(This article belongs to the Special Issue Language Attitudes and Language Ideologies in Eastern Europe)
17 pages, 1849 KB  
Article
Suitability of Residential Neighborhoods for Hosting Events: A Case Study of Riyadh, Saudi Arabia
by Sameeh Alarabi
Buildings 2025, 15(19), 3517; https://doi.org/10.3390/buildings15193517 - 29 Sep 2025
Abstract
Public events serve as a foundational mechanism for shaping the social and spatial dynamics of urban environments. Despite widespread recognition of their physical, psychological, and social impacts at the city scale, a significant gap persists in research addressing the social and spatial suitability [...] Read more.
Public events serve as a foundational mechanism for shaping the social and spatial dynamics of urban environments. Despite widespread recognition of their physical, psychological, and social impacts at the city scale, a significant gap persists in research addressing the social and spatial suitability of public spaces at the neighborhood level, particularly within the Arab urban context. This study investigates residential neighborhoods in Riyadh, Saudi Arabia, to assess how public events foster community engagement, cultural diversity, and social cohesion. Drawing on survey data from 510 residents, statistical analysis reveals that demographic variables such as age, gender, and professional sector influence participation, with youth and women demonstrating notably higher levels of engagement. Moreover, population density emerges as a critical factor in determining the appropriateness of event settings, with medium-sized gatherings in open spaces especially parks proving most effective. The findings emphasize the importance of designing inclusive and culturally responsive events, offering actionable insights for urban planning in rapidly growing cities. The study further highlights the need to reimagine neighborhood parks and open spaces as adaptable venues, equipped with essential infrastructure and governed by streamlined regulatory frameworks. Participants expressed a clear preference for accessible, medium-scale cultural events that prioritize safety, environmental sustainability, and enhanced public amenities, including transportation and sanitation services. Full article
Show Figures

Figure 1

15 pages, 1628 KB  
Article
Corrosion Behavior of S235JR Carbon Steel in 0.5 M HCl Solution During 24 Weeks
by Alina Crina Mureșan, Daniela Laura Buruiana, Viorica Ghisman, Elena Emanuela Herbei and Nicoleta Bogatu
Metals 2025, 15(10), 1092; https://doi.org/10.3390/met15101092 - 29 Sep 2025
Abstract
This study aims to evaluate the corrosion behavior of and morphological changes in S235JR steel exposed to 0.5 M hydrochloric acid solution over a period of 24 weeks. Corrosion resistance was assessed through weight loss measurements and electrochemical techniques (such as open circuit [...] Read more.
This study aims to evaluate the corrosion behavior of and morphological changes in S235JR steel exposed to 0.5 M hydrochloric acid solution over a period of 24 weeks. Corrosion resistance was assessed through weight loss measurements and electrochemical techniques (such as open circuit potential (OCP), polarization resistance (Rp), and corrosion rate (Vcorr)), while surface morphology, elemental analysis, roughness, and Vickers hardness were also analyzed. All evaluations were performed at the same immersion intervals: 2, 4, 8, 12, and 24 weeks. The corrosion rate started at 0.9 mm/year after the first hour of immersion, then decreased due to the formation of corrosion products on the steel surface, and fluctuated during prolonged exposure, reaching a maximum of 8.5 mm/year after 24 weeks. Weight loss increased gradually during the first 8 weeks, followed by a more pronounced rise. Polarization resistance and corrosion rate exhibited dynamic variations. SEM analysis revealed severe surface degradation, including cracks and deep pits. Surface roughness increased significantly from an initial value of 0.91 μm to 9.03 μm at 24 weeks. Vickers hardness dropped from 148.7 HV0.5 to 87.3 HV0.5, due to non-uniform corrosion product formation. These findings highlight the progressive deterioration of S235JR steel in acidic environments and provide valuable insight into its long-term corrosion resistance. Full article
Show Figures

Figure 1

12 pages, 1732 KB  
Data Descriptor
A Dataset of Environmental Toxins for Water Monitoring in Coastal Waters of Southern Centre, Vietnam: Case of Nha Trang Bay
by Hoang Xuan Ben, Tran Cong Thinh and Phan Minh-Thu
Data 2025, 10(10), 155; https://doi.org/10.3390/data10100155 - 29 Sep 2025
Abstract
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: [...] Read more.
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: surface samples at approximately 0.5–1.0 m below the water surface, and bottom samples 1.0 to 2.0 m above the seabed, depending on site-specific bathymetry. These samples were analyzed for key water quality parameters, including biological oxygen demand (BOD5), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and Chlorophyll-a (Chl-a). The data establish a valuable baseline for assessing both spatial and temporal patterns of water quality, and for calculating eutrophication index to evaluate potential environmental degradation. Importantly, it also demonstrates practical applications for environmental management. The dataset can support assessments of how seasonal tourism peaks contribute to nutrient enrichment, how aquaculture expansion affects dissolved oxygen dynamics, and how water quality trends evolve under increasing anthropogenic pressure. These applications make it a useful resource for evaluating pollution control efforts and for guiding sustainable development in coastal areas. By promoting open access, the dataset not only supports scientific research but also strengthens evidence-based management strategies to protect ecosystem health and socio-economic resilience in Nha Trang Bay. Full article
Show Figures

Figure 1

24 pages, 535 KB  
Article
Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth
by Adriana González Vázquez and Alejandro F. Villaverde
Bioengineering 2025, 12(10), 1048; https://doi.org/10.3390/bioengineering12101048 - 29 Sep 2025
Abstract
Mechanistic cancer models can encapsulate beliefs about the main factors influencing tumour growth. In recent decades, many different types of dynamic models have been used for this purpose. The integration of a model’s differential equations yields a simulation of the behaviour of the [...] Read more.
Mechanistic cancer models can encapsulate beliefs about the main factors influencing tumour growth. In recent decades, many different types of dynamic models have been used for this purpose. The integration of a model’s differential equations yields a simulation of the behaviour of the system over time, thus enabling tumour progression to be predicted. A requisite for the reliability of these quantitative predictions is that the model is structurally identifiable and observable, i.e., that it is theoretically possible to infer the correct values of its parameters and state variables from time course data. In this paper, we show how to analyse these properties of tumour growth models using a well-established methodology, which we implemented previously in an open-source software tool. To this end, we provide an account of 20 published models described by ordinary differential equations, some of which incorporate the effect of interventions including chemotherapy, radiotherapy, and immunotherapy. For each model, we describe its equations and analyse their structural identifiability and observability, discussing how they are affected by the experimental design. We provide computational implementations of these models, which enable readily reproducing results. Our results inform about the possibility of inferring the parameters and state variables of a given model using a specific measurement setup, and, together with the corresponding methodology and implementation, they can be used as a blueprint for analysing other models not included here. Thus, this paper serves as a guide to select the most appropriate model for each application. Full article
(This article belongs to the Special Issue Mathematical and Computational Modeling of Cancer Progression)
Show Figures

Figure 1

21 pages, 8988 KB  
Article
Investigation of the Substrate Selection Mechanism of Poly (A) Polymerase Based on Molecular Dynamics Simulations and Markov State Model
by Yongxin Jiang, Xueyan Duan, Jingxian Zheng, Fuyan Cao, Linlin Zeng and Weiwei Han
Int. J. Mol. Sci. 2025, 26(19), 9512; https://doi.org/10.3390/ijms26199512 - 29 Sep 2025
Abstract
RNA polymerases are essential enzymes that catalyze DNA transcription into RNA, vital for protein synthesis, gene expression regulation, and cellular responses. Non-template-dependent RNA polymerases, which synthesize RNA without a template, are valuable in biological research due to their flexibility in producing RNA without [...] Read more.
RNA polymerases are essential enzymes that catalyze DNA transcription into RNA, vital for protein synthesis, gene expression regulation, and cellular responses. Non-template-dependent RNA polymerases, which synthesize RNA without a template, are valuable in biological research due to their flexibility in producing RNA without predefined sequences. However, their substrate polymerization mechanisms are not well understood. This study examines Poly (A) polymerase (PAP), a nucleotide transferase superfamily member, to explore its substrate selectivity using computational methods. Previous research shows PAP’s polymerization efficiency for nucleoside triphosphates (NTPs) ranks ATP > GTP > CTP > UTP, though the reasons remain unclear. Using 500 ns Gaussian accelerated molecular dynamics simulations, stability analysis, secondary structure analysis, MM-PBSA calculations, and Markov state modeling, we investigate PAP’s differential polymerization efficiencies. Results show that ATP binding enhances PAP’s structural flexibility and increases solvent-accessible surface area, likely strengthening protein–substrate or protein–solvent interactions and affinity. In contrast, polymerization of other NTPs leads to a more open conformation of PAP’s two domains, facilitating substrate dissociation from the active site. Additionally, ATP binding induces a conformational shift in residues 225–230 of the active site from a loop to an α-helix, enhancing regional rigidity and protein stability. Both ATP and GTP form additional π–π stacking interactions with PAP, further stabilizing the protein structure. This theoretical study of PAP polymerase’s substrate selectivity mechanisms aims to clarify the molecular basis of substrate recognition and selectivity in its catalytic reactions. These findings offer valuable insights for the targeted engineering and optimization of polymerases and provide robust theoretical support for developing novel polymerases for applications in drug discovery and related fields. Full article
Show Figures

Figure 1

22 pages, 5511 KB  
Article
Diurnal Habitat Selection and Use of Wintering Bar-Headed Geese (Anser indicus) Across Heterogeneous Landscapes on the Yunnan–Guizhou Plateau, Southwest China
by Chao Li, Hong Liu, Ziwen Meng, Weike Yan, Linna Xiao, Yu Lei, Xuyan Zhao, Zhiming Chen and Qiang Liu
Animals 2025, 15(19), 2826; https://doi.org/10.3390/ani15192826 - 28 Sep 2025
Abstract
Wetland loss and human activities are forcing migratory waterbirds to rely on alternative habitats such as croplands, yet their adaptive habitat use across contrasting landscape contexts remains unclear. The Bar-headed Goose (Anser indicus) is a key indicator species in the wetland [...] Read more.
Wetland loss and human activities are forcing migratory waterbirds to rely on alternative habitats such as croplands, yet their adaptive habitat use across contrasting landscape contexts remains unclear. The Bar-headed Goose (Anser indicus) is a key indicator species in the wetland ecosystems of the Yunnan–Guizhou Plateau. Comparing differences in its wintering habitat selection and utilization is of great significance for understanding its ecological adaptation mechanisms and formulating regional wetland conservation strategies. In this study, we compared the diurnal habitat use during the wintering period of Bar-headed Geese at three wetlands (Nianhu, Caohai, and Napahai) representing distinct landscape contexts. We used GPS satellite tracking and dynamic Brownian bridge movement modeling, combined with random forest analysis of environmental variables, to quantify diurnal habitat use and selection at each site. Our results revealed significant regional differences in habitat use. In the agriculture-dominated wetlands (Nianhu and Caohai), geese primarily utilized cropland and marsh habitats (Nianhu: cropland 45.88% ± 30.70%, marsh 42.55% ± 33.17%; Caohai: cropland 62.33% ± 12.16%, marsh 28.61% ± 13.62%). In contrast, at Napahai, which is dominated by natural habitats, geese primarily used grassland (65.92% ± 20.01%) and marsh (26.85% ± 21.88%), with minimal use of cropland (4.21% ± 7.00%). Diurnal habitat selection was influenced by multiple environmental factors, with distinct regional differences identified through random forest modeling. In Nianhu, key factors included distance to supplemental feeding site, distance to grassland, distance to woodland, and distance to open water. In Caohai, distance to grassland, distance to nocturnal roost site, distance to settlement, and distance to open water were significant drivers. In Napahai, distance to nocturnal roost site, distance to open water, and distance to marsh were the most influential (all with p < 0.01), reflecting flexible behavioral responses. Based on these findings, we recommend region-specific conservation management strategies. Specifically, supplemental feeding at Nianhu should be strictly regulated. Agricultural planning in farming areas should account for the habitat needs of wintering waterbirds. Grassland and marsh habitats at Napahai should also be more effectively protected. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

29 pages, 7233 KB  
Article
No-Signaling in Steepest Entropy Ascent: A Nonlinear, Non-Local, Non-Equilibrium Quantum Dynamics of Composite Systems Strongly Compatible with the Second Law
by Rohit Kishan Ray and Gian Paolo Beretta
Entropy 2025, 27(10), 1018; https://doi.org/10.3390/e27101018 - 28 Sep 2025
Abstract
Lindbladian formalism models open quantum systems using a ‘bottom-up’ approach, deriving linear dynamics from system–environment interactions. We present a ‘top-down’ approach starting with phenomenological constraints, focusing on a system’s structure, subsystems’ interactions, and environmental effects and often using a non-equilibrium variational principle designed [...] Read more.
Lindbladian formalism models open quantum systems using a ‘bottom-up’ approach, deriving linear dynamics from system–environment interactions. We present a ‘top-down’ approach starting with phenomenological constraints, focusing on a system’s structure, subsystems’ interactions, and environmental effects and often using a non-equilibrium variational principle designed to enforce strict thermodynamic consistency. However, incorporating the second law’s requirement—that Gibbs states are the sole stable equilibria—necessitates nonlinear dynamics, challenging no-signaling principles in composite systems. We reintroduce ‘local perception operators’ and show that they allow to model signaling-free non-local effects. Using the steepest-entropy-ascent variational principle as an example, we demonstrate the validity of the ‘top-down’ approach for integrating quantum mechanics and thermodynamics in phenomenological models, with potential applications in quantum computing and resource theories. Full article
Show Figures

Graphical abstract

30 pages, 5036 KB  
Article
Filtering and Fractional Calculus in Parameter Estimation of Noisy Dynamical Systems
by Alexis Castelan-Perez, Francisco Beltran-Carbajal, Ivan Rivas-Cambero, Clementina Rueda-German and David Marcos-Andrade
Actuators 2025, 14(10), 474; https://doi.org/10.3390/act14100474 - 27 Sep 2025
Abstract
The accurate estimation of parameters in dynamical systems stands for an open key research issue in modeling, control, and fault diagnosis. The presence of noise in input and output signals poses a serious challenge for accurate real-time dynamical system parameter estimation. This paper [...] Read more.
The accurate estimation of parameters in dynamical systems stands for an open key research issue in modeling, control, and fault diagnosis. The presence of noise in input and output signals poses a serious challenge for accurate real-time dynamical system parameter estimation. This paper proposes a new robust algebraic parameter estimation methodology for integer-order dynamical systems that explicitly incorporates the signal filtering dynamics within the estimator structure and enhances noise attenuation through fractional differentiation in frequency domain. The introduced estimation methodology is valid for Liouville-type fractional derivatives and can be applied to estimate online the parameters of differentially flat, oscillating or vibrating systems of multiple degrees of freedom. The parametric estimation can be thus implemented for a wide class of oscillating or vibrating, nth-order dynamical systems under noise influence in measurement and control signals. Positive values are considered for the inertia, stiffness, and viscous damping parameters of vibrating systems. Parameter identification can be also used for development of actuators and control technology. In this sense, validation of the algebraic parameter estimation is performed to identify parameters of a differentially flat, permanent-magnet direct-current motor actuator. Parameter estimation for both open-loop and closed-loop control scenarios using experimental data is examined. Experimental results demonstrate that the new parameter estimation methodology combining signal filtering dynamics and fractional calculus outperforms other conventional methods under presence of significant noise in measurements. Full article
Show Figures

Figure 1

40 pages, 4927 KB  
Article
Enhancing Rural Energy Resilience Through Combined Agrivoltaic and Bioenergy Systems: A Case Study of a Real Small-Scale Farm in Southern Italy
by Michela Costa and Stefano Barba
Energies 2025, 18(19), 5139; https://doi.org/10.3390/en18195139 - 27 Sep 2025
Abstract
Agrivoltaics (APV) mitigates land-use competition between photovoltaic installations and agricultural activities, thereby supporting multifaceted policy objectives in energy transition and sustainability. The availability of organic residuals from agrifood practices may also open the way to their energy valorization. This paper examines a small-scale [...] Read more.
Agrivoltaics (APV) mitigates land-use competition between photovoltaic installations and agricultural activities, thereby supporting multifaceted policy objectives in energy transition and sustainability. The availability of organic residuals from agrifood practices may also open the way to their energy valorization. This paper examines a small-scale farm in the Basilicata Region, southern Italy, to investigate the potential installation of an APV plant or a combined APV and bioenergy system to meet the electrical needs of the existing processing machinery. A dynamic numerical analysis is performed over an annual cycle to properly size the storage system under three distinct APV configurations. The panel shadowing effects on the underlying crops are quantified by evaluating the reduction in incident solar irradiance during daylight and the consequent agricultural yield differentials over the life period of each crop. The integration of APV and a biomass-powered cogenerator is then considered to explore the possible off-grid farm operation. In the sole APV case, the single-axis tracking configuration achieves the highest performance, with 45.83% self-consumption, a land equivalent ratio (LER) of 1.7, and a payback period of 2.77 years. For APV and bioenergy, integration with a 20 kW cogeneration unit achieves over 99% grid independence by utilizing a 97.57 kWh storage system. The CO2 emission reduction is 49.6% for APV alone and 100% with biomass integration. Full article
Show Figures

Figure 1

12 pages, 538 KB  
Article
Gait and Postural Control Deficits in Diabetic Patients with Peripheral Neuropathy Compared to Healthy Controls
by Safi Ullah, Kamran Iqbal and Muhammad Rizwan
Bioengineering 2025, 12(10), 1034; https://doi.org/10.3390/bioengineering12101034 - 26 Sep 2025
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes that impairs gait and balance, increasing fall risk. This study investigated gait characteristics and postural control in individuals with DPN, compared to age- and gender-matched healthy controls. Fifteen DPN patients and [...] Read more.
Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes that impairs gait and balance, increasing fall risk. This study investigated gait characteristics and postural control in individuals with DPN, compared to age- and gender-matched healthy controls. Fifteen DPN patients and fifteen controls underwent assessments of gait, static balance, and mobility. Gait parameters were measured during overground walking using motion capture and force platforms. Static balance was evaluated via tandem stance tests (eyes open/closed), while mobility was assessed with the Timed-Up-and-Go (TUG) test. Dynamic stability was assessed by computing the center-of-pressure Time-to-Contact (TTC) with the mediolateral (ML) stability boundary. We hypothesized that patients with DPN would exhibit an altered gait and reduced ML postural stability during walking. The study results show no significant differences in ML center-of-pressure (COP) excursion or its velocity during walking between groups. Patients with DPN walked relatively slowly, with shorter steps, and showed markedly poorer static balance (earlier failure during tandem stance test), as well as slower TUG performance. Clinically, these findings support routine fall risk screening in DPN using both static balance tests (e.g., tandem stance) and mobility measures (e.g., TUG or gait speed). These findings further suggest that while dynamic postural control during walking may be preserved, DPN patients exhibit gait adaptations and significant static balance deficits, highlighting the need for comprehensive balance assessment in this population. Full article
(This article belongs to the Special Issue Biomechanics in Sport and Motion Analysis)
Show Figures

Graphical abstract

Back to TopTop