Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. LiDAR Survey Acquisition and Processing
2.3. Calculation of the Tidal Prism and Cross-Sectional Area
3. Results
3.1. Morphological Evolution
3.1.1. Large-Scale Dynamics of the Inlet
3.1.2. Entrance of the Inlet
3.2. Evolution of the Tidal Prism
4. Discussion
4.1. Morphological Behavior of the Entrance and Inland Inlet
4.2. Relationship Between Tidal Prism and Cross-Sectional Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hubbard, D.K.; Oertel, G.F.; Nummedal, D. The role of waves and tidal currents in the development of tidal-inlet sedimentological structures and sand body geometry: Examples from North Carolina, South Carolina and Georgia. J. Sediment. Petrol. 1979, 49, 1073–1093. [Google Scholar]
- Fitzgerald, D. Understanding Physical Processes at Tidal Inlets: Based on Contributions by Panel on Scoping Field and Laboratory Investigations in Coastal Inlet Research. J. Coast. Res. 1996, 23, 47–71. [Google Scholar]
- Robin, N.; Levoy, F.; Monfort, O. Bar morphodynamic behaviour on the ebb delta of a macrotidal inlet (Normandy, France). J. Coast. Res. 2007, 23, 1370–1378. [Google Scholar] [CrossRef]
- De Swart, H.E.; Zimmerman, J.T.F. Morhodynamics of tidal inlet systems. Annu. Rev. Fluid Mech. 2009, 41, 203–229. [Google Scholar] [CrossRef]
- Pearson, S.G.; Elias, E.P.; van Prooijen, B.C.; van der Vegt, H.; van der Spek, A.J.; Wang, Z.B. A novel approach to mapping ebb-tidal delta morphodynamics and stratigraphy. Geomorphology 2022, 405, 108185. [Google Scholar] [CrossRef]
- Duong, T.M.; Ranasinghe, R.; Walstra, D.; Roelvink, D. Assessing climate change impacts on the stability of small tidal inlets: Why and how? Erath Sci. Rev. 2016, 154, 369–380. [Google Scholar] [CrossRef]
- O’Brien, M.P. Estuary tidal prism related to entrance area. Civ. Eng. 1931, 1, 738–739. [Google Scholar]
- Bruun, P. Stability of Tidal Inlets, Theory and Engineering; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1978; p. 376. [Google Scholar]
- Bruun, P.; Gerritsen, F. Stability of Coastal Inlets; North-Holland Publisher: Amsterdam, The Netherlands, 1960; p. 140. [Google Scholar]
- Van Bohemen, H.D. Environmentally friendly coasts: Dune breaches and tidal inlets in the foredunes. Environmental engineering and coastal management: A case study from the Netherlands. Landsc. Urban Plan. 1996, 34, 197–2313. [Google Scholar] [CrossRef]
- Van der Vegt, M.; Hoekstra, P. Morphodynamics of a storm-dominated, shallow tidal inlet: The Slufter, the Netherlands. Neth. J. Geosci. 2012, 91, 325–339. [Google Scholar] [CrossRef]
- Lincoln, J.M.; FitzGerald, D.M. Tidal distortions and flood dominance at five small tidal inlets in southern Maine. Mar. Geol. 1988, 82, 133–148. [Google Scholar] [CrossRef]
- Cooper, J.A.G. Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology 2001, 40, 99–122. [Google Scholar] [CrossRef]
- Donnelly, C.; Kraus, N.M.; Larson, M. State of knowledge on measurement and modelling of coastal overwash. J. Coast. Res. 2006, 22, 965–991. [Google Scholar] [CrossRef]
- Broekema, Y.B.; Labeur, R.J.; Uijttewaal, W.S.J. Observations and analysis of the horizontal structure of a tidal jet at deep scour holes. J. Geophys. Res. Earth Surf. 2018, 123, 3162–3189. [Google Scholar] [CrossRef]
- Louarn, A.; Meur-Ferec, C.; Hervé-Fournereau, N. The concept of ‘nature-based solutions’ applied to urban coastal risks: A bibliometric and content analysis review. Ocean. Coast. Manag. 2025, 261, 107530. [Google Scholar] [CrossRef]
- Stive, M.J.F.; Van de Kreeke, J.; Lam, N.T.; Tung, T.T.; Ranasinghi, R. Empirical relationships between inlet cross-section and tidal prism: A review. Proc. Coast. Dyn. 2009, 1–10. [Google Scholar] [CrossRef]
- Davis, R.A.; Hayes, M.O. What is a wave-dominated coast? Mar. Geol. 1984, 60, 313–329. [Google Scholar] [CrossRef]
- Trouw, K.; Zimmermann, N.; Wang, L.i.; De Maerschalck, B.; Delgado, R.; Verwaest, T.; Mostaert, F. Scientific Support Regarding Hydrodynamics and Sand Transport in the Coastal Zone: Literature and Data Review Coastal Zone Zeebrugge—Zwin; Version 4_0. WL Rapporten, 12_107; Flanders Hydraulics Research: Antwerp, Belgium, 2015; p. 75. [Google Scholar]
- Montreuil, A.-L.; Dan, S.; Verwaest, T.; Mostaert, F. Monitoring the Morphodynamics of the Zwin Inlet: Interim Report: 3 Years After the Works; Version 0.1. FHR Reports, 16_089_3; Flanders Hydraulics Research: Antwerp, Belgium, 2022; p. 59. [Google Scholar]
- Bouwman, D. Morphodynamics of stagnating Zwin inlet, the Netherlands. Sediment. Geol. 1993, 84, 219–239. [Google Scholar] [CrossRef]
- O’Brien, M.P.; Dean, R.G. Hydraulics and sedimentary stability of coastal inlets. Coast. Eng. 1971, 11, 761–779. [Google Scholar]
Year | Time | Intervention | Sensor Type |
---|---|---|---|
2016 | 06–09 | Excavation work in the Zwin plain and tidal area | |
09–12 | Excavation of the west dunes | ||
2017 | 02–03 | Removed of the Leopolder | |
2018 | 06/11 | LiDAR survey | Riegl Q680i |
2019 | 28/01 | Lowering the old dyke | |
04/02 | Opening of the dyke | ||
20/04 | LiDAR survey | Riegl Q780 | |
2020 | 10/04 | LiDAR survey | Riegl VQ1560-II |
2021 | 28/04 | LiDAR survey | Riegl Q780 |
2022 | 23/02 | LiDAR survey | Riegl VQ1560-II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montreuil, A.-L.; Dan, S.; Houthuys, R.; Verwaest, T. Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands). J. Mar. Sci. Eng. 2025, 13, 1876. https://doi.org/10.3390/jmse13101876
Montreuil A-L, Dan S, Houthuys R, Verwaest T. Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands). Journal of Marine Science and Engineering. 2025; 13(10):1876. https://doi.org/10.3390/jmse13101876
Chicago/Turabian StyleMontreuil, Anne-Lise, Sebastian Dan, Rik Houthuys, and Toon Verwaest. 2025. "Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands)" Journal of Marine Science and Engineering 13, no. 10: 1876. https://doi.org/10.3390/jmse13101876
APA StyleMontreuil, A.-L., Dan, S., Houthuys, R., & Verwaest, T. (2025). Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands). Journal of Marine Science and Engineering, 13(10), 1876. https://doi.org/10.3390/jmse13101876