Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = open charge point protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6623 KiB  
Article
EV Smart-Charging Strategy for Power Management in Distribution Grid with High Penetration of Distributed Generation
by Geraldo L. Maia, Caio C. L. Santos, Paulo R. M. Nunes, José F. C. Castro, Davidson C. Marques, Luiz H. A. De Medeiros, Leonardo R. Limongi, Márcio E. C. Brito, Nicolau K. L. Dantas, Antônio V. M. L. Filho, Amanda L. Fernandes, Jiyong Chai and Chenxin Zhang
Energies 2024, 17(21), 5394; https://doi.org/10.3390/en17215394 - 30 Oct 2024
Cited by 3 | Viewed by 1894
Abstract
Accelerated environmental impacts are a growing concern in the modern world. Electric mobility and the transition to a cleaner energy matrix have become increasingly discussed topics. In this context, this work presents a framework for controlling an electric vehicle (EV)-charging station integrated into [...] Read more.
Accelerated environmental impacts are a growing concern in the modern world. Electric mobility and the transition to a cleaner energy matrix have become increasingly discussed topics. In this context, this work presents a framework for controlling an electric vehicle (EV)-charging station integrated into a microgrid application as a basis for creating the infrastructure integrated into a smart grid concept. Considering the electrification of the transportation sector future perspectives, a brief review is conducted on the impacts of EV fleet growth in different countries and how smart-charging technologies are identified as solutions for mitigating the negative effects of energy and power consumption associated with EV-charging stations. An analysis of the technical characteristics and the tools that enable the deployment of a fleet-charging operator are examined, specifically focusing on the communication protocol for EVs, such as the OCPP (Open Charge Point Protocol) parameterization/configuration. A new EV-charging station control method is proposed to manage the impacts of distributed solar photovoltaic generation and mitigate the effects of the duck curve. Finally, an integration architecture via IEC 61850 for these elements is proposed, in a practical implementation for variable power control, considering different strategies to deal with distributed generation impact using EV-fleet-charging power demand dynamic management. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

28 pages, 1444 KiB  
Article
A Novel Charging Management and Security Framework for the Electric Vehicle (EV) Ecosystem
by Safa Hamdare, David J. Brown, Yue Cao, Mohammad Aljaidi, Sushil Kumar, Rakan Alanazi, Manish Jugran, Pratik Vyas and Omprakash Kaiwartya
World Electr. Veh. J. 2024, 15(9), 392; https://doi.org/10.3390/wevj15090392 - 28 Aug 2024
Cited by 4 | Viewed by 2247
Abstract
The EV charging network has witnessed significant growth in the UK in the last few years due to the net zero emission target of the government by 2030. The related literature in EV charging management mainly focuses on road-traffic-parameter-based optimization and lacks detail [...] Read more.
The EV charging network has witnessed significant growth in the UK in the last few years due to the net zero emission target of the government by 2030. The related literature in EV charging management mainly focuses on road-traffic-parameter-based optimization and lacks detail in terms of charging statistics and cyber–security-enabled charging management frameworks. In this context, this paper proposes a novel EV Charging Management and Security (EVCMS) framework using real-time charging statistics and an Open Charge Point Protocol (OCPP). Specifically, a system model for EVCMS is presented considering charging data management and security protocols. An EVCMS framework design is detailed, focusing on charging pricing, optimization, and charging security. The experimental implementation is described in terms of client–server and charge-box-based simulation. The performance of the proposed EVCMS framework is evaluated by considering different charging scenarios and a range of charging-related metrics. An analysis of results and comparative study attest to the benefits of the proposed EVCMS framework for enabling the EV charging ecosystem. Full article
(This article belongs to the Special Issue New Trends in Electrical Drives for EV Applications)
Show Figures

Figure 1

15 pages, 5928 KiB  
Article
Electrical Vehicle Smart Charging Using the Open Charge Point Interface (OCPI) Protocol
by Sylvain Guillemin, Romain Choulet, Gregory Guyot and Sothun Hing
Energies 2024, 17(12), 2873; https://doi.org/10.3390/en17122873 - 12 Jun 2024
Cited by 4 | Viewed by 2339
Abstract
This paper proposes a new approach to the design of smart charging systems. It aims to separate the role of the Smart Charging Service Provider (SCSP) from the role of the Charge Point Operator (CPO) to provide real flexibility and efficiency of mass [...] Read more.
This paper proposes a new approach to the design of smart charging systems. It aims to separate the role of the Smart Charging Service Provider (SCSP) from the role of the Charge Point Operator (CPO) to provide real flexibility and efficiency of mass deployment. As interoperability is required for this purpose, the challenge is to use standard equipment and protocols in the design of the smart charging Energy Management System (EMS). The use of an Open Charge Point Interface (OCPI) is crucial for an interface between the EMS and the Charge Point Operator. The smart charging EMS developed has been implemented and successfully tested with two CPOs, with different use cases: (1) EV charging infrastructure at office buildings, and (2) EV charging infrastructure installed at a public car park facility. Full article
Show Figures

Figure 1

12 pages, 2373 KiB  
Review
OCPP Interoperability: A Unified Future of Charging
by Silke R. Kirchner
World Electr. Veh. J. 2024, 15(5), 191; https://doi.org/10.3390/wevj15050191 - 29 Apr 2024
Cited by 7 | Viewed by 5634
Abstract
Electric vehicle (EV) adoption grows steadily on a global scale, yet there is no consistent experience for EV drivers to charge their vehicles, which hinders the important EV mass market adoption. The Open Charge Point Protocol (OCPP) is the solution to this challenge, [...] Read more.
Electric vehicle (EV) adoption grows steadily on a global scale, yet there is no consistent experience for EV drivers to charge their vehicles, which hinders the important EV mass market adoption. The Open Charge Point Protocol (OCPP) is the solution to this challenge, as it provides standardization and open communication between EV infrastructure components. The interplay of the OCPP with open cross-functional communication standards boosters driver experience on the one hand, while the charging station itself is integrated into a renewable energy ecosystem. This paper presents a deep dive into the combination of the OCPP with the OpenADR protocol, the Open Smart Charging Protocol (OSCP), the ISO 15118, and eRoaming protocols to explore possibilities and limitations. Furthermore, we suggest LoRa communication as an alternative to IP-based communication for deep-in building applications. Hence, this paper reveals the next important steps towards a successful EV mass market transition powered by user-friendliness and green energy. Full article
Show Figures

Figure 1

23 pages, 2782 KiB  
Article
A Monitoring System for Electric Vehicle Charging Stations: A Prototype in the Amazon
by Elen Lobato, Lucas Prazeres, Iago Medeiros, Felipe Araújo, Denis Rosário, Eduardo Cerqueira, Maria Tostes, Ubiratan Bezerra, Wellington Fonseca and Andréia Antloga
Energies 2023, 16(1), 152; https://doi.org/10.3390/en16010152 - 23 Dec 2022
Cited by 13 | Viewed by 7361
Abstract
Among the main problems faced in the context of electric mobility today, the management and monitoring of electric vehicle charging stations, the integration between the diverse types of technologies that make up its architecture, and its low scalability stand out. Therefore, we will [...] Read more.
Among the main problems faced in the context of electric mobility today, the management and monitoring of electric vehicle charging stations, the integration between the diverse types of technologies that make up its architecture, and its low scalability stand out. Therefore, we will present the implementation and complete integration of an electric vehicle charging system in an electric mobility pilot project being executed in the Amazon region in Brazil. Therefore, a literature review of related works will be presented, and its entire implementation will be addressed, from the charging infrastructure, through its back-end system and its Internet of things platform, to its front-end web system for monitoring charging stations. In addition, a complete prototype is created with a real testbed to verify the scalability of the implemented physical system. Based on the testbed evaluations performed, we observe that the implemented system performs well in receiving and sending data from up to 160 electric vehicle charging stations, achieving an average consumption of 26% for CPU and 95% for memory. In addition, it is important to mention that the deployed system supports horizontal scalability, enabling the connection of more charging stations and making it ideal for other integrated systems similar to ours. Based upon the main results obtained with the implemented system, the possibility of carrying out the management and monitoring of charging stations stands out; the integration of different technologies, from the back end and IoT middleware to its front end; a system that supports scalability, enabling the connection of more charging stations; and a reference architecture for charging station management and monitoring systems for the Amazon region. Full article
Show Figures

Figure 1

14 pages, 4712 KiB  
Article
An OCPP-Based Approach for Electric Vehicle Charging Management
by Sara Hsaini, Mounir Ghogho and My El Hassan Charaf
Energies 2022, 15(18), 6735; https://doi.org/10.3390/en15186735 - 15 Sep 2022
Cited by 22 | Viewed by 5991
Abstract
This paper proposes a smart system for managing the operations of grid-connected charging stations for electric vehicles (EV) that use photovoltaic (PV) sources. This system consists of a mobile application for EV drivers to make charging reservations, an algorithm to optimize the charging [...] Read more.
This paper proposes a smart system for managing the operations of grid-connected charging stations for electric vehicles (EV) that use photovoltaic (PV) sources. This system consists of a mobile application for EV drivers to make charging reservations, an algorithm to optimize the charging schedule, and a remote execution module of charging operations based on the open charge point protocol (OCPP). The optimal charging schedule was obtained by solving a binary integer programming problem. The merits of our solution are illustrated by simulating different charging demand scenarios. Full article
Show Figures

Figure 1

21 pages, 3503 KiB  
Article
EV Smart Charging with Advance Reservation Extension to the OCPP Standard
by Simone Orcioni and Massimo Conti
Energies 2020, 13(12), 3263; https://doi.org/10.3390/en13123263 - 24 Jun 2020
Cited by 18 | Viewed by 5434
Abstract
An accurate management of the interactions among end user, electric vehicle, and charging station during recharge is fundamental for the diffusion of electric mobility. The paper proposes an extension of the Open Charge Point Protocol standard with the aim of including the user [...] Read more.
An accurate management of the interactions among end user, electric vehicle, and charging station during recharge is fundamental for the diffusion of electric mobility. The paper proposes an extension of the Open Charge Point Protocol standard with the aim of including the user in the charging optimization process. The user negotiates with the central station a recharge reservation giving his/her preference and flexibility. The charging station management system provides different solutions based on user’s flexibility. This negotiation allows the optimization of the power grid management considering the user requests and constraints. The complete architecture has been designed, implemented on a web server and on a smartphone app, and tested. Results are reported in this work. Full article
(This article belongs to the Special Issue Flexibility in Distribution Systems from EVs and Batteries)
Show Figures

Graphical abstract

15 pages, 2178 KiB  
Communication
Advancing E-Roaming in Europe: Towards a Single “Language” for the European Charging Infrastructure
by Roland Ferwerda, Michel Bayings, Mart Van der Kam and Rudi Bekkers
World Electr. Veh. J. 2018, 9(4), 50; https://doi.org/10.3390/wevj9040050 - 7 Dec 2018
Cited by 23 | Viewed by 13353
Abstract
The E.U. market for electric vehicles (EVs) is growing significantly, but the absence of widely adopted protocols and interoperability standards for charging hinders the development of cross-border EV travel (“e-roaming”). In this paper, we present our vision on what should be the basic [...] Read more.
The E.U. market for electric vehicles (EVs) is growing significantly, but the absence of widely adopted protocols and interoperability standards for charging hinders the development of cross-border EV travel (“e-roaming”). In this paper, we present our vision on what should be the basic functionalities of e-roaming. Furthermore, we describe the best practices of 6 years of e-roaming in the Netherlands, and analyze what can be learned from other sectors that were successful in introducing roaming mechanisms in the past. We translate these into proposed next steps, such as the need for piloting e-roaming on a European level using open standards, such as Open Charge Point Interface (OCPI). We conclude with a proposal for a comparative study of protocols to pave the way for future convergence, and, thus, facilitate a European market for EV products and services. Full article
Show Figures

Figure 1

17 pages, 2093 KiB  
Article
Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance
by Justina Gaidukevič, Rasa Pauliukaitė, Gediminas Niaura, Ieva Matulaitienė, Olga Opuchovič, Aneta Radzevič, Gvidas Astromskas, Virginijus Bukauskas and Jurgis Barkauskas
Nanomaterials 2018, 8(11), 889; https://doi.org/10.3390/nano8110889 - 1 Nov 2018
Cited by 21 | Viewed by 4117
Abstract
The melt of H3BO3 was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that different [...] Read more.
The melt of H3BO3 was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that different from GO powder, reduction of GO in the melt of H3BO3 leads to the formation of less disordered structure of basal graphene planes. Threefold coordinated boron atom acts as a scavenger of oxygen atoms during the process of GO reduction. Fourier-transform infrared (FTIR) spectra of synthesized products have shown that the complex of glycerol and H3BO3 acts as a regioselective catalyst in epoxide ring-opening reaction and suppress the formation of ketone C=O functional groups at vacancy sites. Thermal treatment at 800 °C leads to the increased concentration of point defects in the backbone structure of rGO. Synthesized materials were tested electrochemically. The electrochemical performance of these materials essentially differs depending on the preparation protocol. The highest charge/discharge rate and double-layer capacitance were found for a sample synthesized in the melt of H3BO3 in the presence of glycerol and treated at 800 °C. The effect of optimal porosity and high electrical conductivity on the electrochemical performance of prepared materials also were studied. Full article
Show Figures

Graphical abstract

12 pages, 1262 KiB  
Article
Evaluation of OCPP and IEC 61850 for Smart Charging Electric Vehicles
by Jens Schmutzler, Claus Amtrup Andersen and Christian Wietfeld
World Electr. Veh. J. 2013, 6(4), 863-874; https://doi.org/10.3390/wevj6040863 - 27 Dec 2013
Cited by 30 | Viewed by 3564
Abstract
Interoperability of charging infrastructures is a key success factor for E-Mobility. Standards like ISO/IEC 15118 and IEC 61851-1 are developed to ensure base level interoperability of front-end com- munication and signaling processes for smart charging between electric vehicles and charge spots. With the [...] Read more.
Interoperability of charging infrastructures is a key success factor for E-Mobility. Standards like ISO/IEC 15118 and IEC 61851-1 are developed to ensure base level interoperability of front-end com- munication and signaling processes for smart charging between electric vehicles and charge spots. With the Open Charge Point Protocol (OCPP) a forum of European industry members also moves towards a common back-end protocol for charge spots intending to reduce and secure overall investment costs. However, in the current form OCPP lacks means for enabling grid services based on smart charging. In this paper the authors provide a review of today’s state of the art in ISO/IEC standardization of the V2G Interface and furthermore detail how OCPP could leverage existing standardization efforts for grid automation from IEC 61850 in order to overcome its shortcomings. Full article
Back to TopTop