Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (809)

Search Parameters:
Keywords = open access network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Viewed by 120
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

11 pages, 1936 KiB  
Communication
Diffusion of C-O-H Fluids in a Sub-Nanometer Pore Network: Role of Pore Surface Area and Its Ratio with Pore Volume
by Siddharth Gautam and David Cole
C 2025, 11(3), 57; https://doi.org/10.3390/c11030057 (registering DOI) - 1 Aug 2025
Viewed by 48
Abstract
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only [...] Read more.
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only the diffusivity of molecules in the adsorbed layer is affected by confinement and the fractional population of these molecules is proportional to the S/V ratio. For materials with sub-nanometer pores, this might not be true, as the adsorbed layer can encompass the entire pore volume. Here, using molecular simulations, we explore the role played by S and S/V in determining the dynamical behavior of two carbon-bearing fluids—CO2 and ethane—confined in sub-nanometer pores of silica. S and V in a silicalite model representing a sub-nanometer porous material are varied by selectively blocking a part of the pore network by immobile methane molecules. Three classes of adsorbents were thus obtained with either all of the straight (labeled ‘S-major’) or zigzag channels (‘Z-major’) remaining open or a mix of a fraction of both types of channel blocked, resulting in half of the total pore volume being blocked (‘Half’). While the adsorption layers from opposite surfaces overlap, encompassing the entire pore volume for all pores except the intersections, the diffusion coefficient is still found to be reduced at high S/V, especially for CO2, albeit not so strongly as would be expected in the case of wider pores. This is because of the presence of channel intersections that provide a wider pore space with non-overlapping adsorption layers. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

24 pages, 3328 KiB  
Review
Ergonomic and Psychosocial Risk Factors and Their Relationship with Productivity: A Bibliometric Analysis
by Gretchen Michelle Vuelvas-Robles, Julio César Cano-Gutiérrez, Jesús Everardo Olguín-Tiznado, Claudia Camargo-Wilson, Juan Andrés López-Barreras and Melissa Airem Cázares-Manríquez
Safety 2025, 11(3), 74; https://doi.org/10.3390/safety11030074 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles [...] Read more.
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles that explicitly address the relationship between ergonomic and psychosocial risk factors and labor productivity. It is recognized that both physical and psychosocial conditions of the work environment directly influence workers’ health and organizational performance. For this purpose, a bibliometric review was conducted in academic databases, including Scopus, Web of Science, ScienceDirect, and Taylor & Francis, resulting in the selection of 4794 relevant articles for general analysis. Additionally, 116 relevant articles were selected based on the inclusion criteria. Tools and methodologies, such as Rayyan, Excel, VOSviewer 1.6.20, and PRISMA, were used to classify the studies and identify trends, collaboration networks, and geographical distribution. The results reveal a sustained growth in scientific production, with clusters on occupational safety and health, work environment factors, and the characteristics of the population, approach, and methodologies used in the studies. Likewise, Procedia Manufacturing, International Journal of Occupational Safety and Ergonomics, and Ergonomics stand out as the main sources of publication, while countries such as Sweden, Poland, and the United States lead the scientific production in this field. In addition, the network of co-occurrence of keywords evidences a comprehensive approach that articulates physical or ergonomic and psychosocial risk factors with organizational performance, while the network of authors shows consolidated collaborations and studies focused on analyzing the relationship between physical demands and musculoskeletal disorders from advanced ergonomic approaches. Full article
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Modular Pipeline for Text Recognition in Early Printed Books Using Kraken and ByT5
by Yahya Momtaz, Lorenza Laccetti and Guido Russo
Electronics 2025, 14(15), 3083; https://doi.org/10.3390/electronics14153083 (registering DOI) - 1 Aug 2025
Viewed by 110
Abstract
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular [...] Read more.
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular pipeline that addresses these problems by combining modern layout analysis and language modeling techniques. The pipeline begins with historical layout-aware text segmentation using Kraken, a neural network-based tool tailored for early typographic structures. Initial optical character recognition (OCR) is then performed with Kraken’s recognition engine, followed by post-correction using a fine-tuned ByT5 transformer model trained on manually aligned line-level data. By learning to map noisy OCR outputs to verified transcriptions, the model substantially improves recognition quality. The pipeline also integrates a preprocessing stage based on our previous work on bleed-through removal using robust statistical filters, including non-local means, Gaussian mixtures, biweight estimation, and Gaussian blur. This step enhances the legibility of degraded pages prior to OCR. The entire solution is open, modular, and scalable, supporting long-term preservation and improved accessibility of cultural heritage materials. Experimental results on 15th-century incunabula show a reduction in the Character Error Rate (CER) from around 38% to around 15% and an increase in the Bilingual Evaluation Understudy (BLEU) score from 22 to 44, confirming the effectiveness of our approach. This work demonstrates the potential of integrating transformer-based correction with layout-aware segmentation to enhance OCR accuracy in digital humanities applications. Full article
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 278
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

21 pages, 979 KiB  
Article
AI-Enhanced Coastal Flood Risk Assessment: A Real-Time Web Platform with Multi-Source Integration and Chesapeake Bay Case Study
by Paul Magoulick
Water 2025, 17(15), 2231; https://doi.org/10.3390/w17152231 - 26 Jul 2025
Viewed by 295
Abstract
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational [...] Read more.
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. Full article
(This article belongs to the Special Issue Coastal Flood Hazard Risk Assessment and Mitigation Strategies)
Show Figures

Figure 1

18 pages, 1137 KiB  
Article
Exploring Social Water Research: Quantitative Network Analysis as Assistance for Qualitative Social Research
by Magdalena Riedl and Peter Schulz
Water 2025, 17(15), 2208; https://doi.org/10.3390/w17152208 - 24 Jul 2025
Viewed by 342
Abstract
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both [...] Read more.
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both to give access to new emerging empirical fields and enhance the analytical depth of empirical social research. Drawing on a dataset of publications from the Web of Science over four distinct time intervals, we identify thematic clusters through keyword co-occurrence networks that reveal the evolving structure and internal dynamics of the field. Our findings show a clear trend toward increasing interdisciplinarity, responsiveness to global events, and contemporary challenges such as the emergence of COVID-19 and the continued centrality of topics related to water management and evaluation. By uncovering latent structures, our approach not only maps the field’s development but also lays the foundation for targeted qualitative analysis of articles representative of identified clusters. This methodological design contributes to the broader discourse on mixed methods research in the social sciences by demonstrating how computational tools can enhance the transparency and reliability of qualitative inquiry without sacrificing its interpretive richness. Furthermore, this study opens new avenues for critically reflecting on the epistemic culture of social water research, particularly in relation to its proximity to applied science and governance-oriented perspectives. The proposed method holds potential relevance for both academic researchers and decision makers in the water sector, offering a means to systematically access dispersed knowledge and identify underrepresented subfields. Overall, the study showcases the potential of mixed methods designs for navigating and structuring complex interdisciplinary research landscapes. Full article
Show Figures

Figure A1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 288
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

4 pages, 243 KiB  
Proceeding Paper
Development of High-Speed Rail Demand Forecasting Incorporating Multi-Station Access Probabilities
by Seo-Young Hong and Ho-Chul Park
Eng. Proc. 2025, 102(1), 2; https://doi.org/10.3390/engproc2025102002 - 22 Jul 2025
Viewed by 162
Abstract
This study develops a high-speed rail demand prediction model based on access probability, which quantifies the likelihood of passengers choosing a departure station among multiple alternatives. Traditional models assign demand to the nearest station or rely on manual calibration, often failing to reflect [...] Read more.
This study develops a high-speed rail demand prediction model based on access probability, which quantifies the likelihood of passengers choosing a departure station among multiple alternatives. Traditional models assign demand to the nearest station or rely on manual calibration, often failing to reflect actual travel behavior and requiring excessive time and resources. To address these limitations, this study integrates survey data, real-world datasets, and machine learning techniques to model station choice behavior more accurately. Key influencing factors, including headway, access time, parking availability, and transit connections, were identified through passenger surveys and incorporated into the model. Machine learning algorithms improved prediction accuracy, with SHAP analysis providing interpretability. The proposed model achieved high accuracy, with an average error rate below 3% for major stations. Scenario analyses confirmed its applicability in network expansions, including GTX openings and the integration of mobility as a service. This model enhances data-driven decision-making for rail operators and offers insights for rail network planning and operations. Future research will focus on validating the model across diverse regions and refining it with updated datasets and external data sources. Full article
Show Figures

Figure 1

18 pages, 821 KiB  
Article
Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems
by Hao Cheng, Min Zhang and Ruoyu Su
Entropy 2025, 27(7), 762; https://doi.org/10.3390/e27070762 - 18 Jul 2025
Viewed by 219
Abstract
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a [...] Read more.
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a cooperative downlink SCMA system is proposed to improve transmission reliability. To the best of our knowledge, multiuser detection is still an open issue for this cooperative downlink SCMA system. To this end, we propose a joint iterative decoding design of the cooperative downlink SCMA system by using the joint factor graph stemming from direct and relay transmission. The closed form bit-error rate (BER) performance of the cooperative downlink SCMA system is also derived. Simulation results verify that the proposed cooperative downlink SCMA system performs better than the non-cooperative one. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives, 2nd Edition)
Show Figures

Figure 1

18 pages, 35958 KiB  
Article
OpenFungi: A Machine Learning Dataset for Fungal Image Recognition Tasks
by Anca Cighir, Roland Bolboacă and Teri Lenard
Life 2025, 15(7), 1132; https://doi.org/10.3390/life15071132 - 18 Jul 2025
Viewed by 371
Abstract
A key aspect driving advancements in machine learning applications in medicine is the availability of publicly accessible datasets. Evidently, there are studies conducted in the past with promising results, but they are not reproducible due to the fact that the data used are [...] Read more.
A key aspect driving advancements in machine learning applications in medicine is the availability of publicly accessible datasets. Evidently, there are studies conducted in the past with promising results, but they are not reproducible due to the fact that the data used are closed or proprietary or the authors were not able to publish them. The current study aims to narrow this gap for researchers who focus on image recognition tasks in microbiology, specifically in fungal identification and classification. An open database named OpenFungi is made available in this work; it contains high-quality images of macroscopic and microscopic fungal genera. The fungal cultures were grown from food products such as green leaf spices and cereals. The quality of the dataset is demonstrated by solving a classification problem with a simple convolutional neural network. A thorough experimental analysis was conducted, where six performance metrics were measured in three distinct validation scenarios. The results obtained demonstrate that in the fungal species classification task, the model achieved an overall accuracy of 99.79%, a true-positive rate of 99.55%, a true-negative rate of 99.96%, and an F1 score of 99.63% on the macroscopic dataset. On the microscopic dataset, the model reached a 97.82% accuracy, a 94.89% true-positive rate, a 99.19% true-negative rate, and a 95.20% F1 score. The results also reveal that the model maintains promising performance even when trained on smaller datasets, highlighting its robustness and generalization capabilities. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

23 pages, 5644 KiB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 283
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

20 pages, 1798 KiB  
Article
An Approach to Enable Human–3D Object Interaction Through Voice Commands in an Immersive Virtual Environment
by Alessio Catalfamo, Antonio Celesti, Maria Fazio, A. F. M. Saifuddin Saif, Yu-Sheng Lin, Edelberto Franco Silva and Massimo Villari
Big Data Cogn. Comput. 2025, 9(7), 188; https://doi.org/10.3390/bdcc9070188 - 17 Jul 2025
Viewed by 429
Abstract
Nowadays, the Metaverse is facing many challenges. In this context, Virtual Reality (VR) applications allowing voice-based human–3D object interactions are limited due to the current hardware/software limitations. In fact, adopting Automated Speech Recognition (ASR) systems to interact with 3D objects in VR applications [...] Read more.
Nowadays, the Metaverse is facing many challenges. In this context, Virtual Reality (VR) applications allowing voice-based human–3D object interactions are limited due to the current hardware/software limitations. In fact, adopting Automated Speech Recognition (ASR) systems to interact with 3D objects in VR applications through users’ voice commands presents significant challenges due to the hardware and software limitations of headset devices. This paper aims to bridge this gap by proposing a methodology to address these issues. In particular, starting from a Mel-Frequency Cepstral Coefficient (MFCC) extraction algorithm able to capture the unique characteristics of the user’s voice, we pass it as input to a Convolutional Neural Network (CNN) model. After that, in order to integrate the CNN model with a VR application running on a standalone headset, such as Oculus Quest, we converted it into an Open Neural Network Exchange (ONNX) format, i.e., a Machine Learning (ML) interoperability open standard format. The proposed system demonstrates good performance and represents a foundation for the development of user-centric, effective computing systems, enhancing accessibility to VR environments through voice-based commands. Experiments demonstrate that a native CNN model developed through TensorFlow presents comparable performances with respect to the corresponding CNN model converted into the ONNX format, paving the way towards the development of VR applications running in headsets controlled through the user’s voice. Full article
Show Figures

Figure 1

17 pages, 2769 KiB  
Article
Service-Based Architecture for 6G RAN: A Cloud Native Platform That Provides Everything as a Service
by Guangyi Liu, Na Li, Chunjing Yuan, Siqi Chen and Xuan Liu
Sensors 2025, 25(14), 4428; https://doi.org/10.3390/s25144428 - 16 Jul 2025
Viewed by 315
Abstract
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has [...] Read more.
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has adopted a service-based architecture (SBA) to enhance agility and elasticity, the radio access network (RAN) keeps the traditional integrated and rigid architecture and suffers the difficulties of customizing and personalizing the functions and capabilities. Open RAN attempted to introduce cloudification, openness, and intelligence to RAN but faced limitations due to 5G RAN specifications. To address this, this paper analyzes the experience and insights from 5G SBA and conducts a systematic study on the service-based RAN, including service definition, interface protocol stacks, impact analysis on the air interface, radio capability exposure, and joint optimization with CN. Performance verification shows significant improvements of service-based user plane design in resource utilization and scalability. Full article
(This article belongs to the Special Issue Future Horizons in Networking: Exploring the Potential of 6G)
Show Figures

Figure 1

16 pages, 3151 KiB  
Article
An Open Dataset of Neural Networks for Hypernetwork Research
by David Kurtenbach and Lior Shamir
Electronics 2025, 14(14), 2831; https://doi.org/10.3390/electronics14142831 - 15 Jul 2025
Viewed by 404
Abstract
Despite the transformative potential of AI, the concept of neural networks that can produce other neural networks by generating model weights (hypernetworks) has been largely understudied. One of the possible reasons is the lack of available research resources that can be used for [...] Read more.
Despite the transformative potential of AI, the concept of neural networks that can produce other neural networks by generating model weights (hypernetworks) has been largely understudied. One of the possible reasons is the lack of available research resources that can be used for the purpose of hypernetwork research. Here we describe a dataset of neural networks, designed for the purpose of hypernetwork research. The dataset includes 104 LeNet-5 neural networks trained for binary image classification separated into 10 classes, such that each class contains 1000 different neural networks that can identify a certain ImageNette V2 class from all other classes. A computing cluster of over 104 cores was used to generate the dataset. Basic classification results show that the neural networks can be classified with accuracy of 72.0%, indicating that the differences between the neural networks can be identified by supervised machine learning algorithms. The ultimate purpose of the dataset is to enable hypernetwork research. The dataset and the code that generates it are open and accessible to the public. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop