Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems
Abstract
1. Introduction
- The cooperative downlink SCMA system is introduced to enhance its performance robustness where two-phase transmission is involved, i.e., the direct link and the relay transmission.
- By stacking the signal from both the direct link and the relay transmission together, we propose a joint iterative decoding design of the cooperative downlink SCMA system with the aid of the augmented codebook and the joint virtual factor graph.
- To investigate the BER performance of cooperative downlink SCMA system, a closed-form solution is also provided.
- Simulation results confirm the validity of our proposed joint iterative decoding design of the cooperative downlink SCMA system, which can significantly improve the BER performance as compared to the non-cooperative one.
2. System Model
2.1. SCMA System Description
2.2. The Cooperative SCMA System
3. Joint Iterative Decoding Design of a Cooperative SCMA System
4. Complexity Analysis
5. BER Performance Analysis of the Cooperative SCMA System
6. Simulation Results
6.1. BER Evolution for AWGN Channel
6.2. BER Evolution for Rayleigh Channel
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Dulaimi, O.M.K.; Al-Dulaimi, A.M.K.; Alexandra, M.O.; Al-Dulaimi, M.K.H. Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors 2023, 23, 1705. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, M.; He, Y.; Pang, L.; Xu, Q.; Zhang, R. An HAP and UAVs Collaboration Framework for Uplink Secure Rate Maximization in NOMA-Enabled IoT Networks. Remote Sens. 2022, 14, 4501. [Google Scholar] [CrossRef]
- Vidal-Beltrán, S.; López-Bonilla, J.L. Improving Spectral Efficiency in the SCMA Uplink Channel. Mathematics 2021, 9, 651. [Google Scholar] [CrossRef]
- Wang, C.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Chafii, M.; Bariah, L.; Muhaidat, S.; Debbah, M. Twelve Scientific Challenges for 6G: Rethinking the Foundations of Communications Theory. IEEE Commun. Surv. Tutor. 2023, 25, 868–904. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Zhong, Y.; Dutkiewicz, E.; Yang, Y.; Zhu, X.; Zhou, Z.; Jiang, T. Internet of mission-critical things: Human and animal classification-A device-free sensing approach. IEEE Internet Things J. 2018, 5, 3369–3377. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the internet of vehicles: Network architectures and applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [Google Scholar] [CrossRef]
- Sultana, A.; Woungang, I.; Anpalagan, A.; Zhao, L.; Ferdouse, L. Efficient resource allocation in SCMA-enabled device-to-device communication for 5G networks. IEEE Trans. Veh. Technol. 2020, 69, 5343–5354. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Z.; Wen, M.; Cai, D.; Dang, S.; Wang, Y.; Xiao, P. Sparse code multiple access for 6G wireless communication networks: Recent advances and future directions. IEEE Commun. Stand. Mag. 2021, 5, 92–99. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Avazov, N.; Dobre, O.A.; Kwak, K. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surv. Tutor. 2017, 19, 721–742. [Google Scholar] [CrossRef]
- Nikopour, H.; Baligh, H. Sparse code multiple access. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013. [Google Scholar]
- Wei, F.; Chen, W.; Wu, Y.; Ma, J.; Tsiftsis, T.A. Message-passing receiver design for joint channel estimation and data decoding in uplink grant-free SCMAsystems. IEEE Trans. Wirel. Commun. 2019, 18, 167–181. [Google Scholar] [CrossRef]
- Bao, J.; Ma, Z.; Xiao, M.; Ding, Z.; Zhu, Z. Performance analysis of uplink SCMA with receiver diversity and randomly deployed users. IEEE Trans. Veh. Technol. 2018, 67, 2792–2797. [Google Scholar] [CrossRef]
- Moltafet, M.; Yamchi, N.M.; Javan, M.R.; Azmi, P. Comparison study between PD-NOMA and SCMA. IEEE Trans. Veh. Technol. 2018, 67, 1830–1834. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Li, S.; Feng, Y.; Sun, Y.; Xia, Z. A Low-Complexity Detector for Uplink SCMA by Exploiting Dynamical Superior User Removal Algorithm. Electronics 2022, 11, 1020. [Google Scholar] [CrossRef]
- Bao, J.; Ma, Z.; Ding, Z.; Karagiannidis, G.K.; Zhu, Z. On the Design of Multiuser Codebooks for Uplink SCMA Systems. IEEE Commun. Lett. 2016, 20, 1920–1923. [Google Scholar] [CrossRef]
- Mheich, Z.; Wen, L.; Xiao, P.; Maaref, A. Design of SCMA Codebooks Based on Golden Angle Modulation. IEEE Trans. Veh. Technol. 2019, 68, 1501–1509. [Google Scholar] [CrossRef]
- Dong, C.; Cai, X.; Niu, K.; Lin, J. An Efficient SCMA Codebook Design Based on 1-D Searching Algorithm. IEEE Commun. Lett. 2018, 22, 2234–2237. [Google Scholar] [CrossRef]
- Yu, L.; Fan, P.; Cai, D.; Ma, Z. Design and Analysis of SCMA Codebook Based on Star-QAM Signaling Constellations. IEEE Trans. Veh. Technol. 2018, 67, 10543–10553. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Chen, J.-W. On the Design of Near-Optimal Sparse Code Multiple Access Codebooks. IEEE Trans. Commun. 2020, 68, 2950–2962. [Google Scholar] [CrossRef]
- Li, X.; Gao, Z.; Gui, Y.; Liu, Z.; Xiao, P.; Yu, L. Design of Power-Imbalanced SCMA Codebook. IEEE Trans. Veh. Technol. 2022, 71, 2140–2145. [Google Scholar] [CrossRef]
- Zheng, Y.; Xin, J.; Wang, H.; Zhang, S.; Qiao, Y. A Low-Complexity Codebook Design Scheme for SCMA Systems Over an AWGN Channel. IEEE Trans. Veh. Technol. 2022, 71, 8675–8688. [Google Scholar] [CrossRef]
- Peng, X.; He, D.; Lin, H.; Li, Y. An Enhanced Multi-User SCMA Codebook Design Over an AWGN Channel. IEEE Commun. Lett. 2024, 28, 1529–1533. [Google Scholar] [CrossRef]
- Lei, T.; Ni, S.; Cheng, N.; Chen, S.; Song, X. SCMA Codebook for Uplink Rician Fading Channels. IEEE Commun. Lett. 2023, 27, 527–531. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Hsu, Y.-C.; Wu, M.-C.; Singh, R.; Chang, Y.-C. On Near-Optimal Codebook and Receiver Designs for MIMO-SCMA Schemes. IEEE Trans. Wirel. Commun. 2022, 21, 10724–10738. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Siu, Y. Low Complexity Message Passing Algorithm for SCMA System. IEEE Commun. Lett. 2016, 20, 2466–2469. [Google Scholar] [CrossRef]
- Jia, M.; Wang, L.; Guo, Q.; Gu, X.; Xiang, W. A Low Complexity Detection Algorithm for Fixed Up-Link SCMA System in Mission Critical Scenario. IEEE Internet Things J. 2018, 5, 3289–3298. [Google Scholar] [CrossRef]
- Du, Y.; Dong, B.; Chen, Z.; Fang, J.; Wang, X. A Fast Convergence Multiuser Detection Scheme for Uplink SCMA Systems. IEEE Wirel. Commun. Lett. 2016, 25, 388–391. [Google Scholar] [CrossRef]
- Du, Y.; Dong, B.; Chen, Z.; Wang, X.; Gao, P. Improved Serial Scheduling-Based Detection for Sparse Code Multiple Access Systems. IEEE Wirel. Commun. Lett. 2017, 6, 570–573. [Google Scholar] [CrossRef]
- Dai, J.; Niu, K.; Dong, C.; Lin, J. Improved Message Passing Algorithms for Sparse Code Multiple Access. IEEE Trans. Veh. Technol. 2017, 66, 9986–9999. [Google Scholar] [CrossRef]
- Han, K.; Hu, J.; Chen, J.; Lu, H. A Low Complexity Sparse Code Multiple Access Detector Based on Stochastic Computing. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 65, 769–782. [Google Scholar] [CrossRef]
- Wei, F.; Chen, W. Low Complexity Iterative Receiver Design for Sparse Code Multiple Access. IEEE Trans. Commun. 2017, 65, 621–634. [Google Scholar] [CrossRef]
- Yang, L.; Ma, X.; Siu, Y. Low Complexity MPA Detector Based on Sphere Decoding for SCMA. IEEE Commun. Lett. 2017, 21, 1855–1858. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, M.; Zhang, C.; Zhang, H.; Huang, Y.; Wang, B. Low Complexity Message Passing Receiver Design for SCMA-GFDM System. IEEE Trans. Veh. Technol. 2024, 73, 18755–18768. [Google Scholar] [CrossRef]
- Du, Y.; Dong, B.; Chen, Z.; Gao, P.; Fang, J. Joint Sparse Graph-Detector Design for Downlink MIMO-SCMA Systems. IEEE Wirel. Commun. Lett. 2017, 6, 14–17. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Hu, J.; Chen, J.; Yang, K. Low-Complexity MIMO-SCMA Detection for LEO Satellite Communications. IEEE Trans. Veh. Technol. 2025, 74, 5253–5258. [Google Scholar] [CrossRef]
- Luo, Q.; Xiao, P.; Liu, Z.; Wan, Z.; Thomos, N.; Gao, Z.; He, Z. AFDM-SCMA: A Promising Waveform for Massive Connectivity Over High Mobility Channels. IEEE Trans. Wirel. Commun. 2024, 23, 14421–14436. [Google Scholar] [CrossRef]
- Luo, Q.; Xiao, P.; Chen, G.; Zhu, J. On the Design of Variable Modulation and Adaptive Modulation for Uplink Sparse Code Multiple Access. IEEE J. Sel. Areas Commun. 2025, 43, 1153–1167. [Google Scholar] [CrossRef]
- Miuccio, L.; Panno, D.; Riolo, S. A Flexible Encoding/Decoding Procedure for 6G SCMA Wireless Networks via Adversarial Machine Learning Techniques. IEEE Trans. Veh. Technol. 2023, 72, 3288–3303. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative Non-Orthogonal Multiple Access in 5G Systems. IEEE Commun. Lett. 2015, 19, 1462–1465. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Z.; Wu, Y.; Fan, P. Novel Relay Selection Strategies for Cooperative NOMA. IEEE Trans. Veh. Technol. 2017, 66, 10114–10123. [Google Scholar] [CrossRef]
- Wan, D.; Wen, M.; Ji, F.; Liu, Y.; Huang, Y. Cooperative NOMA Systems with Partial Channel State Information Over Nakagami-m Fading Channels. IEEE Trans. Commun. 2018, 66, 947–958. [Google Scholar] [CrossRef]
- Kumar, M.H.; Kumar, A.; Sharma, S.; Kumar, M.V. Performance Analysis of a Spatial Modulation Aided Cooperative NOMA System. IEEE Commun. Lett. 2024, 28, 2273–2277. [Google Scholar] [CrossRef]
- Reifert, R.-J.; Dahrouj, H.; Sezgin, A. Extended Reality via Cooperative NOMA in Hybrid Cloud/Mobile-Edge Computing Networks. IEEE Internet Things J. 2024, 11, 12834–12852. [Google Scholar] [CrossRef]
- Tweneboah-Koduah, S.; Affum, E.A.; Agyemang-Prempeh Agyekum, K.; Ajagbe, S.A.; Adigun, M.O. Performance of Cooperative Relay NOMA with Large Antenna Transmitters. Electronics 2022, 11, 3482. [Google Scholar] [CrossRef]
- Wang, H.; Dong, J.; Tang, K.; Shi, H. Outage Performance Analysis of NOMA in Wireless Powered Cognitive Radio Networks with AF and DF Relaying Techniques. Entropy 2021, 23, 1463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Wang, D.; Lan, Y.; Zhang, Y. Outage Performance of Relay Sparse Code Multiple Access Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Heo, E.; Kim, N.; Park, H. Sparse structure-based channel estimation for uplink SCMA system. IEEE Trans. Veh. Technol. 2017, 66, 8037–8046. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Zhang, M.; Su, R. Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems. Entropy 2025, 27, 762. https://doi.org/10.3390/e27070762
Cheng H, Zhang M, Su R. Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems. Entropy. 2025; 27(7):762. https://doi.org/10.3390/e27070762
Chicago/Turabian StyleCheng, Hao, Min Zhang, and Ruoyu Su. 2025. "Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems" Entropy 27, no. 7: 762. https://doi.org/10.3390/e27070762
APA StyleCheng, H., Zhang, M., & Su, R. (2025). Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems. Entropy, 27(7), 762. https://doi.org/10.3390/e27070762