Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = onion films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1488 KiB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Viewed by 278
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 717
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

16 pages, 2440 KiB  
Article
Optimization of Cassava Starch/Onion Peel Powder-Based Bioplastics: Influence of Composition on Mechanical Properties and Biodegradability Using Central Composite Design
by Assala Torche, Chouana Toufik, Fairouz Djeghim, Ibtissem Sanah, Rabah Arhab, Maria D’Elia and Luca Rastrelli
Foods 2025, 14(14), 2414; https://doi.org/10.3390/foods14142414 - 8 Jul 2025
Viewed by 472
Abstract
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), [...] Read more.
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), a byproduct rich in quercetin derivatives, as a reinforcing agent and plasticized with crude glycerol. A Central Composite Design (CCD), implemented using Minitab 19, was employed to investigate the effects of starch (60–80%) and OPP (0–40%) content on the mechanical properties and biodegradability of the resulting bioplastics. Three optimized formulations were identified according to specific performance criteria. The first formulation, containing 72.07% starch and 21.06% OPP, was optimized for maximum tensile strength while maintaining target values for elongation and biodegradability. The second, composed of 77.28% starch and 37.69% OPP, was optimized to enhance tensile strength and biodegradability while minimizing elongation. The third formulation, with 84.56% starch and 27.74% OPP, aimed to achieve a balanced optimization of tensile strength, elongation, and biodegradability. After a 30-day soil burial test, these formulations exhibited weight loss percentages of 31.86%, 29.12%, and 29.02%, respectively, confirming their biodegradability. This study optimized the mechanical and biodegradability properties of cassava starch-based bioplastics using statistical modeling. The optimized formulations show potential for application in sustainable food packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

29 pages, 3201 KiB  
Review
Screen Printing for Energy Storage and Functional Electronics: A Review
by Juan C. Rubio and Martin Bolduc
Electron. Mater. 2025, 6(2), 7; https://doi.org/10.3390/electronicmat6020007 - 30 May 2025
Cited by 1 | Viewed by 1832
Abstract
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, [...] Read more.
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, mesh selection and squeegee dynamics govern film uniformity, pattern resolution and ultimately device performance. Recent progress in advanced ink systems is surveyed, highlighting carbon allotropes (graphene, carbon nano-onions, carbon nanotubes, graphite), silver and copper nanostructures, MXene and functional oxides that collectively enhance mechanical robustness, electrical conductivity and radio-frequency behavior. Parallel improvements in substrate engineering such as polyimide, PET, TPU, cellulose and elastomers demonstrate the technique’s capacity to accommodate complex geometries for wearable, medical and industrial applications while supporting environmentally responsible material choices such as water-borne binders and bio-based solvents. By mapping two decades of developments across energy-storage layers and functional electronics, the article identifies the key process elements, recurring challenges and emerging sustainable practices that will guide future optimization of screen-printing materials and protocols for high-performance, customizable and eco-friendly flexible devices. Full article
Show Figures

Figure 1

20 pages, 7568 KiB  
Article
Carbon Nano-Onions–Polyvinyl Alcohol Nanocomposite for Resistive Monitoring of Relative Humidity
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Carmen Dumbravescu, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Cosmin Romanitan and Oana Brincoveanu
Sensors 2025, 25(10), 3047; https://doi.org/10.3390/s25103047 - 12 May 2025
Viewed by 594
Abstract
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The [...] Read more.
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The sensing device, including a Si/SiO2 substrate and gold electrodes, is obtained by depositing the CNOs–PVA aqueous suspension on the sensing structure by drop casting. The composition and morphology of the sensing film are explored by means of scanning electron microscopy, Raman spectroscopy, atomic force microscopy, and X-ray diffraction. The manufactured sensor’s room temperature RH detection performance is examined by applying a continuous flow of the electric current between the interdigitated electrodes and measuring the voltage as the RH varies from 5% to 95%. For RH below 82% (sensing layer based on CNOs–PVA at 1/1 w/w ratio) or below 50.5% (sensing layer based on CNOs–PVA at 2/1 w/w ratio), the resistance varies linearly with RH, with a moderate slope. The newly developed sensor, using CNOs–PVA at a 1:1 ratio (w/w), responded as well as or better than the reference sensor. At the same time, the recorded recovery time was about 30 s, which is half the recovery time of the reference sensor. Additionally, the changes in resistance (ΔR/ΔRH) for different humidity levels showed that the CNOs–PVA layer at 1:1 was more sensitive at humidity levels above 80%. The main RH sensing mechanisms considered and discussed are the decrease in the hole concentration in the CNOs during the interaction with an electron donor molecule, such as water, and the swelling of the hydrophilic PVA. The experimental RH detection data are analyzed and compared with the RH sensing results reported in previously published work on RH detectors employing sensing layers based on oxidized carbon nanohorns–polyvinylpirrolidone (PVP), oxidized carbon nanohorns–PVA and CNOs–polyvinylpyrrolidone. Full article
Show Figures

Figure 1

22 pages, 1293 KiB  
Review
Development and Valuation of Novel PLA-Based Biodegradable Packaging Materials Complemented with Food Waste of Plant and Animal Origin for Shelf-Life Extension of Selected Foods: Trends and Challenges
by Dimitrios G. Lazaridis, Nikolaos D. Andritsos, Aris E. Giannakas and Ioannis K. Karabagias
Sustainability 2025, 17(2), 720; https://doi.org/10.3390/su17020720 - 17 Jan 2025
Cited by 2 | Viewed by 3307
Abstract
Food waste and food waste by-products have gained considerable attention in recent years. Based on the principles of circular economy, these materials can be used for the preparation of novel and biodegradable packaging materials for food preservation. Among the matrices that have been [...] Read more.
Food waste and food waste by-products have gained considerable attention in recent years. Based on the principles of circular economy, these materials can be used for the preparation of novel and biodegradable packaging materials for food preservation. Among the matrices that have been well exploited, poly-lactic acid (PLA) comprises a key material to be fortified with food waste by-products, as shown by numerous studies in the recent literature. In this context, the aim of the present review was to provide an overview of the literature on the most recent trends in the use of PLA and food waste by-products to prepare films for the shelf-life extension of foods of animal or plant origin. The results showed that the use of PLA packaging films fortified with food waste by-products of plant or animal origin has greatly expanded in the last 20 years. The application of these novel packaging materials to foods has led to considerable shelf-life extension and stability. However, there is still a gap in the use of specific food waste by-products of plant origin, such as peels, seeds, or gels (i.e., onion peels, grape seed extract, grape pomace, prickly pear cladode gel) or animal food waste by-products (i.e., whey, collagen, gelatin), to prepare PLA-based packaging films. The present review, which comprises the thematic issue of an ongoing doctoral study, examines trends and challenges with regard to this topic that have not been extensively studied. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Graphical abstract

14 pages, 3108 KiB  
Article
Evaluation of Platonia insignis Mart. (Bacuri Butter) and Biopolymers from the Puree of Allium cepa L. (Yellow Onion Bulb) for Wound Healing in Horses
by André M. Resende, Beatriz A. Miranda, Luiza B. Silva, Andressa B. Oliveira, Márcio B. Castro, Isabel L. Macêdo, Bruno S. L. Dallago, Hernane S. Barud, Marco A. Costa Borges, Clovis A. Ribeiro, Diogenes S. Dias and Rita C. Campebell
Pharmaceutics 2024, 16(11), 1457; https://doi.org/10.3390/pharmaceutics16111457 - 15 Nov 2024
Viewed by 992
Abstract
Background/Objectives: Skin injuries are common in the equine clinical practice, requiring effective treatment to support natural healing. Bacuri butter is gaining attention for its potential in wound healing and its anti-inflammatory, antimicrobial, and antioxidant properties. Natural polymers such as onion (Allium cepa [...] Read more.
Background/Objectives: Skin injuries are common in the equine clinical practice, requiring effective treatment to support natural healing. Bacuri butter is gaining attention for its potential in wound healing and its anti-inflammatory, antimicrobial, and antioxidant properties. Natural polymers such as onion (Allium cepa) bioplastics have been investigated for their potential as occlusive dressings and for tissue regeneration. Methods: This study evaluated the healing process of experimentally induced skin wounds on horses treated with bacuri butter, washed onion film, and unwashed onion film. Clinical and histopathological analyses of the wounds were conducted in six clinically healthy horses over 28 days, with a control group receiving Ringer’s lactate solution. The onion films were produced and characterized for their chemical structure and properties, while the bacuri butter was sourced and prepared for application. Results: All treatments, including the control group, promoted wound healing without relevant differences in wound contraction rates, gross aspect, or histopathological parameters. Conclusions: Therefore, despite minor variations observed in the clinical evaluations between the treatment groups, the bacuri butter or onion biopolymer showed no significant healing effect on skin wounds in horses. Additionally, this study showed the potential of equine models in testing novel therapeutic approaches for wound healing, benefiting both veterinary and human medicine. Full article
(This article belongs to the Special Issue Prospects of Hydrogels in Wound Healing)
Show Figures

Figure 1

12 pages, 2735 KiB  
Article
PTHF/LATP Composite Polymer Electrolyte for Solid State Batteries
by Elmira Nurgaziyeva, Gulnur Turlybay, Aigul Tugelbayeva, Almagul Mentbayeva and Sandugash Kalybekkyzy
Polymers 2024, 16(22), 3176; https://doi.org/10.3390/polym16223176 - 14 Nov 2024
Cited by 2 | Viewed by 2357
Abstract
The novel crosslinked composite polymer electrolyte (CPE) was developed and investigated using polytetrahydrofuran (PTHF) and polyethyleneglycol diacrylate (PEGDA), incorporating lithium aluminum titanium phosphate (LATP) particles and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Composite polymer electrolytes (CPEs) for solid-state lithium-ion batteries (LIBs) were synthesized by harnessing [...] Read more.
The novel crosslinked composite polymer electrolyte (CPE) was developed and investigated using polytetrahydrofuran (PTHF) and polyethyleneglycol diacrylate (PEGDA), incorporating lithium aluminum titanium phosphate (LATP) particles and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Composite polymer electrolytes (CPEs) for solid-state lithium-ion batteries (LIBs) were synthesized by harnessing the synergistic effects of PTHF crosslinking and the addition of LATP ceramics, while systematically varying the film composition and LATP content. CPEs containing 15 wt% LATP (PPL15) demonstrated improved mechanical strength and electrochemical stability, achieving a high conductivity of 1.16 × 10−5 S·cm−1 at 80 °C, outperforming conventional PEO-based polymer electrolytes. The CPE system effectively addresses safety concerns and mitigates the rapid degradation typically associated with polyether electrolytes. The incorporation of PEGDA not only enhances mechanical stability but also facilitates lithium salt dissociation and ion transport, leading to a uniform microstructure free from agglomerated particles. The temperature-dependent ionic conductivity measurements indicated optimal performance at lower LATP concentrations, highlighting the impact of ceramic particle agglomeration onion transport pathways. These findings contribute to advancing solid-state battery systems toward practical application. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 5669 KiB  
Article
Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate
by Ayoub Taallah, Shanling Wang, Omololu Odunmbaku, Lin Zhang, Xilong Guo, Yixin Dai, Wenkang Li, Huanqing Ye, Hansong Wu, Jiaxin Song, Jian Guo, Jiqiu Wen, Yi He and Filippo S. Boi
C 2024, 10(4), 91; https://doi.org/10.3390/c10040091 - 12 Oct 2024
Viewed by 1691
Abstract
Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the [...] Read more.
Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the electronic properties in these systems. The nucleation of hexagonal moiré superlattices and other types of stacking faults has also been demonstrated in partially collapsed and uncollapsed carbon nano-onions (CNOs). Here, we report a novel investigation on the dynamics of stacking fault nucleation within the multilayered lattices of micrometer-scale vertically oriented films of multiwall CNTs (MWCNTs), resulting from the pyrolysis of molecular precursors consisting of ferrocene or dimethyl ferrocene, at low vapor flow rates of ~5–20 mL/min. Interestingly, local nucleation of moiré-like superlattices (as stacking faults) was found when employing dimethyl ferrocene as the pyrolysis precursor. The morphological and structural properties of these systems were investigated with the aid of scanning and transmission electron microscopies, namely SEM, TEM, and HRTEM, as well as X-ray diffraction (XRD) and Raman point/mapping spectroscopy. Deconvolution analyses of the Raman spectra also demonstrated a local surface oxidation, possibly occurring on defect-rich interfaces, frequently identified within or in proximity of bamboo-like graphitic caps. By employing high-temperature Raman spectroscopy, we demonstrate a post-growth re-graphitization, which may also be visualized as an alternative way of depleting the oxygen content within the MWCNTs’ interfaces through recrystallization. Full article
(This article belongs to the Special Issue Characterization of Disorder in Carbons (2nd Edition))
Show Figures

Figure 1

16 pages, 4037 KiB  
Article
Antimicrobial Properties of Newly Developed Silver-Enriched Red Onion–Polymer Composites
by Judita Puišo, Jonas Žvirgždas, Algimantas Paškevičius, Shirin Arslonova and Diana Adlienė
Antibiotics 2024, 13(5), 441; https://doi.org/10.3390/antibiotics13050441 - 14 May 2024
Cited by 6 | Viewed by 2419
Abstract
Simple low-cost, nontoxic, environmentally friendly plant-extract-based polymer films play an important role in their application in medicine, the food industry, and agriculture. The addition of silver nanoparticles to the composition of these films enhances their antimicrobial capabilities and makes them suitable for the [...] Read more.
Simple low-cost, nontoxic, environmentally friendly plant-extract-based polymer films play an important role in their application in medicine, the food industry, and agriculture. The addition of silver nanoparticles to the composition of these films enhances their antimicrobial capabilities and makes them suitable for the treatment and prevention of infections. In this study, polymer-based gels and films (AgRonPVA) containing silver nanoparticles (AgNPs) were produced at room temperature from fresh red onion peel extract (“Ron”), silver nitrate, and polyvinyl alcohol (PVA). Silver nanoparticles were synthesized directly in a polymer matrix, which was irradiated by UV light. The presence of nanoparticles was approved by analyzing characteristic local surface plasmon resonance peaks occurring in UV-Vis absorbance spectra of irradiated experimental samples. The proof of evidence was supported by the results of XRD and EDX measurements. The diffusion-based method was applied to investigate the antimicrobial activity of several types of microbes located in the environment of the produced samples. Bacteria Staphylococcus aureus ATCC 29213, Acinetobacter baumannii ATCC BAA 747, and Pseudomonas aeruginosa ATCC 15442; yeasts Candida parapsilosis CBS 8836 and Candida albicans ATCC 90028; and microscopic fungi assays Aspergillus flavus BTL G-33 and Aspergillus fumigatus BTL G-38 were used in this investigation. The greatest effect was observed on Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa bacteria, defining these films as potential candidates for antimicrobial applications. The antimicrobial features of the films were less effective against fungi and the weakest against yeasts. Full article
(This article belongs to the Special Issue Silver and Gold Compounds as Antibiotics)
Show Figures

Figure 1

16 pages, 5348 KiB  
Article
Evaluation the Potential of Onion/Laponite Composites Films for Sustainable Food Packaging with Enhanced UV Protection and Antioxidant Capacity
by Maciel L. Barbosa, Leticia M. de Oliveira, Robert Paiva, Alessandra C. Dametto, Diogenes dos S. Dias, Clovis A. Ribeiro, Magdalena Wrona, Cristina Nerín, Hernane da S. Barud and Sandra A. Cruz
Molecules 2023, 28(19), 6829; https://doi.org/10.3390/molecules28196829 - 27 Sep 2023
Cited by 8 | Viewed by 2101
Abstract
Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated [...] Read more.
Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated the effect of Laponite clay concentration on the physicochemical and antioxidant properties of the onion-based films, which were prepared by a casting method. The XRD and FTIR data confirm the presence of the mineral clay in the onion-based films. These findings are consistent with those obtained from FE-SEM analysis, which revealed the presence of typical Laponite grains. In terms of wettability, the results show that the clay decreases the hydrophilic character of the material but slightly increases the water vapor permeation. Optical characterization revealed that the materials exhibited zero transmittance in the UV region and increased opacity in the visible region for composites containing 5% and 10% Laponite. Furthermore, the antioxidant test demonstrated higher antioxidant potential in the composites compared to the pure films. Consequently, these results suggest that the formation of Laponite and onion composites could be an essential strategy for developing natural polymers in the field of food contact packaging. Full article
Show Figures

Figure 1

14 pages, 5036 KiB  
Article
Application of Red Onion Peel Extract for Green Synthesis of Silver Nanoparticles in Hydrogels Exhibiting Antimicrobial Properties
by Judita Puišo, Algimantas Paškevičius, Jonas Žvirgždas, Todorka L. Dimitrova, Andrejus Litvakas and Diana Adliene
Gels 2023, 9(6), 498; https://doi.org/10.3390/gels9060498 - 19 Jun 2023
Cited by 4 | Viewed by 4286
Abstract
UV-initiated green synthesis of metal nanoparticles by using plant extracts as photoreducing agents is of particular interest since it is an environmentally friendly, easy-to-maintain, and cost-effective method. Plant molecules that act as reducing agents are assembled in a highly controlled way which makes [...] Read more.
UV-initiated green synthesis of metal nanoparticles by using plant extracts as photoreducing agents is of particular interest since it is an environmentally friendly, easy-to-maintain, and cost-effective method. Plant molecules that act as reducing agents are assembled in a highly controlled way which makes them suitable for metal nanoparticle synthesis. Depending on the plant species, their application for green synthesis of metal nanoparticles for diverse applications may contribute to the mediation/reduction in organic waste amounts, thus enabling the implementation of the circular economy concept. In this work, UV-initiated green synthesis of Ag nanoparticles in hydrogels and hydrogel’s thin films containing gelatin (matrix), red onion peel extract of different concentrations, water, and a small amount of 1 M AgNO3 have been investigated and characterized using UV-Vis spectroscopy, SEM and EDS analysis, XRD technique, performing swelling experiments and antimicrobial tests using bacteria (Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa), yeasts (Candida parapsilosis, Candida albicans) and microscopic fungi (Aspergillus flavus, Aspergillus fumigatus). It was found that the antimicrobial effectiveness of the silver-enriched red onion peel extract–gelatin films was higher at lower AgNO3 concentrations as compared to those usually used in the commercially available antimicrobial products. The enhancement of the antimicrobial effectiveness was analyzed and discussed, assuming the synergy between photoreducing agent (red onion peel extract) and silver nitrate (AgNO3) in the initial gel solutions leading to the intensification of Ag nanoparticles production. Full article
(This article belongs to the Special Issue Advance in Composite Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 4303 KiB  
Article
Self-Supported Biopolymeric Films Based on Onion Bulb (Allium cepa L.): Gamma-Radiation Effects in Sterilizing Doses
by Marco Antonio da Costa Borges, Amanda Rinaldi Sorigotti, Rafaella Takehara Paschoalin, José Alberto Paris Júnior, Lucas Henrique Domingos da Silva, Diógenes Santos Dias, Clóvis Augusto Ribeiro, Elmo Silvano de Araújo, Flávia Aparecida Resende and Hernane da Silva Barud
Polymers 2023, 15(4), 914; https://doi.org/10.3390/polym15040914 - 11 Feb 2023
Cited by 3 | Viewed by 2670
Abstract
Sterilization is a fundamental step to eliminate microorganisms prior to the application of products, especially in the food and medical industries. γ-irradiation is one of the most recommended and effective methods used for sterilization, but its effect on the properties and performance of [...] Read more.
Sterilization is a fundamental step to eliminate microorganisms prior to the application of products, especially in the food and medical industries. γ-irradiation is one of the most recommended and effective methods used for sterilization, but its effect on the properties and performance of bio-based polymers is negligible. This work is aimed at evaluating the influence of γ-radiation at doses of 5, 10, 15, 25, 30, and 40 kGy on the morphology, properties, and performance of bioplastic produced from onion bulb (Allium cepa L.), using two hydrothermal synthesis procedures. These procedures differ in whether the product is washed or not after bioplastic synthesis, and are referred to as the unwashed hydrothermally treated pulp (HTP) and washed hydrothermally treated pulp (W-HTP). The morphological analysis indicated that the film surfaces became progressively rougher and more irregular for doses above 25 kGy, which increases their hydrophobicity, especially for the W-HTP samples. In addition, the FTIR and XRD results indicated that irradiation changed the structural and chemical groups of the samples. There was an increase in the crystallinity index and a predominance of the interaction of radiation with the hydroxyl groups—more susceptible to the oxidative effect—besides the cleavage of chemical bonds depending on the γ-radiation dose. The presence of soluble carbohydrates influenced the mechanical behavior of the samples, in which HTP is more ductile than W-HTP, but γ-radiation did not cause a change in mechanical properties proportionally to the dose. For W-HTP, films there was no mutagenicity or cytotoxicity—even after γ-irradiation at higher doses. In conclusion, the properties of onion-based films varied significantly with the γ-radiation dose. The films were also affected differently by radiation, depending on their chemical composition and the change induced by washing, which influences their use in food packaging or biomedical devices. Full article
(This article belongs to the Special Issue Biopolymers-Based Composites for Multifunctional Applications)
Show Figures

Graphical abstract

19 pages, 3939 KiB  
Article
Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin
by Cuntang Wang, Yueyi Lu, Ziyu Li, Xuanzhe An, Zengming Gao and Shengxin Tian
Polymers 2022, 14(15), 2986; https://doi.org/10.3390/polym14152986 - 23 Jul 2022
Cited by 22 | Viewed by 4042
Abstract
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as [...] Read more.
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as well as the antioxidant and antibacterial properties, of CS/κC films were also discussed. The addition of ethanol extract of onion skin inhibited the recrystallization of starch molecules in the composite films. It affected the microstructure of the composite films. The color of the composite films was deepened, the brightness was reduced, and the opacity was increased. Water vapor permeability increased, tensile strength decreased, and elongation at the break increased. The glass-transition temperature decreased. The clearance of DPPH radicals and ABTS cation radicals increased. Moreover, when the concentration of EEOS was 3%, the antioxidant effect of the films on oil was greatly improved and could effectively inhibit Staphylococcus aureus and Escherichia coli. The above results showed that adding ethanol extract of onion skin improved the physicochemical properties and biological activities of the CS/κC composite films, so CS/κC/EEOS composite films can be used as an active packaging material to extend food shelf-life. These results can provide a theoretical basis for the production and application of corn starch/κ-carrageenan/ethanol extract of onion skin composite films. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

13 pages, 840 KiB  
Article
Effect of Edible Onion (Allium cepa L.) Film on Quality, Sensory Properties and Shelf Life of Beef Burger Patties
by Kallyne Sousa Soares, Marthyna Pessoa Souza, Edson C. Silva-Filho, Hernane Silva Barud, Clóvis Augusto Ribeiro, Diógenes Dias Santos, Karla Nayalle Souza Rocha, José Fabio Paulino de Moura, Ronaldo Lopes Oliveira and Leilson Rocha Bezerra
Molecules 2021, 26(23), 7202; https://doi.org/10.3390/molecules26237202 - 27 Nov 2021
Cited by 15 | Viewed by 4879
Abstract
The production of edible film from onion (Allium cepa L.) to be applied as packaging is attractive, due to its chemical properties and biodegradable characteristics. Thus, we tested the hypothesis that edible onion film can positively influence the sensory properties, quality and [...] Read more.
The production of edible film from onion (Allium cepa L.) to be applied as packaging is attractive, due to its chemical properties and biodegradable characteristics. Thus, we tested the hypothesis that edible onion film can positively influence the sensory properties, quality and increasing shelf life of beef burgers patties. The experiment was designed in a 4 × 2 factorial scheme, with two treatments (beef burgers patties with or without edible onion film) at an interval of four storage times (0, 3, 6 and 9 days) at 4 °C. The uncoated burger patties (control) suffered the most intense color modifications during the storage (p < 0.05). The luminosity index was higher (p < 0.05) in the control at all storage times, except at day 6, and redness, yellowness and chrome were higher (p < 0.05) in the edible onion film patties at all storage times. The pH of the beef burger patties was lower (p < 0.05) at all storage times when the edible onion film was applied. For the texture profile, only the chewiness was affected, as the inclusion of the edible onion film improved the chewing of the beef burgers patties over the storage time (p < 0.05). Additionally, there was an inhibition of the microbial growth of mesophiles and psychrophiles with the application of the edible onion film in beef burgers patties. The use of edible onion film improved the perception of panelists for the variables texture, color, flavor, odor and overall appearance, and increased the preference of panelists. The edible onion film is recommended for preserving beef burgers patties, as it delays the proliferation of unwanted microorganisms, stabilizes and improves the color parameters and sensory attributes, and increases the overall acceptance of the consumer. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Graphical abstract

Back to TopTop