Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = one-step hydrothermal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9020 KiB  
Article
Cu2+ Intercalation and Structural Water Enhance Electrochemical Performance of Cathode in Zinc-Ion Batteries
by He Lin, Mengdong Wei and Yu Zhang
Molecules 2025, 30(15), 3092; https://doi.org/10.3390/molecules30153092 - 24 Jul 2025
Viewed by 266
Abstract
This study investigates the performance of Cu-intercalated V3O7·H2O (CuVOH) as a cathode material for aqueous zinc-ion batteries (AZIBs). Density Functional Theory (DFT) calculations were conducted to explore the effects of Cu2+ incorporation and structural water on [...] Read more.
This study investigates the performance of Cu-intercalated V3O7·H2O (CuVOH) as a cathode material for aqueous zinc-ion batteries (AZIBs). Density Functional Theory (DFT) calculations were conducted to explore the effects of Cu2+ incorporation and structural water on the electrochemical performance of VOH. The results indicated that Cu2+ and structural water enhance Zn2+ diffusion by reducing electrostatic resistance and facilitating faster transport. Based on these insights, CuVOH nanobelts were synthesized via a one-step hydrothermal method. The experimental results confirmed the DFT predictions, demonstrating that CuVOH exhibited an initial discharge capacity of 336.1 mAh g−1 at 0.2 A g−1 and maintained a high cycling stability with 98.7% retention after 1000 cycles at 10 A g−1. The incorporation of Cu2+ pillars and interlayer water improved the structural stability and Zn2+ diffusion, offering enhanced rate performance and long-term cycling stability. The study highlights the effective integration of computational and experimental methods to optimize cathode materials for high-performance AZIBs, providing a promising strategy for the development of stable and efficient energy storage systems. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

15 pages, 11349 KiB  
Article
Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation
by Congyu Cai, Shuwen Wang, Pingping Wan, Haoying Cai, Minhui Pan and Weiwei Wang
Inorganics 2025, 13(7), 227; https://doi.org/10.3390/inorganics13070227 - 6 Jul 2025
Viewed by 445
Abstract
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a [...] Read more.
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a nanoflower-like architecture with a high specific surface area of 81.27 m2/g. Optical and electrochemical analyses revealed efficient charge separation and extended visible-light response. Under visible-light irradiation (λ > 420 nm), this heterojunction (Bi2O3:Bi2MoO6 = 3:7) demonstrated exceptional performance, degrading 97.06% of phenol (30 mg/L) within 60 min. XPS analysis confirmed the Z-scheme charge transfer mechanism: Photogenerated electrons in the conduction band of Bi2O3 (−0.59 eV) facilitated the generation of ·O2 radicals, while holes in the valence band of Bi2MoO6 (2.44 eV) predominantly produced ·OH radicals. This synergistic effect resulted in highly efficient mineralization and degradation of phenol. Full article
Show Figures

Graphical abstract

15 pages, 1555 KiB  
Article
Synthesis and Characterization of Temperature- and pH-Responsive PIA-b-PNIPAM@Fe3O4 Nanocomposites
by Swati Kumari, Cayla Cook, Fatema Tarannum, Erick S. Vasquez-Guardado, Olufemi Ogunjimi and Keisha B. Walters
Nanomaterials 2025, 15(13), 1041; https://doi.org/10.3390/nano15131041 - 4 Jul 2025
Viewed by 429
Abstract
Stimuli-responsive polymers (SRPs) have garnered significant attention in recent decades due to their immense potential in biomedical and environmental applications. When these SRPs are grafted onto magnetic nanoparticles, they form multifunctional nanocomposites capable of various complex applications, such as targeted drug delivery, advanced [...] Read more.
Stimuli-responsive polymers (SRPs) have garnered significant attention in recent decades due to their immense potential in biomedical and environmental applications. When these SRPs are grafted onto magnetic nanoparticles, they form multifunctional nanocomposites capable of various complex applications, such as targeted drug delivery, advanced separations, and magnetic resonance imaging. In this study, we employed a one-step hydrothermal method using 3-aminopropyltrimethoxysilane (APTES) to synthesize APTES-modified Fe3O4 nanoparticles (APTES@Fe3O4) featuring reactive terminal amine groups. Subsequently, via two consecutive surface-initiated atom transfer radical polymerizations (SI-ATRP), pH- and temperature-responsive polymer blocks were grown from the Fe3O4 surface, resulting in the formation of poly(itaconic acid)-block-poly(N-isopropyl acrylamide) (PIA-b-PNIPAM)-grafted nanomagnetic particles (PIA-b-PNIPAM@Fe3O4). To confirm the chemical composition and assess how the particle morphology and size distribution of these SRP-based nanocomposites change in response to ambient pH and temperature stimuli, various characterization techniques were employed, including transmission electron microscopy, differential light scattering, and Fourier transform infrared spectroscopy. The results indicated successful synthesis, with PIA-b-PNIPAM@Fe3O4 demonstrating sensitivity to both temperature and pH. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

14 pages, 2310 KiB  
Article
High-Performance Electrochromic Energy Storage Devices Based on Hexagonal WO3 and SnO2/PB Composite Films
by Yi Wang, Zilong Zhang, Ze Wang, Yujie Yan, Tong Feng and An Xie
Materials 2025, 18(12), 2871; https://doi.org/10.3390/ma18122871 - 17 Jun 2025
Cited by 1 | Viewed by 334
Abstract
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices [...] Read more.
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices with enhanced performance. However, achieving an efficient and straightforward synthesis of WO3 electrochromic films, while simultaneously ensuring high coloration efficiency and energy storage capability, remains a significant challenge. In this work, a low-temperature hydrothermal approach is employed to directly grow hexagonal-phase WO3 films on FTO substrates. This process utilizes sorbitol to promote nucleation and rubidium sulfate to regulate crystal growth, enabling a one-step in situ fabrication strategy. To complement the high-performance WO3 cathode, a composite PB/SnO2 film was designed as the anode, offering improved electrochromic properties and enhanced stability. The assembled EESD exhibited fast bleaching/coloration response and a high coloration efficiency of 101.2 cm2 C−1. Furthermore, it exhibited a clear and reversible change in optical properties, shifting from a transparent state to a deep blue color, with a transmittance modulation reaching 81.47%. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

10 pages, 2314 KiB  
Article
One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
by Viet-Hung Hoang, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam and Thanh-Tung Duong
Electrochem 2025, 6(2), 22; https://doi.org/10.3390/electrochem6020022 - 16 Jun 2025
Cited by 1 | Viewed by 628
Abstract
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers [...] Read more.
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers with the increase in Sb content. The resulting various Sb-doping content ATO nanoparticles were coated onto a Ti foil substrate as an electrode for further electrochemical evaluation. The findings demonstrate that the prepared 30% Sb-doped ATO nanoparticles serve as a high-conductivity electrode material with excellent reversibility, substantial specific capacitance, and superior capacitance retention. The 30% ATO electrode exhibits the highest specific capacitance of 343.2 F g−1 at a current density of 1 A g−1 and maintains 93% of its capacitance after the first 10 charge/discharge cycles. The results indicate that ATO materials prepared by the hydrothermal method are promising candidates for supercapacitor electrodes. Full article
Show Figures

Figure 1

12 pages, 2549 KiB  
Article
MOF-Derived Electrocatalysts for High-Efficiency Hydrogen Production via Water Electrolysis
by Nan Zhang, Pengfei Cui, Jinrong Zhang and Yang Qiao
Catalysts 2025, 15(6), 579; https://doi.org/10.3390/catal15060579 - 10 Jun 2025
Viewed by 905
Abstract
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However, practical implementation is hindered by challenges such as high overpotentials, high catalysts costs, and insufficient catalytic activity. In this study, three [...] Read more.
Water electrolysis for hydrogen production has garnered significant attention in the context of increasing global energy demands and the “dual-carbon” strategy. However, practical implementation is hindered by challenges such as high overpotentials, high catalysts costs, and insufficient catalytic activity. In this study, three mono and bimetallic metal−organic framework (MOFs)-derived electrocatalysts, Fe-MOFs, Fe/Co-MOFs, and Fe/Mn-MOFs, were synthesized via a one-step hydrothermal method, using nitro-terephthalic acid (NO2-BDC) as the ligand and N,N-dimethylacetamide (DMA) as the solvent. Electrochemical tests demonstrated that the Fe/Mn-MOFs catalyst exhibited superior performance, achieving an overpotential of 232.8 mV and a Tafel slope of 59.6 mV·dec−1, alongside the largest electrochemical active surface area (ECSA). In contrast, Fe/Co-MOFs displayed moderate catalytic activity, while Fe-MOFs exhibited the lowest efficiency. Stability tests revealed that Fe/Mn-MOFs retained 92.3% of its initial current density after 50 h of continuous operation, highlighting its excellent durability for the oxygen evolution reaction (OER). These findings emphasize the enhanced catalytic performance of bimetallic MOFs compared to monometallic counterparts and provide valuable insights for the development of high-efficiency MOF-based electrocatalysts for sustainable hydrogen production. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

12 pages, 5324 KiB  
Article
One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism
by Beibei Wang, Ling Sun, Kai Liu, Di Wu, Jinqiu Wang and Fang Geng
Chemistry 2025, 7(3), 94; https://doi.org/10.3390/chemistry7030094 - 6 Jun 2025
Viewed by 534
Abstract
Multicolour graphene quantum dots (GQDs), from blue to orange emitting, were successfully synthesized via a one-step hydrothermal method using potassium hydrogen phthalate and o-phenylenediamine as the raw materials. After purification by silica gel column chromatography, four kinds of GQDs with maximum emission wavelengths [...] Read more.
Multicolour graphene quantum dots (GQDs), from blue to orange emitting, were successfully synthesized via a one-step hydrothermal method using potassium hydrogen phthalate and o-phenylenediamine as the raw materials. After purification by silica gel column chromatography, four kinds of GQDs with maximum emission wavelengths of 420 nm (blue), 500 nm (green), 540 nm (yellow), and 555 nm (orange) were obtained, and all had a high quantum yield (9.7%, 8.8%, 9.3%, and 10.3%, respectively). The structural characterization revealed that the synthesized GQDs had a regular morphology, with a size of 2–3 nm and a thickness of 1–2 nm. The D-band-to-G-band ratio was less than 0.3, indicating that the GQDs had a high degree of graphitization. In addition, the emission peaks of the GQDs were red-shifted as the particle size increased, confirming that their luminescence was dominated by the quantum confinement effect. By analyzing the surface states and the functional groups of the multicolour GQDs, it was found that the GQDs had a similar elemental composition, which further proved that the emission wavelengths did not depend on the surface element composition, but conformed to the luminescence mechanism regulated by the quantum-limited effect. Furthermore, the four types of GQDs exhibited low cytotoxicity and good stability, suggesting their potential applications in biomarkers and for the synchronous detection of a variety of analytes. Full article
(This article belongs to the Section Chemistry at the Nanoscale)
Show Figures

Graphical abstract

11 pages, 2568 KiB  
Article
Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater
by Shengyao Ma, Wu Yang, Weilu Yang and Yu Chen
Separations 2025, 12(6), 153; https://doi.org/10.3390/separations12060153 - 6 Jun 2025
Viewed by 334
Abstract
Hydrothermal conversion is an effective strategy to transform heavy metals in electroplating sludge into catalytic materials and use them to treat electroplating wastewater. This study presents a one-step hydrothermal method for converting Sn-bearing sludge, containing 23.41% Sn, 52.12% Fe, and other impurities, into [...] Read more.
Hydrothermal conversion is an effective strategy to transform heavy metals in electroplating sludge into catalytic materials and use them to treat electroplating wastewater. This study presents a one-step hydrothermal method for converting Sn-bearing sludge, containing 23.41% Sn, 52.12% Fe, and other impurities, into Fe/S rods using a NaOH/Na2S solution. The resulting Fe/S rods, with a diameter of 50–100 nm and length of 0.5–2.5 μm, showed excellent performance in wastewater treatment. In the presence of 50 mg/L EDTA, the Fe/S rods removed 22.9% of Ni, 30.2% of Cu, and 41.5% of Zn. When activated with PMS, the removal efficiencies increased significantly to 68.9%, 90.9%, and 91.6% for Ni, Cu, and Zn, respectively. The optimal rod dosage (1 g/L) achieved removal efficiencies of 94.2%, 78.5%, and 99.7% for Cu, Ni, and Zn, while increasing PMS dosage led to nearly 100% removal within 60 min. Additionally, the process allowed for the complete recycling of the alkaline solution, with regenerated rods showing similar performance to the original ones in wastewater treatment. This method offers an efficient and sustainable approach to sludge resource utilization and heavy metal removal from wastewater. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

14 pages, 4502 KiB  
Article
Crystal Facet Engineering of 2D SnSe2 Photocatalysts for Efficient Degradation of Malachite Green Organic Dyes
by Liying Wen, Fangfang Cheng, Xinyu Zhao, Lin Han, Dongye Zhao and Shifeng Wang
Nanomaterials 2025, 15(11), 850; https://doi.org/10.3390/nano15110850 - 2 Jun 2025
Viewed by 471
Abstract
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor [...] Read more.
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor materials. While their narrow bandgap and unique structure confer exceptional optoelectronic properties, prior research has predominantly emphasized heterojunction systems. We synthesized SnSe2 with well-defined hexagonal plate-like structures via a one-step hydrothermal method by precisely controlling precursor ratios (Sn:Se = 1:2) and reaction temperatures (120–240 °C). Systematic investigations revealed that hydrothermal temperature modulates the van der Waals forces between crystal planes, enabling selective exposure of (001) and (011) facets, as confirmed by XRD, SEM, and XPS analyses, thereby influencing the exposure of specific crystal facets. Experiments demonstrated that pure SnSe2 synthesized at 150 °C achieved complete degradation of MG (40 mg/L) within 60 min under visible light irradiation, exhibiting a reaction rate constant (k) of 0.099 min⁻¹. By regulating the exposure ratio of the active (001)/(011) facets, we demonstrate that crystal facet engineering directly optimizes carrier separation efficiency, thereby substantially enhancing the catalytic performance of standalone SnSe2. This work proposes a novel strategy for designing noble-metal-free, high-efficiency standalone photocatalysts, providing crystal facet-dependent mechanistic insights for the targeted degradation of industrial dyes. Full article
Show Figures

Graphical abstract

23 pages, 6553 KiB  
Article
Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage
by Entian Li, Zuquan Zhang, Minghe Zhou and Pei Yao
Materials 2025, 18(10), 2370; https://doi.org/10.3390/ma18102370 - 20 May 2025
Viewed by 414
Abstract
This study developed a new way of designing choline chloride-modified MOF-based materials with advanced gas adsorption properties. To design better carbon capture materials, MIL-101 (Cr) was prepared using the hydrothermal method, and then was modified with different concentrations of choline chloride in a [...] Read more.
This study developed a new way of designing choline chloride-modified MOF-based materials with advanced gas adsorption properties. To design better carbon capture materials, MIL-101 (Cr) was prepared using the hydrothermal method, and then was modified with different concentrations of choline chloride in a one-step method to enhance its CO2 adsorption capacity. The characterization and experimental results indicated that the modified ChCl-MIL-101(Cr) significantly enhanced the adsorption capacity for CO2. Specifically, the 0.075-ChCl-MIL-101(Cr) showed a 61.191% increase in adsorption capacity compared to that of the raw material. Moreover, the regenerated adsorption loss rate of the modified material was below 4%, proving the permanence of the material synthesis. Simulating isotherms using Langmuir and Freundlich equations revealed the non-uniformity of surface bonding. Full article
Show Figures

Graphical abstract

14 pages, 3464 KiB  
Article
Dual-Engineering Tailored Co3O4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction
by Yinghan Cui, Shiduo Yang, Jianqiang Zhu, Zaidong Wang, Sen Chen, Jian Qi and Huan Wang
Molecules 2025, 30(10), 2181; https://doi.org/10.3390/molecules30102181 - 16 May 2025
Viewed by 443
Abstract
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled [...] Read more.
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled from nanosheets (HMNs) with abundant oxygen vacancies and highly active crystal facet exposure. Through a modified one-step hydrothermal process, Co3O4 HMNs with exposed (111) and (100) crystal facets were successfully fabricated, demonstrating superior OER activity compared to Co3O4 nanocubes (NCs) with only (100) facet exposure. The optimized Co3O4-5% HMNs exhibited a low overpotential of 330 mV at 10 mA cm−2 and a Tafel slope of 69 mV dec−1. The enhanced performance was attributed to the synergistic effects of crystal facet engineering and defect engineering, which optimized the Co-O bond energy, increased the number of active sites, and improved conductivity. The unique hollow structure further facilitated mass transport and prevented nanosheet stacking, exposing more edge sites for catalytic reactions. This work highlights the potential of geometric and electronic structure modulation in designing high-performance OER catalysts for sustainable energy applications. Full article
Show Figures

Graphical abstract

19 pages, 7803 KiB  
Article
Phase-Dependent Electrochemical Performance of CoxSy (x = 1,9; y = 2,8) for Symmetric Supercapacitor Application
by Ankush Sharma, Young-Bin Cho, Tung Bach Tran, Sung Jin Kim, Dong In Park, Taehoon Kim, Vishwa Bhatt, Manjeet Kumar and Ju-Hyung Yun
Materials 2025, 18(9), 2101; https://doi.org/10.3390/ma18092101 - 3 May 2025
Viewed by 504
Abstract
Modulating the oxidation states of transition metal species is a practical approach to enhance redox activity and increase the number of active sites in electrode materials. Herein, we describe a simple one-step hydrothermal approach to prepare CoxSy with two different [...] Read more.
Modulating the oxidation states of transition metal species is a practical approach to enhance redox activity and increase the number of active sites in electrode materials. Herein, we describe a simple one-step hydrothermal approach to prepare CoxSy with two different phases, cobalt pyrite (CoS2) and cobalt pentlandite (Co9S8), to explain the influence of material microstructure and properties on electrochemical performance. The as-prepared CoS2 and Co9S8 were investigated as symmetric supercapacitor (SC) devices for potential energy storage applications. Co9S8 exhibited the highest specific gravimetric capacitance of 14.12 Fg−1 at 0.2 mAcm−2 with capacitance retention of 91.3% after 10,000 cycles, indicating robust cycling stability. In addition, the Co9S8 SC device showed the highest energy (E) and power (P) density of 9.14 Whkg−1 and 0.23 kWkg−1. These results highlight a simple approach of tailoring different phase syntheses of CoxSy structure toward high-performance electrode material for energy storage and conversion. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

15 pages, 2964 KiB  
Article
Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF
by Peng Cao, Yunliang Liu, Ruihua Yang, Yaxi Li, Yuanyuan Cheng, Jingwen Yu, Xinyue Zhang, Peter Phiri, Xinya Yuan, Yi Yang, Naiyun Liu, Yixian Liu and Haitao Li
Catalysts 2025, 15(5), 422; https://doi.org/10.3390/catal15050422 - 24 Apr 2025
Viewed by 495
Abstract
In the face of the intensifying energy and environmental challenges, the exploration of clean and sustainable approaches to energy conversion and utilization holds paramount significance. 5-Hydroxymethylfurfural (HMF), as a biomass platform compound with great potential, has drawn extensive attention for its oxidation to [...] Read more.
In the face of the intensifying energy and environmental challenges, the exploration of clean and sustainable approaches to energy conversion and utilization holds paramount significance. 5-Hydroxymethylfurfural (HMF), as a biomass platform compound with great potential, has drawn extensive attention for its oxidation to prepare 2,5-Furandicarboxylic acid (FDCA). In this study, a CoS-doped CuS composite catalyst (CoS–CuS) was synthesized via a one-step microwave–hydrothermal method for the electrocatalytic oxidation of HMF. The catalyst was comprehensively analyzed by means of multiple characterization techniques and electrochemical testing methods. The results demonstrate that the doping of CoS optimizes the surface electronic structure of the catalyst, enhancing its adsorption capabilities for HMF and OH. Compared with the CuS catalyst, CoS–CuS in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) shows a lower onset potential decreasing from 1.32 VRHE to 1.29 VRHE. At a potential of 1.4 VRHE, the current density of CoS–CuS attains a value 2.02-fold that of CuS. Significantly, CoS–CuS demonstrates a substantially higher Faraday efficiency in the generation of FDCA, reaching nearly 89.1%. This study provides a promising approach for the construction of other efficient copper-based electrocatalysts. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

16 pages, 3655 KiB  
Article
Performance of Powdered Activated Coke Produced by One-Step Rapid Process from Lignite: Phenol Adsorption from Synthetic Wastewater and Hydrothermal Regeneration
by Guifang Chen, Hao Xu, Shouyan Chen and Dachuan Zhao
Water 2025, 17(8), 1161; https://doi.org/10.3390/w17081161 - 13 Apr 2025
Viewed by 371
Abstract
Low-cost powdered activated coke (PAC) produced by a one-step rapid method with lignite was used as an adsorbent for the advanced treatment of phenol-containing wastewater to evaluate the feasibility of replacing high-cost commercial powdered activated carbon. Characterization using infrared spectral analysis, SEM, and [...] Read more.
Low-cost powdered activated coke (PAC) produced by a one-step rapid method with lignite was used as an adsorbent for the advanced treatment of phenol-containing wastewater to evaluate the feasibility of replacing high-cost commercial powdered activated carbon. Characterization using infrared spectral analysis, SEM, and BET showed that the PAC mesopores were well developed. PAC exhibited a high adsorption performance for phenol in static experiments. The adsorption was almost in equilibrium within 20 min, and the removal efficiency reached 85.4% with 1.5 g L−1 PAC and 99.9% with 4 g L−1 PAC. As common components in wastewater, NaCl and Na2SO4 did not exhibit significant competitive adsorption with phenol in PAC. The adsorption process occurred in accordance with the Langmuir model and the pseudo-second order kinetic model. Furthermore, the effects of hydrothermal regeneration on PAC adsorbing phenol were studied, and the adsorption capacity of PAC after five regeneration cycles was 86.1% of that of the new PAC, which still had good adsorption performance. PAC offers significant advantages in terms of adsorption capacity, economic feasibility, regeneration, and recycling, providing a practical solution to the problem of phenol-containing wastewater pollution. Full article
(This article belongs to the Special Issue Adsorption Technologies in Wastewater Treatment Processes)
Show Figures

Figure 1

20 pages, 15563 KiB  
Article
Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes
by Zimu Wei, Ying Wang, Zonghan Shao, Linkun Xie, Lianpeng Zhang, Kaimeng Xu and Xijuan Chai
Molecules 2025, 30(8), 1735; https://doi.org/10.3390/molecules30081735 - 12 Apr 2025
Viewed by 549
Abstract
A boron-doped BiOBr photocatalytic nanosheet was synthesized using a one-step hydrothermal method. The effects of solvent, temperature, and boron doping content on the morphology and photocatalytic performance were investigated. The boron-doped samples synthesized with acetic acid at 180 °C (1B-AB) showed optimal photocatalytic [...] Read more.
A boron-doped BiOBr photocatalytic nanosheet was synthesized using a one-step hydrothermal method. The effects of solvent, temperature, and boron doping content on the morphology and photocatalytic performance were investigated. The boron-doped samples synthesized with acetic acid at 180 °C (1B-AB) showed optimal photocatalytic performance, achieving 80% efficiency in degrading sulfanilamide (SN) within 6 h. After five cycles, the degradation rate decreased by 21%. The 10% boron doping reduced BiOBr’s bandgap (from 2.90 to 2.88 eV), improving visible light utilization and reducing electron–hole pair recombination. The 1B-AB photocatalyst also demonstrated excellent activity against anionic dyes like methyl orange (MO) and malachite green (MG). Hydroxyl radicals (·OH) and superoxide anions (·O2) were identified as the main active species in the SN degradation process. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop