Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,399)

Search Parameters:
Keywords = oncogenicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2119 KiB  
Review
Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases
by Qinghai Tan, Mei Liu and Xiang Tao
Biomolecules 2025, 15(8), 1178; https://doi.org/10.3390/biom15081178 (registering DOI) - 16 Aug 2025
Abstract
Lactylation, a recently identified post-translational modification (PTM) triggered by excessive lactate accumulation, has emerged as a crucial regulator linking metabolic reprogramming to pathological processes in liver diseases. In hepatic contexts, aberrant lactylation contributes to a range of pathological processes, including inflammation, dysregulation of [...] Read more.
Lactylation, a recently identified post-translational modification (PTM) triggered by excessive lactate accumulation, has emerged as a crucial regulator linking metabolic reprogramming to pathological processes in liver diseases. In hepatic contexts, aberrant lactylation contributes to a range of pathological processes, including inflammation, dysregulation of lipid metabolism, angiogenesis, and fibrosis. Importantly, lactylation has been shown to impact tumor growth, metastasis, and therapy resistance by modulating oncogene expression, metabolic adaptation, stemness, angiogenesis, and altering the tumor microenvironment (TME). This review synthesizes current knowledge on the biochemical mechanisms of lactylation, encompassing both enzymatic and non-enzymatic pathways, and its roles in specific liver diseases. From a therapeutic perspective, targeting lactate availability and transport, as well as the enzymes regulating lactylation, has demonstrated promise in preclinical models. Additionally, combinatorial approaches and natural compounds have shown efficacy in disrupting lactylation-driven pathways, providing insights into future research directions for hepatic diseases. Although the emerging role of lactylation is gaining attention, its spatiotemporal dynamics and potential for clinical translation are not yet well comprehended. This review aims to synthesize the multifaceted roles of lactylation, thereby bridging mechanistic insights with actionable therapeutic strategies for liver diseases. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

54 pages, 9063 KiB  
Article
Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal
by Marie E. Beckner
Biomolecules 2025, 15(8), 1177; https://doi.org/10.3390/biom15081177 (registering DOI) - 16 Aug 2025
Abstract
Attraction of glioblastoma cells to potassium was suspected when glioblastoma cells clustered around dying cells and migrated towards serum (high [K+]) and increased potassium. Potassium channel proteins (KCN family, 90 members) mediating alterations in the transmembrane flux may provide K+ [...] Read more.
Attraction of glioblastoma cells to potassium was suspected when glioblastoma cells clustered around dying cells and migrated towards serum (high [K+]) and increased potassium. Potassium channel proteins (KCN family, 90 members) mediating alterations in the transmembrane flux may provide K+ that releases H+ bound to inner membranes in cancer cells for cytosolic proton transfer, possibly conformational in water (Grotthuss), to extrusion sites. Cell settling and migration assay results led to collecting 70 studies, unbiased by the authors for inclusion of KCN genes, that detected KCN differentially expressed genes (DEGs). Of 53 KCN DEGs found among 29 malignancies, 62.3% encoded H+-sensitive proteins. KCN DEGs encoding H+-sensitive proteins were more prevalent in 50 studies involving one or more categories (seven oncogenes and histone/DNA modifiers) versus those with none; p = 0.0325. Pertinent genes for lactate outflow, etc., had relatively normal levels of expression. Brain tumors in REMBRANDT (database) showed altered expression of KCN genes encoding H+-sensitive proteins in glioblastomas versus less invasive oligodendrogliomas of patients on anti-seizure medications, with less KCNJ16/Kir5.1; p = 5.32 × 10−8 in glioblastomas. Altered H+-sensitive potassium flux via the KCN family, downstream of oncogenes and histone/DNA modifiers, putatively incites proton transfers for H+ release during pH reversal (pHi > pHe) in cancer. Full article
(This article belongs to the Collection Feature Papers in Chemical Biology)
Show Figures

Figure 1

16 pages, 1008 KiB  
Review
Fusobacterium nucleatum and Gastric Cancer: An Emerging Connection
by Joana Sorino, Mario Della Mura, Giuseppe Ingravallo, Gerardo Cazzato, Cristina Pizzimenti, Valeria Zuccalà, Ludovica Pepe, Emanuela Germanà, Maurizio Martini, Antonio Ieni and Vincenzo Fiorentino
Int. J. Mol. Sci. 2025, 26(16), 7915; https://doi.org/10.3390/ijms26167915 (registering DOI) - 16 Aug 2025
Abstract
Fusobacterium nucleatum (F. nucleatum), a Gram-negative anaerobe traditionally associated with periodontal disease, has recently emerged as a putative contributor to gastric carcinoma (GC) pathogenesis. Beyond its detection in gastric tissues, particularly in patients negative for Helicobacter pylori (H. pylori) [...] Read more.
Fusobacterium nucleatum (F. nucleatum), a Gram-negative anaerobe traditionally associated with periodontal disease, has recently emerged as a putative contributor to gastric carcinoma (GC) pathogenesis. Beyond its detection in gastric tissues, particularly in patients negative for Helicobacter pylori (H. pylori) or in advanced GC cases, F. nucleatum exerts diverse oncogenic effects. It promotes GC progression by modulating the tumor microenvironment through IL−17/NF-κB signaling, inducing tumor-associated neutrophils (TANs), upregulating PD-L1 expression, and enhancing immune evasion. Moreover, it increases tumor invasiveness via cytoskeletal reorganization, while extracellular vesicles (EVs) induced by the infection contribute to tumor cell proliferation, invasion, and migration. Clinically, its presence correlates with increased tumor mutational burden (TMB), venous thromboembolism, and poor prognosis. This review summarizes the current evidence regarding the emerging role of F. nucleatum in gastric tumorigenesis, examines its potential utility as a diagnostic and prognostic biomarker within the framework of precision oncology, and outlines the molecular methodologies presently employed for its detection in gastric tissue specimens. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Microbiology)
Show Figures

Figure 1

20 pages, 921 KiB  
Review
The Mechanism of Steroid Hormones in Non-Small Cell Lung Cancer: From Molecular Signaling to Clinical Application
by Yao Wang, Ying Zhou, Yao Yao and Caihong Zheng
Biomedicines 2025, 13(8), 1992; https://doi.org/10.3390/biomedicines13081992 - 15 Aug 2025
Abstract
Steroid hormones play critical roles in the development and progression of NSCLC through both genomic and non-genomic pathways. This review summarizes the expression profiles and molecular functions of estrogen, progesterone, androgen, and glucocorticoid receptors in NSCLC. Estrogen and progesterone receptors exhibit gender-specific prognostic [...] Read more.
Steroid hormones play critical roles in the development and progression of NSCLC through both genomic and non-genomic pathways. This review summarizes the expression profiles and molecular functions of estrogen, progesterone, androgen, and glucocorticoid receptors in NSCLC. Estrogen and progesterone receptors exhibit gender-specific prognostic significance, while glucocorticoid receptors influence tumor growth and immune responses. Emerging evidence supports the use of anti-estrogen therapies and glucocorticoids as adjuncts to existing treatment strategies, including immunotherapy. The crosstalk between hormone signaling and oncogenic pathways such as EGFR or immune checkpoints offers opportunities for novel combination therapies. However, challenges remain in biomarker development, drug resistance, and managing the dual effects of glucocorticoids. A deeper understanding of hormone–tumor–immune interactions is essential to optimize hormone-targeted interventions in NSCLC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Steroid Hormone Action—2nd Edition)
Show Figures

Figure 1

24 pages, 1942 KiB  
Review
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications
by Vanajothi Ramar, Shanchun Guo, Guangdi Wang and Mingli Liu
Int. J. Mol. Sci. 2025, 26(16), 7883; https://doi.org/10.3390/ijms26167883 - 15 Aug 2025
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and [...] Read more.
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and treatment resistance. This review provides a comprehensive overview of canonical and non-canonical NF-κB signaling pathways and their molecular mechanisms in GBM, with a focus on their regulation in glioma stem-like cells (GSCs), interactions with key oncogenic factors (including STAT3, FOSL1, and TRPM7), and roles in maintaining tumor stemness, metabolic adaptation, and angiogenesis. We further discuss the reciprocal regulatory dynamics between NF-κB and non-coding RNAs (ncRNAs), particularly microRNAs, highlighting novel ncRNA-mediated epigenetic switches that shape GBM cell plasticity and subtype specification. Additionally, we examine the influence of NF-κB in modulating the tumor microenvironment (TME), where it orchestrates pro-tumorigenic cytokine production, immune cell reprogramming, and stromal remodeling. Finally, we review current NF-κB-targeting therapeutic strategies in GBM, including clinical trial data on small-molecule inhibitors and combinatorial approaches. Understanding the multifaceted roles of NF-κB in GBM offers new insights into targeted therapies aimed at disrupting tumor-promoting circuits within both cancer cells and the TME. Full article
(This article belongs to the Special Issue Future Perspectives and Challenges in Molecular Research of Glioma)
Show Figures

Figure 1

16 pages, 9092 KiB  
Article
Chromatin Remodeler RSF1 as an Oncogenic Driver and Therapeutic Target in Esophageal Squamous Cell Carcinoma
by Zhenhua Du, Zhili Jia, Yao Lin, Xudong Zhao, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(16), 1262; https://doi.org/10.3390/cells14161262 - 15 Aug 2025
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public [...] Read more.
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public database analysis and clinical sample validation, reveals significantly elevated RSF1 expression in ESCC tumor tissues, confirmed further in an ESCC orthotopic model. Functional assays show that RSF1 knockout (KO) significantly inhibits ESCC cell proliferation, migration, invasion, and in vivo tumor growth, while reintroducing RSF1 restores its oncogenic effects. Proteomic analysis highlights that RSF1 KO disrupts pathways associated with cell cycle control, apoptosis, and focal adhesion. Experimentally, RSF1 KO induces apoptosis and G2/M arrest, establishing its essential role in ESCC progression. Collectively, these findings establish RSF1 as an oncogenic driver and a promising therapeutic target in ESCC. Full article
Show Figures

Figure 1

16 pages, 1412 KiB  
Review
Polyphenols and Chronic Myeloid Leukemia: Emerging Therapeutic Opportunities
by Claudia Moriello, Chiara De Rosa, Stefania D’Angelo and Perrone Pasquale
Hemato 2025, 6(3), 28; https://doi.org/10.3390/hemato6030028 - 15 Aug 2025
Abstract
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such [...] Read more.
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such as polyphenols have shown potential in modulating key oncogenic pathways in CML. Results: Polyphenols such as resveratrol, quercetin, curcumin, and epigallocatechin gallate (EGCG) demonstrated significant antiproliferative and pro-apoptotic effects in CML cell lines, including imatinib-resistant models. These effects were mediated through the modulation of signaling pathways, including PI3K/Akt, STAT5, and MAPK; inhibition of BCR–ABL expression; induction of oxidative stress; and the enhancement of apoptosis via mitochondrial and caspase-dependent mechanisms. Some polyphenols also showed synergistic activity with TKIs, potentiating their efficacy and overcoming resistance. Conclusions: Preclinical evidence supports the role of polyphenols as potential adjuvants in CML therapy, particularly in drug-resistant contexts. Their pleiotropic molecular actions and low toxicity profile make them promising candidates for integrative oncology. Nonetheless, clinical translation requires further investigation through well-designed trials assessing efficacy, safety, and pharmacokinetics. Full article
Show Figures

Figure 1

22 pages, 1927 KiB  
Article
Cytotoxic Effects of Thymus serpyllum L. and Mentha × piperita L. Essential Oils on Basal Cell Carcinoma—An In Vitro Study
by Maja Milosevic Markovic, Boban Anicic, Milos Lazarevic, Milica Jaksic Karisik, Dijana Mitic, Branislav Milovanovic, Stefan Ivanovic, Ilinka Pecinar, Milan Petrovic, Masa Petrovic, Nikola Markovic, Milovan Bojic, Nada Petrovic, Slobodan Petrovic and Jelena Milasin
Life 2025, 15(8), 1296; https://doi.org/10.3390/life15081296 - 14 Aug 2025
Abstract
This study investigated the potential of Thymus serpyllum L. and Mentha × piperita L. essential oils (EOs), known for their bioactive properties, as adjunctive treatments targeting Basal cell carcinoma cancer stem cells (BCC CSCs). Primary cultures were established from ten BCC tumor samples [...] Read more.
This study investigated the potential of Thymus serpyllum L. and Mentha × piperita L. essential oils (EOs), known for their bioactive properties, as adjunctive treatments targeting Basal cell carcinoma cancer stem cells (BCC CSCs). Primary cultures were established from ten BCC tumor samples and their distant resection margins as controls. The chemical composition of the EOs was analyzed by gas chromatography–mass spectroscopy (GC-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The biological effects were evaluated via colony and spheroid formation, scratch assays, MTT and neutral red cytotoxicity assays, and qRT-PCR for Hh (SHH, PTCH1, SMO, and GLI1) and Notch (Notch1 and JAG1) gene expression. GC analysis identified thymol, p-cymene, and linalool as the main components of the EO of T. serpyllum L., and menthone and menthol in the EO of M. × piperita L. IC50 values were 262 µg/mL for T. serpyllum L. and 556 µg/mL for M. × piperita L. and were applied in all experiments. Both EOs significantly reduced CSC clonogenicity and migration (p < 0.05). The EO of T. serpyllum L. downregulated SMO and GLI1, while the EO of M. × piperita L. upregulated PTCH1, Notch1, and JAG1 (p < 0.05). These findings suggest that both EOs exhibit anticancer effects in BCC CSCs by modulating key oncogenic pathways, supporting their potential in BCC therapy. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

66 pages, 2939 KiB  
Review
Mechanistic Insights and Clinical Implications of ELK1 in Solid Tumors: A Narrative Review
by Georgios Kalampounias, Theodosia Androutsopoulou and Panagiotis Katsoris
Cells 2025, 14(16), 1257; https://doi.org/10.3390/cells14161257 - 14 Aug 2025
Abstract
ELK1 is a Transcription factor (TF) belonging to the ETS-domain TF family, mainly activated via RAS-RAF-MEK-ERK signaling. As a nethermost pathway molecule, ELK1 binds to Serum-response elements (SREs) and directly regulates the transcription of Immediate early genes (IEGs) including FOS and EGR1. [...] Read more.
ELK1 is a Transcription factor (TF) belonging to the ETS-domain TF family, mainly activated via RAS-RAF-MEK-ERK signaling. As a nethermost pathway molecule, ELK1 binds to Serum-response elements (SREs) and directly regulates the transcription of Immediate early genes (IEGs) including FOS and EGR1. Due to ELK1’s influence on key cellular processes such as proliferation, migration, apoptosis evasion, and Epithelial-to-mesenchymal transition (EMT), its role as a key contributor to tumorigenesis is emerging. In recent years, elevated expression and/or activation of ELK1 has been reported in various malignancies, including lung, breast, prostate, colorectal, blood, gastric, liver, cervical, thyroid and ovarian cancer. ELK1 acts primarily through direct DNA binding but also through interaction with other oncogenes, noncoding RNA molecules, TFs, and upstream kinases (other than ERK1/2), thus participating in diverse axes of transcriptional regulation. Its crucial role in IEG expression has been particularly implicated in cancer progression, metastasis, and drug resistance. Owing to its role in multiple cellular functions and its subsequent oncogenic potential, further elucidation of intracellular ELK1 interactions is of paramount importance. This review aims to summarize current evidence on ELK1’s involvement in solid tumors, dissect reported mechanistic roles, and highlight recent insights that could fuel future ventures of high translational interest. Full article
(This article belongs to the Special Issue Cell Migration and Invasion)
Show Figures

Figure 1

16 pages, 1755 KiB  
Review
Decoding the Link Between Talcum Powder and Ovarian Cancer: A Comprehensive Review
by Sophia Tsokkou, Alkis Matsas, Ioannis Konstantinidis, Eleni Stamoula, Sofoklis Stavros, Evaggelia Karopoulou, Anastasios Potiris and Theodore Troupis
J. Clin. Med. 2025, 14(16), 5746; https://doi.org/10.3390/jcm14165746 - 14 Aug 2025
Viewed by 34
Abstract
Ovarian cancer (OC) is a highly lethal gynecologic malignancy, frequently diagnosed at advanced stages due to its silent onset and nonspecific clinical presentation. The use of talc-containing powders in the genital area has long been suspected to contribute to the development of OC [...] Read more.
Ovarian cancer (OC) is a highly lethal gynecologic malignancy, frequently diagnosed at advanced stages due to its silent onset and nonspecific clinical presentation. The use of talc-containing powders in the genital area has long been suspected to contribute to the development of OC through inflammatory and irritative pathways; however, the association remains controversial. This scoping review aims to decode the link between talc powder exposure and ovarian cancer by synthesizing findings from epidemiologic studies, public awareness surveys, and laboratory investigations. Epidemiologic analyses reveal that the use of genital powders is associated with a, modestly, 30–32% increase in the risk of OC, with similar risk patterns observed across racial subgroups. In contrast, studies on uterine cancer yield largely null associations after adjusting for confounders. Awareness surveys consistently report that only about 23% of respondents recognize talc use as a risk factor. Laboratory studies demonstrate that the dominant class of talc particles in commercially available powders—characterized by an aspect ratio of 1–3.9 and an area of 1–400 μm2—is nearly identical to those retrieved from pelvic tissues in OC patients, supporting the hypothesis of migration via retrograde and lymphatic pathways. The collective evidence supports the biological plausibility that talc from genital powders can migrate to pelvic tissues and potentially foster oncogenic inflammation. Further methodologically rigorous prospective and mechanistic studies are warranted to clarify the causal relationship and inform targeted public health and regulatory interventions. Full article
Show Figures

Graphical abstract

21 pages, 691 KiB  
Article
The High Prevalence of Oncogenic HPV Genotypes Targeted by the Nonavalent HPV Vaccine in HIV-Infected Women Urgently Reinforces the Need for Prophylactic Vaccination in Key Female Populations Living in Gabon
by Marcelle Mboumba-Mboumba, Augustin Mouinga-Ondeme, Pamela Moussavou-Boundzanga, Jeordy Dimitri Engone-Ondo, Roseanne Mounanga Mourimarodi, Abdoulaye Diane, Christ Ognari Ayoumi, Laurent Bélec, Ralph-Sydney Mboumba Bouassa and Ivan Mfouo-Tynga
Diseases 2025, 13(8), 260; https://doi.org/10.3390/diseases13080260 - 14 Aug 2025
Viewed by 46
Abstract
Background/Objectives. Women living with human immunodeficiency virus (WLWH) have a six-fold higher risk of developing cervical cancer associated with high-risk human Papillomavirus (HR-HPV) than HIV-negative women. We herein assessed HR-HPV genotype distribution and plasma levels of the cancer antigen 125 (CA-125) in WLWH [...] Read more.
Background/Objectives. Women living with human immunodeficiency virus (WLWH) have a six-fold higher risk of developing cervical cancer associated with high-risk human Papillomavirus (HR-HPV) than HIV-negative women. We herein assessed HR-HPV genotype distribution and plasma levels of the cancer antigen 125 (CA-125) in WLWH in a rural town in Gabon, in Central Africa. Methods. Adult WLWH attending the local HIV outpatient center were prospectively enrolled and underwent cervical visual inspection and cervicovaginal and blood sampling. HIV RNA load and CA-125 levels were measured from plasma using the Cepheid® Xpert® HIV-1 Viral Load kit and BioMérieux VIDAS® CA-125 II assay, respectively. HPV detection and genotyping were performed via a nested polymerase chain reaction (MY09/11 and GP5+/6+), followed by sequencing. Results. Fifty-eight WLWH (median age: 52 years) were enrolled. Median CD4 count was 547 cells/µL (IQR: 412.5–737.5) and HIV RNA load 4.88 Log10 copies/mL (IQR: 3.79–5.49). HPV prevalence was 68.96%, with HR-HPV detected in 41.37% of women. Among HR-HPV-positive samples, 87.5% (21/24) were genotypes targeted by the Gardasil vaccine, while 12.5% (3/24) were non-vaccine types. Predominant HR-HPV types included HPV-16 (13.8%), HPV-33 (10.34%), HPV-35 (5.17%), HPV-31, and HPV-58 (3.45%). Most participants had normal cervical cytology (62.07%), and a minority (14.29%) had elevated CA-125 levels, with no correlation to cytological abnormalities. Conclusions. In the hinterland of Gabon, WLWH are facing an unsuspected yet substantial burden of cervical HR-HPV infection and a neglected risk for cervical cancer. Strengthening cervical cancer prevention through targeted HPV vaccination, sexual education, and accessible screening strategies will help in mitigating associated risk. Full article
Show Figures

Figure 1

14 pages, 1611 KiB  
Review
TRP Channels in Skin Cancer: Focus on Malignant Melanoma
by Damian Twardak, Vita Havryliuk and Maciej Gagat
Int. J. Mol. Sci. 2025, 26(16), 7829; https://doi.org/10.3390/ijms26167829 - 13 Aug 2025
Viewed by 179
Abstract
Cutaneous malignant melanoma remains one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to standard therapies. Emerging evidence suggests that transient receptor potential (TRP) channels, non-selective cation channels involved in calcium homeostasis, and cellular stress responses [...] Read more.
Cutaneous malignant melanoma remains one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to standard therapies. Emerging evidence suggests that transient receptor potential (TRP) channels, non-selective cation channels involved in calcium homeostasis, and cellular stress responses play a pivotal role in melanoma development and progression. This review highlights the physiological expression of key TRP subfamilies (TRPM1, TRPM7, TRPM8, TRPV1, TRPV4, and TRPM2) in melanocytes and discusses their dysregulation in melanoma cells. TRPM1 is implicated as a tumor suppressor, whereas TRPM7, TRPV1, and TRPV4 often function as both melanoma suppressor or oncogenic drivers, modulating proliferation, apoptosis, and metastasis. TRPM2, which is responsive to oxidative stress, supports melanoma cell survival under metabolic stress. The potential of TRP channels as diagnostic biomarkers and therapeutic targets is evaluated, with attention paid to current pharmacological approaches and research challenges. The complexity and context-dependency of TRP function in melanoma underscore the need for isoform-specific modulation and personalized therapeutic strategies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 1914 KiB  
Article
Therapeutic pCRISPRi Delivery to Lung Squamous Cell Carcinoma by Combining Nanobubbles and Ultrasound
by Taiki Yamaguchi, Yoko Endo-Takahashi, Takumi Amano, Arina Ihara, Tetsushi Sakuma, Takashi Yamamoto, Takuya Fukazawa and Yoichi Negishi
Pharmaceutics 2025, 17(8), 1053; https://doi.org/10.3390/pharmaceutics17081053 - 13 Aug 2025
Viewed by 204
Abstract
Background/Objectives: Lung squamous cell carcinoma (SCC), a major subtype of non-small cell lung cancer, remains a significant clinical challenge due to a scarcity of actionable molecular targets and the limited effectiveness of current targeted therapies. Emerging treatment strategies inhibit the gene expression [...] Read more.
Background/Objectives: Lung squamous cell carcinoma (SCC), a major subtype of non-small cell lung cancer, remains a significant clinical challenge due to a scarcity of actionable molecular targets and the limited effectiveness of current targeted therapies. Emerging treatment strategies inhibit the gene expression of lineage survival oncogenes such as ΔNp63 and SOX2. CRISPR interference (CRISPRi) is a promising method to downregulate these genes; however, the efficacy depends on effective delivery. Here, we focused on the delivery system using nanobubbles (NBs) and ultrasound (US) for site-specific CRISPRi delivery to SCC. We evaluated the therapeutic efficacy of plasmid-based CRISPRi (pCRISPRi) targeting SOX2 or ΔNp63 using intratumoral pCRISPRi/NBs injections followed by US. Methods: A mixture of NBs and pCRISPRi was injected directly into the tumors and exposed to US-induced cavitation to facilitate pCRISPRi uptake. Tumor volume was measured every other day, and apoptosis was assessed by TUNEL assay. Results: In a lung SCC xenograft model, NBs/US-mediated pCRISPRi delivery induced apoptosis and significantly suppressed tumor growth. Conclusions: These findings suggest that US-guided, NB-facilitated delivery of pCRISPRi can locally suppress lineage survival oncogenes and trigger tumor cell death, representing a promising targeted therapy for lung SCC. Additionally, this platform could be adapted to other cancers by targeting alternative factors. Full article
Show Figures

Graphical abstract

19 pages, 622 KiB  
Review
Decoding Pancreatic Neuroendocrine Tumors: Molecular Profiles, Biomarkers, and Pathways to Personalized Therapy
by Linda Galasso, Federica Vitale, Gabriele Giansanti, Giorgio Esposto, Raffaele Borriello, Irene Mignini, Alberto Nicoletti, Lorenzo Zileri Dal Verme, Antonio Gasbarrini, Maria Elena Ainora and Maria Assunta Zocco
Int. J. Mol. Sci. 2025, 26(16), 7814; https://doi.org/10.3390/ijms26167814 - 13 Aug 2025
Viewed by 247
Abstract
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not [...] Read more.
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not fully capture the complex mechanisms involved, such as oxidative stress, mitochondrial dysfunction, and tumor-associated macrophage infiltration. Recent advances in molecular profiling have revealed key oncogenic drivers, including MEN1 (menin 1), DAXX (death domain–associated protein), ATRX (alpha thalassemia/mental retardation syndrome X-linked), CDKN1B (cyclin-dependent kinase inhibitor 1B) mutations, chromatin remodeling defects, and dysregulation of the mTOR pathway. Somatostatin receptors, particularly SSTR2, play a central role in tumor biology and serve as important prognostic markers, enabling the use of advanced diagnostic imaging (e.g., Gallium-68 DOTATATE PET/CT) and targeted therapies like somatostatin analogs and peptide receptor radionuclide therapy (PRRT). Established biomarkers such as Chromogranin A and the Ki-67 proliferation index remain vital for diagnosis and prognosis, while emerging markers, like circulating tumor DNA and microRNAs, show promise for enhancing disease monitoring and diagnostic accuracy. This review summarizes the molecular landscape of pNETs and highlights genomic, transcriptomic, proteomic, and epigenomic factors that support the identification of novel diagnostic, prognostic, and therapeutic biomarkers, ultimately advancing personalized treatment strategies. Full article
Show Figures

Figure 1

39 pages, 4169 KiB  
Review
The SPINK Protein Family in Cancer: Emerging Roles in Tumor Progression, Therapeutic Resistance, and Precision Oncology
by Zitin Wali, Neha, Anas Shamsi, Syed Tasqeruddin and Saleha Anwar
Pharmaceuticals 2025, 18(8), 1194; https://doi.org/10.3390/ph18081194 - 13 Aug 2025
Viewed by 217
Abstract
The serine protease kazal-type inhibitor (SPINK) family is central to the regulation of proteolytic function, the establishment of physiological homeostasis, and the development of many disease states, including cancer. Emerging research has identified that members of the SPINK family are commonly overexpressed in [...] Read more.
The serine protease kazal-type inhibitor (SPINK) family is central to the regulation of proteolytic function, the establishment of physiological homeostasis, and the development of many disease states, including cancer. Emerging research has identified that members of the SPINK family are commonly overexpressed in most malignancies and are deeply implicated in pivotal oncogenic pathways like cell growth, epithelial-to-mesenchymal transition (EMT), metastasis, and drug resistance. This review provides an in-depth examination of structural and functional characteristics of SPINK proteins and their involvement in the onset and development of multiple cancers, which include prostrate, pancreatic, and colorectal carcinomas. Significantly, SPINK proteins regulate major signalling pathways, including EGFR, NF-κB, and MAPK, highlighting their role as prognostic biomarkers and therapeutic targets. The review underscores the most recent advancements in therapeutic strategies for SPINK-related pathways and outlines the bottlenecks that have restricted their use in the clinic. By integrating current evidence, this work signals the potential of SPINK proteins as good precision oncology candidates with novel options for cancer prognosis, treatment, and management. Full article
(This article belongs to the Special Issue Current Trends to Discover New Drugs Targeting Protease Inhibition)
Show Figures

Graphical abstract

Back to TopTop