Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal
Abstract
1. Introduction
1.1. General
1.2. Cytosolic Proton Transfer Related to K+ and Hydration
1.3. Need for Proton Extrusion in Cancer
1.4. Complexity of K+ Flux
1.5. Biological Milieu Constituents to Consider in Studying K+ Flux
1.6. Findings Highlighted in This Study
2. Materials and Methods
2.1. Materials and Cell Culture
2.2. Statistics
2.3. Databases
2.4. Cell Settling Assays
2.5. Glioblastoma Cell Migration Assays
2.6. Immunoblot of Met, Receptor for HGF
2.7. Differentially Expressed Genes of Potassium Channels
2.8. Expression of Potassium Related Genes in Glial Tumors
3. Results
3.1. Settled Glioblastoma Cells with Fluid Removed
3.2. Cell Migration with HGF and Serum Chemoattraction
3.3. KCN Genes Differentially Expressed in 70 Studies (E1–E70)
3.3.1. General Features of Detected Differentially Expressed KCN Genes
3.3.2. Proton (H+) Sensitivity of Detected KCN DEGs
3.3.3. Coding and Multiplicity of KCN DEGs and Non-KCN DEGs
3.3.4. Malignancies in E1–E70
3.3.5. Stochastic View of K+-Related Dynamics in E1–E70
3.3.6. Categories Among Studies with E1–E70 Citations
3.3.7. H+ Sensitivity in E1–E70 Studies Within Eight Categories
3.3.8. PubMed Citations for “Proton”, “Potassium”, Etc., in Categories
3.3.9. Non-KCN DEG Repeats in E1–E70
3.3.10. Non-KCN DEG Superfamilies in E1–E70
3.3.11. KCN H+ Sensitivity in E1–E70 and Cancer Reviews
3.3.12. Long Introns in E1–E70’s KCN DEGs
3.4. Study of Selected KCN DEGs in REMBRANDT
3.4.1. Preliminary REMBRANDT Survey
3.4.2. Gene Expressions Reflecting Cell of Origin
3.4.3. KCN Gene Expression in Patients on Anti-Seizure Medications
3.4.4. Oligodendroglioma-Minus-Glioblastoma (OMG) Normalization
3.5. KCN DEGs Shared in E1–E70, REMBRANDT, and Glioblastoma Cell Lines [22]
4. Discussion
4.1. Input of Functional U87 Studies
4.2. Mechanistic Proposal for a New Route to pH Reversal
4.3. Potassium and KCN Genes in Cancer with Related Negative Findings
4.4. E1–E70 Studies Related to Seven Oncogenes and Histone/DNA Modulation
4.5. Non-KCN DEGs in Multiple E1–E70 Studies
4.6. Specific Roles for Redistribution of K+ in Cancer
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACLY | ATP citrate lyase |
Arg1 | Arginase 1 |
AS | Anti-seizure |
BK | Big K (encoded by KCNMA1) |
BSA | Bovine serum albumin |
CD | Cluster Differentiation |
CLCN | Chloride Channels gene family, CLCN1,2,3, etc. |
COL | Collagen |
CSM | Cancer-specific mutation |
Cx | Connexin |
DEG | Differentially expressed gene |
E | Expression |
EAAT | Excitatory Amino Acid Transporter |
EAG1 | Ether-A-Go-Go-K+ channel protein 1 |
ELK1,2 | EAG-like K+ channel proteins 1,2 |
EMT | Epithelial mesenchymal transition |
ERG1,3 | EAG-related gene K+ channel proteins 1,3 |
FBS | Fetal bovine serum |
GABA | Gamma-aminobutyric acid |
GBM | Glioblastoma |
G-DOC | Georgetown Database of Cancer |
Girk3,4 | G protein-activated inward rectif-ier K+ channel proteins, 3,4 |
GPR | G-protein-coupled receptor |
G-proteins | Guanosine-triphosphate-binding proteins |
GWATERW | Grotthuss water wire |
HGF | Hepatocyte growth factor |
His/Chr/Epi | Histone/chromatin/epigenetic |
HKG | Housekeeping gene |
IK | Intermediate K (encoded by KCNN4) |
Indels | Insertions and deletions |
ITAG2 | Integrin 2 |
ITG | Integrin |
K2P | Tandem 2 pore domain KCN subfamily proteins |
Kca | Calcium-stimulated KCN subfamily proteins |
Kchip1,3 | Kv channel interacting proteins 1,3 |
KCNA | Subgroup of KCN genes, KCNA1,2,3, etc. |
KCNAB | Subgroup of KCN genes, KCNAB1,2,3 |
KCNB | Subgroup of KCN genes, KCNB1,2 |
KCNC | Subgroup of KCN genes, KCNC1,2,3, etc. |
KCND | Subgroup of KCN genes, KCND1,2,3 |
KCNE | Subgroup of KCN genes, KCNE1,2,3, etc. |
KCNG | Subgroup of KCN genes, KCNG1,2,3, etc. |
KCNH | Subgroup of KCN genes, KCNH1,2,3, etc. |
KCNIP | Subgroup of KCN genes, KCNIP1,2,3, etc. |
KCNJ | Subgroup of KCN genes, KCNJ1,2,3, etc. |
KCNK | Subgroup of KCN genes, KCNK1,2,3, etc. |
KCNM | Subgroup of KCN genes, KCNM,A1,B1,B2, etc. |
KCNN | Subgroup of KCN genes, KCNN1,2,3, etc. |
KCNQ | Subgroup of KCN genes, KCNQ1,2,3, etc. |
KCNS | Subgroup of KCN genes, KCNS1,2,3, etc. |
KCNT | Subgroup of KCN genes, KCNT1,2 |
Kir | Inwardly directing KCN subfamily proteins |
Kv | Voltage-dependent KCN subfamily proteins |
LDH | Lactate dehydrogenase |
LIF | Leukemia Inhibitory Factor |
MCT | Monocarboxylate transporter |
MEM | Minimal Essential Media |
Mes | Mesenchymal |
MiRP | MinK (minimal K+channel Protein-related peptide) |
Na/K ATPase | Sodium/potassium ATPase |
NOX | NADPH oxidases |
Oligo | Oligodendroglioma |
OMG | Oligodendroglioma minus glioblastoma |
OMIM | Online Mendelian Inheritance in Man |
PBS | Phosphate-buffered saline |
pHe | Extracellular pH |
pHi | Intracellular pH |
PIP2 | Phosphatidyl inositol 4,5 bisphosphate |
R | Pearson product-moment correlation |
REMBRANDT | Repository of Molecular Brain Neoplasia Data |
RGS | Regulator of G protein signaling |
ROS | Reactive oxygen species |
RRID | Research Resource Identifier |
SERPIN | Serine proteinase inhibitors |
SNV | Single-nucleotide variant |
SK | Small K (encoded by some KCNN genes) |
Slack | Sequence like a calcium-activated K+ channel protein |
SLC | Solute Carrier |
Slick | Sequence like an intermediate conductance K+ channel protein |
SOX | Sry-related HMG BOX |
TasK1,2,5 | Twik-related acid-sensitive K+ channel proteins 1,2,5 |
Thik2 | Tandem pore domain halothane-inhibited Inhibited K+ channel protein 2 |
TMEM | Transmembrane |
TNFRSF | Tumor Necrosis Factor Receptor Super Family |
Trek1 | Twik-related K+ channel protein 1 |
TwiK1,2 | Tandem pore domain in weak inward rectifying K+ channel proteins 1,2 |
uPA | Urokinase-type plasminogen activator |
Appendix A
Appendix B
DEG Name | Study Number |
---|---|
A2M | E21 |
AAK1 | E65 |
AATK | E54 |
AB113AP | E1 |
ABCA1 | E50 |
ABCA12 | E54 |
ABCB10 | E48 |
ABCB1A | E69 |
ABCC3 | E70 |
ABCD1 | E31 |
See full list… | See full list… |
KCN Gene | Protein | Reference |
---|---|---|
KCNA1 | Kv1.1 | [292] |
KCNA3 | Kv1.3 | [293,294] |
KCNA5 | Kv1.5 | [295,296,297,298,299,300,301] |
KCNAB2 | Kvbeta2 | [302,303] |
KCND3 | Kv4.3 | [304,305,306] |
KCNE2 | MiRP1 | [87,307,308,309,310,311] |
KCNE3 | MiRP2, R83H variant | [252] |
KCNH1 | Kv10.1, EAG1 | [253,312] |
KCNH2 | Kv11.1, HERG1 | [253,313,314,315,316,317,318,319,320,321,322,323,324,325] |
KCNH3 | Kv12.2, ELK2 | [253] |
KCNH8 | Kv12.1, ELK3 | [253,326] |
KCNJ5 | Kir3.4, GIRK4 | [254,255,327] |
KCNJ8 | Kir6.1, KATP-1 | [327,328,329,330,331,332,333] |
KCNJ10 | Kir4.1, BIRK10 | [334,335,336] |
KCNJ10/KCNJ16 | Kir4.1/Kir5.1heterodimer | [72,326,337,338,339,340,341,342,343] |
KCNJ13 | Kir7.1 | [72,327,344] |
KCNK1 | K2P1, TWIK1 | [343,345,346,347,348,349,350] |
KCNK2 | K2P2, TREK1 | [343,348,351,352,353,354,355,356,357] |
KCNK3 | K2P3, TASK1 | [343,346,348,355,358,359,360,361] |
KCNK5 | K2P5, TASK2 | [236,343,346,348,362,363,364,365,366,367,368,369] |
KCNK6 | K2P6, TWIK2 | [346,370,371] |
KCNK15 | K2P15, TASK5 | [372] |
KCNMA1 | KCa1.1, BK, Slo1, maxiK | [96,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388] |
KCNMB4 | BKbeta4 | [389,390,391,392,393] |
KCNN2 | KCa2.2, SK2 | [394] |
KCNN3 | KCa2.3, SK3 | [394] |
KCNN4 | KCa3.1, SK4, Gardos | [395,396,397,398] |
KCNQ1 | Kv7.1, KvLQT1 | [85,236,307,308,309,311,399,400,401,402,403,404,405] |
KCNQ2 | Kv7.2 | [402] (described data) [406,407] |
KCNQ3 | Kv7.3 | [406] |
KCNQ5 | Kv7.5 | [408] |
KCNT1 | KCa4.1, Slo2.2, KNa1.1 | [409,410,411,412] |
KCNU1 | KCa5.1, Slo3, KCNMA3 | [389,412,413,414,415,416,417,418] |
References
- Burger, P.C.; Scheithauer, B.W. Tumors of the Neuroglia and Choroid Plexus. In Tumors of the Central Nervous System; American Registry of Pathology: Washington, DC, USA, 2007; pp. 55–77. [Google Scholar]
- Ge, L.; Hoa, N.T.; Wilson, Z.; Arismendi-Morillo, G.; Kong, X.T.; Tajhya, R.B.; Beeton, C.; Jadus, M.R. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int. Immunopharmacol. 2014, 22, 427–443. [Google Scholar] [CrossRef]
- Freshney, R.I. Defined media and supplements: Table 8.6. Constituents of serum. In Culture of Animal Cells; Capes-Davis, A., Gregory, C., Przyborski, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 141. [Google Scholar]
- Kros, J.M. Grading of gliomas: The road from eminence to evidence. J. Neuropathol. Exp. Neurol. 2011, 70, 101–109. [Google Scholar] [CrossRef]
- Puchalski, R.B.; Shah, N.; Miller, J.; Dalley, R.; Nomura, S.R.; Yoon, J.G.; Smith, K.A.; Lankerovich, M.; Bertagnolli, D.; Bickley, K.; et al. An anatomic transcriptional atlas of human glioblastoma. Science 2018, 360, 660–663. [Google Scholar] [CrossRef]
- Brat, D.J.; Castellano-Sanchez, A.A.; Hunter, S.B.; Pecot, M.; Cohen, C.; Hammond, E.H.; Devi, S.N.; Kaur, B.; Van Meir, E.G. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004, 64, 920–927. [Google Scholar] [CrossRef]
- Rong, Y.; Durden, D.L.; Van Meir, E.G.; Brat, D.J. ‘Pseudopalisading’ necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol. 2006, 65, 529–539. [Google Scholar] [CrossRef]
- Chesler, M.; Kraig, R.P. Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am. J. Physiol. 1987, 253, R666–R670. [Google Scholar] [CrossRef]
- Chesler, M.; Kraig, R.P. Intracellular pH transients of mammalian astrocytes. J. Neurosci. 1989, 9, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Brookes, N. Intracellular pH as a regulatory signal in astrocyte metabolism. Glia 1997, 21, 64–73. [Google Scholar] [CrossRef]
- Theparambil, S.M.; Weber, T.; Schmalzle, J.; Ruminot, I.; Deitmer, J.W. Proton Fall or Bicarbonate Rise: Glycolytic Rate in Mouse Astrocytes Is Paved By Intracellular Alkalinization. J. Biol. Chem. 2016, 291, 19108–19117. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar]
- Boron, W.F. Regulation of intracellular pH. Adv. Physiol. Educ. 2004, 28, 160–179. [Google Scholar] [CrossRef]
- Andersen, A.P.; Moreira, J.M.; Pedersen, S.F. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130098. [Google Scholar] [CrossRef]
- Spugnini, E.P.; Sonveaux, P.; Stock, C.; Perez-Sayans, M.; De Milito, A.; Avnet, S.; Garcìa, A.G.; Harguindey, S.; Fais, S. Proton channels and exchangers in cancer. Biochim. Biophys. Acta 2015, 1848, 2715–2726. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130099. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P.; Boedtkjer, E.; Pedersen, S.F. How protons pave the way to aggressive cancers. Nat. Rev. Cancer 2023, 23, 825–841. [Google Scholar] [CrossRef]
- McIntyre, A.; Hulikova, A.; Ledaki, I.; Snell, C.; Singleton, D.; Steers, G.; Seden, P.; Jones, D.; Bridges, E.; Wigfield, S.; et al. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth. Cancer Res. 2016, 76, 3744–3755. [Google Scholar] [CrossRef] [PubMed]
- White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 2017, 130, 663–669. [Google Scholar] [CrossRef]
- Bhuvaneshwar, K.; Belouali, A.; Singh, V.; Johnson, R.M.; Song, L.; Alaoui, A.; Harris, M.A.; Clarke, R.; Weiner, L.M.; Gusev, Y.; et al. G-DOC Plus—An integrative bioinformatics platform for precision medicine. BMC Bioinform. 2016, 17, 193. [Google Scholar] [CrossRef]
- Madhavan, S.; Gusev, Y.; Harris, M.; Tanenbaum, D.M.; Gauba, R.; Bhuvaneshwar, K.; Shinohara, A.; Rosso, K.; Carabet, L.A.; Song, L.; et al. G-DOC: A systems medicine platform for personalized oncology. Neoplasia 2011, 13, 771–783. [Google Scholar] [CrossRef]
- Patil, V.; Pal, J.; Somasundaram, K. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 2015, 6, 43452–43471. [Google Scholar] [CrossRef]
- Deplazes, E.; Poger, D.; Cornell, B.; Cranfield, C.G. The effect of H(3)O(+) on the membrane morphology and hydrogen bonding of a phospholipid bilayer. Biophys. Rev. 2018, 10, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M.; De Maeyer, L. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. A 1958, 247 A, 505–533. [Google Scholar]
- Johnson, D.E.; Casey, J.R. Cytosolic H+ microdomain developed around AE1 during AE1-mediated Cl-/HCO3- exchange. J. Physiol. 2011, 589, 1551–1569. [Google Scholar] [CrossRef]
- Vaughan-Jones, R.D.; Peercy, B.E.; Keener, J.P.; Spitzer, K.W. Intrinsic H(+) ion mobility in the rabbit ventricular myocyte. J. Physiol. 2002, 541, 139–158. [Google Scholar] [CrossRef]
- Xie, F.; Tikhonov, D.S.; Schnell, M. Electric nuclear quadrupole coupling reveals dissociation of HCl with a few water molecules. Science 2024, 384, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Grotthuss, C.J.T. Memoire sur la decomposition de l’eau et des corps qu’elle tient en dissolution a l’aide de l’electricite galvanique. Ann. Chim. 1806, 58, 54–74. [Google Scholar]
- Adelroth, P. Preface: Special issue on proton transfer in biological systems. Biochem. Biophys. Acta 2006, 1757, 867–870. [Google Scholar]
- Cukierman, S. Et tu, Grotthuss! And other unfinished stories. Biochim. Biophys. Acta 2006, 1757, 876–885. [Google Scholar] [CrossRef]
- Gutman, M.; Nachliel, E.; Friedman, R. The mechanism of proton transfer between adjacent sites on the molecular surface. Biochim. Biophys. Acta 2006, 1757, 931–941. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Heberle, J.; Cherepanov, D.A. Protons @ interfaces: Implications for biological energy conversion. Biochim. Biophys. Acta 2006, 1757, 913–930. [Google Scholar] [CrossRef]
- Ben-Amotz, D. Electric buzz in a glass of pure water. Science 2022, 376, 800–801. [Google Scholar] [CrossRef] [PubMed]
- Kariev, A.M.; Green, M.E. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. Membranes 2024, 14, 37. [Google Scholar] [CrossRef]
- Horowitz, S.B.; Paine, P.L. Reference phase analysis of free and bound intracellular solutes. II. Isothermal and isotopic studies of cytoplasmic sodium, potassium, and water. Biophys. J. 1979, 25, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Schornack, P.A.; Gillies, R.J. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia 2003, 5, 135–145. [Google Scholar] [CrossRef]
- Schwab, A.; Wojnowski, L.; Gabriel, K.; Oberleithner, H. Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J. Clin. Invest. 1994, 93, 1631–1636. [Google Scholar] [CrossRef] [PubMed]
- Schwab, A.; Nechyporuk-Zloy, V.; Fabian, A.; Stock, C. Cells move when ions and water flow. Pflugers Arch. 2007, 453, 421–432. [Google Scholar] [CrossRef]
- Horio, Y. Potassium channels of glial cells: Distribution and function. Jpn. J. Pharmacol. 2001, 87, 1–6. [Google Scholar] [CrossRef]
- Sontheimer, H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. 2008, 233, 779–791. [Google Scholar] [CrossRef]
- Schwab, A.; Stock, C. Ion channels and transporters in tumour cell migration and invasion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130102. [Google Scholar] [CrossRef]
- Catacuzzeno, L.; Sforna, L.; Esposito, V.; Limatola, C.; Franciolini, F. Ion Channels in Glioma Malignancy. Rev. Physiol. Biochem. Pharmacol. 2021, 181, 223–267. [Google Scholar]
- Beckner, M.E.; Chen, X.; An, J.; Day, B.W.; Pollack, I.F. Proteomic characterization of harvested pseudopodia with differential gel electrophoresis and specific antibodies. Lab. Invest. 2005, 85, 316–327. [Google Scholar] [CrossRef]
- Tjaderhane, L.; Larjava, H.; Sorsa, T.; Uitto, V.J.; Larmas, M.; Salo, T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 1998, 77, 1622–1629. [Google Scholar] [CrossRef]
- Fasciglione, G.F.; Marini, S.; D’Alessio, S.; Politi, V.; Coletta, M. pH- and temperature-dependence of functional modulation in metalloproteinases: A comparison between neutrophil collagenase and gelatinases A and B. Biophys. J. 2000, 79, 2138–2149. [Google Scholar] [CrossRef]
- Kato, Y.; Lambert, C.A.; Colige, A.C.; Mineur, P.; Noel, A.; Frankenne, F.; Foidart, J.M.; Baba, M.; Hata, R.I.; Miyazaki, K.; et al. Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J. Biol. Chem. 2005, 280, 10938–10944. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gawlinski, E.T.; Gmitro, A.F.; Kaylor, B.; Gillies, R.J. Acid-mediated tumor invasion: A multidisciplinary study. Cancer Res. 2006, 66, 5216–5223. [Google Scholar] [CrossRef]
- Gioia, M.; Fasciglione, G.F.; Monaco, S.; Iundusi, R.; Sbardella, D.; Marini, S.; Tarantino, U.; Coletta, M. pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain. J. Biol. Inorg. Chem. 2010, 15, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.R.; Damaghi, M.; Marunaka, Y.; Spugnini, E.P.; Fais, S.; Gillies, R.J. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. 2019, 38, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Rohani, N.; Hao, L.; Alexis, M.S.; Joughin, B.A.; Krismer, K.; Moufarrej, M.N.; Soltis, A.R.; Lauffenburger, D.A.; Yaffe, M.B.; Burge, C.B.; et al. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Cancer Res. 2019, 79, 1952–1966. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhou, Y.; Skaro, M.F.; Wu, Y.; Qu, Z.; Mao, F.; Suwen Zhao, S.; Xu, Y. Metabolic Reprogramming in Cancer Is Induced to Increase Proton Production. Cancer Res. 2020, 80, 1143–1155. [Google Scholar] [CrossRef]
- Buhl, M.; Hutson, T.; Missio, A.; Walton, J.C. Sulfur and Phosphorus Oxyacid Radicals. J. Phys. Chem. A 2022, 126, 760–771. [Google Scholar] [CrossRef]
- Walton, J.C. Radical-Enhanced Acidity: Why Bicarbonate, Carboxyl, Hydroperoxyl, and Related Radicals Are So Acidic. J. Phys. Chem. A 2017, 121, 7761–7767. [Google Scholar] [CrossRef]
- Walton, J.C. Microhydration and the Enhanced Acidity of Free Radicals. Molecules 2018, 23, 423. [Google Scholar] [CrossRef]
- Segal, M.S.; Beem, E. Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am. J. Physiol. Cell Physiol. 2001, 281, C1196–C1204. [Google Scholar] [CrossRef]
- Duffy, H.S.; Ashton, A.W.; O’Donnell, P.; Coombs, W.; Taffet, S.M.; Delmar, M.; Spray, D.C. Regulation of connexin43 protein complexes by intracellular acidification. Circ. Res. 2004, 94, 215–222. [Google Scholar] [CrossRef]
- Hirst-Jensen, B.J.; Sahoo, P.; Kieken, F.; Delmar, M.; Sorgen, P.L. Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J. Biol. Chem. 2007, 282, 5801–5813. [Google Scholar] [CrossRef]
- Palacios-Prado, N.; Briggs, S.W.; Skeberdis, V.A.; Pranevicius, M.; Bennett, M.V.; Bukauskas, F.F. pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc. Natl. Acad. Sci. USA 2010, 107, 9897–9902. [Google Scholar] [CrossRef] [PubMed]
- Monterisi, S.; Michl, J.; Hulikova, A.; Koth, J.; Bridges, E.M.; Hill, A.E.; Abdullayeva, G.; Bodmer, W.F.; Swietach, P. Solute exchange through gap junctions lessens the adverse effects of inactivating mutations in metabolite-handling genes. Elife 2022, 11, e78425. [Google Scholar] [CrossRef]
- Ranganathan, N.S.; Srere, P.A.; Linn, T.C. Comparison of phospho- and dephospho-ATP citrate lyase. Arch. Biochem. Biophys. 1980, 204, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Jun, S.; Choi, E.J.; Sun, J.; Yang, E.B.; Lee, H.S.; Kim, S.Y.; Fahmi, N.A.; Jiang, O.; Zhang, W.; et al. 53BP1-ACLY-SLBP-coordinated activation of replication-dependent histone biogenesis maintains genomic integrity. Nucleic Acids Res. 2022, 50, 1465–1483. [Google Scholar] [CrossRef] [PubMed]
- Beckner, M.E.; Fellows-Mayle, W.; Zhang, Z.; Agostino, N.R.; Kant, J.A.; Day, B.W.; Pollack, I.F. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int. J. Cancer 2010, 126, 2282–2295. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tasselli, L.; Li, T.-M.; Chua, K.F. Mammalian SIRT6 represses invasive cancer cell phenotypes through ATP citrate lyase (ACLY)-dependent histone acetylation. Genes 2021, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Basanta, D.; Chinnaiyan, P.; Canoll, P.; Swanson, K.R.; Anderson, A.R. Production of 2-hydroxyglutarate by isocitrate dehydrogenase 1-mutated gliomas: An evolutionary alternative to the Warburg shift? Neuro Oncol 2011, 13, 1262–1264. [Google Scholar] [CrossRef]
- Girault, A.; Brochiero, E. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair. Am. J. Physiol. Cell Physiol. 2014, 306, C307–C319. [Google Scholar] [CrossRef]
- Boyle, Y.; Johns, T.G.; Fletcher, E.V. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers 2022, 14, 4767. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.A.; Sha, Q.; Makhina, E.N.; Lopatin, A.N.; Linder, M.E.; Snyder, S.H.; Nichols, C.G. Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein betagamma subunits. J. Biol. Chem. 1996, 271, 32301–32305. [Google Scholar] [CrossRef]
- Ruppersberg, J.P. Intracellular regulation of inward rectifier K+ channels. Pflugers Arch. 2000, 441, 1–11. [Google Scholar] [CrossRef]
- Niemeyer, M.I.; Stutzin, A.; Sepulveda, F.V. A voltage-independent K+ conductance activated by cell swelling in Ehrlich cells is modulated by a G-protein-mediated process. Biochim. Biophys. Acta 2002, 1562, 1–5. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef]
- Sahoo, N.; Hoshi, T.; Heinemann, S.H. Oxidative modulation of voltage-gated potassium channels. Antioxid. Redox Signal 2014, 21, 933–952. [Google Scholar] [CrossRef]
- Rivera-Aponte, D.E.; Mendez-Gonzalez, M.P.; Rivera-Pagan, A.F.; Kucheryavykh, Y.V.; Kucheryavykh, L.Y.; Skatchkov, S.N.; Eaton, M.J. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 2015, 310, 216–223. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Jiang, C. MiR-133b contributes to arsenic-induced apoptosis in U251 glioma cells by targeting the hERG channel. J. Mol. Neurosci. 2015, 55, 985–994. [Google Scholar] [CrossRef]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef]
- Cabanos, C.; Wang, M.; Han, X.; Hansen, S.B. A Soluble Fluorescent Binding Assay Reveals PIP(2) Antagonism of TREK-1 Channels. Cell Rep. 2017, 20, 1287–1294. [Google Scholar] [CrossRef]
- Li, D.; Xia, L.; Chen, M.; Lin, C.; Wu, H.; Zhang, Y.; Pan, S.; Li, X. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2017, 8, 50193–50208. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Bukiya, A.N.; Dopico, A.M. Regulation of BK Channel Activity by Cholesterol and Its Derivatives. Adv. Exp. Med. Biol. 2019, 1115, 53–75. [Google Scholar]
- Burton, M.J.; Cresser-Brown, J.; Thomas, M.; Portolano, N.; Basran, J.; Freeman, S.L.; Kwon, H.; Bottrill, A.R.; Llansola-Portoles, M.J.; Pascal, A.A.; et al. Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel. J. Biol. Chem. 2020, 295, 13277–13286. [Google Scholar] [CrossRef]
- Dudem, S.; Boon, P.X.; Mullins, N.; McClafferty, H.; Shipston, M.J.; Wilkinson, R.D.A.; Lobb, I.; Sergeant, G.P.; Thornbury, K.D.; Tikhonova, I.G.; et al. Oxidation modulates LINGO2-induced inactivation of large conductance, Ca(2+)-activated potassium channels. J. Biol. Chem. 2023, 299, 102975. [Google Scholar] [CrossRef]
- Dudem, S.; Large, R.J.; Kulkarni, S.; McClafferty, H.; Tikhonova, I.G.; Sergeant, G.P.; Keith D Thornbury, K.D.; Shipston, M.J.; Perrino, B.A.; Hollywood, M.A. LINGO1 is a regulatory subunit of large conductance, Ca(2+)-activated potassium channels. Proc. Natl. Acad. Sci. USA 2020, 117, 2194–2200. [Google Scholar] [CrossRef]
- Rotko, D.; Kunz, W.S.; Szewczyk, A.; Kulawiak, B. Signaling pathways targeting mitochondrial potassium channels. Int. J. Biochem. Cell Biol. 2020, 125, 105792. [Google Scholar] [CrossRef]
- Abbott, G.W. Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Handb. Exp. Pharmacol. 2021, 267, 445–480. [Google Scholar]
- Abbott, G.W. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology 2022, 37, 225–241. [Google Scholar] [CrossRef]
- North, K.C.; Zhang, M.; Singh, A.K.; Zaytseva, D.; Slayden, A.V.; Bukiya, A.N.; Dopico, A.M. Cholesterol Inhibition of Slo1 Channels Is Calcium-Dependent and Can Be Mediated by Either High-Affinity Calcium-Sensing Site in the Slo1 Cytosolic Tail. Mol. Pharmacol. 2022, 101, 132–143. [Google Scholar] [CrossRef]
- Kim, S.S.; Bae, Y.; Kwon, O.; Kwon, S.H.; Seo, J.B.; Hwang, E.M.; Park, J.Y. beta-COP Regulates TWIK1/TREK1 Heterodimeric Channel-Mediated Passive Conductance in Astrocytes. Cells 2022, 11, 3322. [Google Scholar] [CrossRef]
- Pardo, L.A. Voltage-Gated Potassium Channels Beyond the Action Potential. Bioelectricity 2022, 4, 117–125. [Google Scholar] [CrossRef]
- Vaithianathan, T.; Schneider, E.H.; Bukiya, A.N.; Dopico, A.M. Cholesterol and PIP(2) Modulation of BK(Ca) Channels. Adv. Exp. Med. Biol. 2023, 1422, 217–243. [Google Scholar]
- Huang, X.; He, Y.; Dubuc, A.M.; Hashizume, R.; Zhang, W.; Reimand, J.; Yang, H.; Wang, T.A.; Stehbens, S.J.; Younger, S.; et al. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nat. Neurosci. 2015, 18, 1236–1246. [Google Scholar] [CrossRef]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [Google Scholar] [CrossRef]
- Hutchings, C.J.; Colussi, P.; Clark, T.G. Ion channels as therapeutic antibody targets. MAbs 2019, 11, 265–296. [Google Scholar] [CrossRef]
- Weise-Cross, L.; Resta, T.C.; Jernigan, N.L. Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension. Antioxid. Redox Signal 2019, 31, 898–915. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.L.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021, 11, 4839–4857. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, Y.C.; Sim, J.H.; Choi, M.Y.; Choi, W.; Hwang, K.K.; Cho, M.C.; Kim, K.W.; Lim, S.W.; Lee, S.J. Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2+-activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery. Pflug. Arch. 2007, 454, 307–319. [Google Scholar] [CrossRef]
- Lewandowska, J.; Kalenik, B.; Wrzosek, A.; Szewczyk, A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants 2024, 13, 434. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, B.J.; Chun, Y.S.; So, I.; Choi, H.; Kim, M.S.; Park, J.W. NOX4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 2006, 18, 499–507. [Google Scholar] [CrossRef]
- Michl, J.; White, B.; Monterisi, S.; Bodmer, W.F.; Swietach, P. Phenotypic screen of sixty-eight colorectal cancer cell lines identifies CEACAM6 and CEACAM5 as markers of acid resistance. Proc. Natl. Acad. Sci. USA 2024, 121, e2319055121. [Google Scholar] [CrossRef]
- Selivanov, V.A.; Zeak, J.A.; Roca, J.; Cascante, M.; Trucco, M.; Votyakova, T.V. The role of external and matrix pH in mitochondrial reactive oxygen species generation. J. Biol. Chem. 2008, 283, 29292–29300. [Google Scholar] [CrossRef]
- Barar, J.; Omidi, Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. Bioimpacts 2013, 3, 149–162. [Google Scholar]
- Damaghi, M.; Wojtkowiak, J.W.; Gillies, R.J. pH sensing and regulation in cancer. Front. Physiol. 2013, 4, 370. [Google Scholar] [CrossRef]
- Vrbka, L.; Vondrasek, J.; Jagoda-Cwiklik, B.; Vacha, R.; Jungwirth, P. Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces. Proc. Natl. Acad. Sci. USA 2006, 103, 15440–15444. [Google Scholar] [CrossRef]
- Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 2012, 86, 119–126. [Google Scholar] [CrossRef]
- Danchin, A.; Nikel, P.I. Why Nature Chose Potassium. J. Mol. Evol. 2019, 87, 271–288. [Google Scholar] [CrossRef]
- Kopec, W.; Kopfer, D.A.; Vickery, O.N.; Bondarenko, A.S.; Jansen, T.L.C.; de Groot, B.L.; Zachariae, U. Direct knock-on of desolvated ions governs strict ion selectivity in K(+) channels. Nat. Chem. 2018, 10, 813–820. [Google Scholar] [CrossRef]
- Jing, Z.; Rackers, J.A.; Pratt, L.R.; Liu, C.; Rempe, S.B.; Ren, P. Thermodynamics of ion binding and occupancy in potassium channels. Chem. Sci. 2021, 12, 8920–8930. [Google Scholar] [CrossRef]
- Lam, C.K.; de Groot, B.L. Ion Conduction Mechanisms in Potassium Channels Revealed by Permeation Cycles. J. Chem. Theory Comput. 2023, 19, 2574–2589. [Google Scholar] [CrossRef]
- Collins, K.D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 1997, 72, 65–76. [Google Scholar] [CrossRef]
- Nagy, I.Z.; Lustyik, G.; Nagy, V.Z.; Zarandi, B.; Bertoni-Freddari, C. Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive x-ray microanalysis. J. Cell Biol. 1981, 90, 769–777. [Google Scholar] [CrossRef]
- Leslie, T.K.; James, A.D.; Zaccagna, F.; Grist, J.T.; Deen, S.; Kennerley, A.; Riemer, F.; Kaggie, J.D.; Gallagher, F.A.; Gilbert, F.J.; et al. Sodium homeostasis in the tumour microenvironment. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 188304. [Google Scholar] [CrossRef]
- Allu, A.S.; Tiriveedhi, V. Cancer Salt Nostalgia. Cells 2021, 10, 1285. [Google Scholar] [CrossRef]
- Bortner, C.D.; Hughes, F.M., Jr.; Cidlowski, J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 1997, 272, 32436–32442. [Google Scholar] [CrossRef]
- Pietrzak, M.; Meyerhoff, M.E. Determination of potassium in red blood cells using unmeasured volumes of whole blood and combined sodium/potassium-selective membrane electrode measurements. Anal. Chem. 2009, 81, 5961–5965. [Google Scholar] [CrossRef]
- Martinez-Valverde, T.; Vidal-Jorge, M.; Montoya, N.; Sanchez-Guerrero, A.; Manrique, S.; Munar, F.; Pellegri, M.D.; Poca, M.A.; Sahuquillo, J. Brain microdialysis as a tool to explore the ionic profile of the brain extracellular space in neurocritical patients: A methodological approach and feasibility study. J. Neurotrauma 2015, 32, 7–16. [Google Scholar] [CrossRef]
- Eil, R.; Vodnala, S.K.; Clever, D.; Klebanoff, C.A.; Sukumar, M.; Pan, J.H.; Palmer, D.C.; Gros, A.; Yamamoto, T.N.; Patel, S.J.; et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 2016, 537, 539–543. [Google Scholar] [CrossRef]
- Lehmann, H.P.; Henry, J.B. Appendix 4, Table A4-4. Whole Blood, Serum, and Plasma Chemistry. In Clinical Diagnosis and Management by Laboratory Methods; Henry, J.B., Ed.; W.B. Saunders: Philadelphia, PA, USA, 1996; pp. 1450–1454. [Google Scholar]
- Ghosh, S.; Yang, R.; Duraki, D.; Zhu, J.; Kim, J.E.; Jabeen, M.; Mao, C.; Dai, X.; Livezey, M.R.; Boudreau, M.W.; et al. Plasma Membrane Channel TRPM4 Mediates Immunogenic Therapy-Induced Necrosis. Cancer Res. 2023, 83, 3115–3130. [Google Scholar] [CrossRef]
- Oliver, D.; Baukrowitz, T.; Fakler, B. Polyamines as gating molecules of inward-rectifier K+ channels. Eur. J. Biochem. 2000, 267, 5824–5829. [Google Scholar] [CrossRef]
- Hopp, L.; Lasker, N.; Bamforth, R.; Aviv, A. Characterization of Na(+)-K+ homeostasis of cultured human skin fibroblasts in the presence and absence of fetal bovine serum. J. Cell Physiol. 1992, 151, 427–432. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Hirata, M.; Matsumoto, K.; Aizawa, H.; Inoue, R.; Hamano, S.; Ikeda, S.; Xie, Z.; Hara, N.; Ito, Y. Contraction and depolarization induced by fetal bovine serum in airway smooth muscle. Am. J. Physiol. 1994, 266, L528–L535. [Google Scholar] [CrossRef]
- Marton, L.J.; Heby, O.; Levin, V.A.; Lubich, W.P.; Crafts, D.C.; Wilson, C.B. The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res. 1976, 36, 973–977. [Google Scholar]
- Miska, J.; Rashidi, A.; Lee-Chang, C.; Gao, P.; Lopez-Rosas, A.; Zhang, P.; Burga, R.; Castro, B.; Xiao, T.; Han, Y.; et al. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci. Adv. 2021, 7, eabc8929. [Google Scholar] [CrossRef]
- Monsorno, K.; Buckinx, A.; Paolicelli, R.C. Microglial metabolic flexibility: Emerging roles for lactate. Trends Endocrinol. Metab. 2022, 33, 186–195. [Google Scholar] [CrossRef]
- Augustynek, B.; Kudin, A.P.; Bednarczyk, P.; Szewczyk, A.; Kunz, W.S. Hemin inhibits the large conductance potassium channel in brain mitochondria: A putative novel mechanism of neurodegeneration. Exp. Neurol. 2014, 257, 70–75. [Google Scholar] [CrossRef]
- Bailey, C.S.; Moldenhauer, H.J.; Park, S.M.; Keros, S.; Meredith, A.L. KCNMA1-linked channelopathy. J. Gen. Physiol. 2019, 151, 1173–1189. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Xu, T.; Liu, P.; Cao, Y.; Wang, Y.; Yang, X.; Xu, X.; Wang, X.; Niu, H. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget 2015, 6, 39196–39210. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S. Lactic acid promotes macrophage polarization through MCT-HIF1alpha signaling in gastric cancer. Exp. Cell Res. 2020, 388, 111846. [Google Scholar] [CrossRef]
- Zhou, H.C.; Xin-Yan, Y.; Yu, W.W.; Liang, X.Q.; Du, X.Y.; Liu, Z.C.; Long, J.P.; Zhao, G.H.; Liu, H.B. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int. Rev. Immunol. 2022, 41, 4–18. [Google Scholar] [CrossRef]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer: A review of the literature. Cancer 2009, 115, 3379–3391. [Google Scholar] [CrossRef]
- Bakst, R.L.; Wong, R.J. Mechanisms of Perineural Invasion. J. Neurol. Surg. B Skull Base 2016, 77, 96–106. [Google Scholar] [CrossRef]
- Narayan, P.; Flynn, J.; Zhang, Z.; Gillespie, E.F.; Mueller, B.; Xu, A.J.; Cuaron, J.; McCormick, B.; Khan, A.J.; Cahlon, O.; et al. Perineural invasion as a risk factor for locoregional recurrence of invasive breast cancer. Sci. Rep. 2021, 11, 12781. [Google Scholar] [CrossRef]
- Hosoya, K.; Wakahara, M.; Ikeda, K.; Umekita, Y. Perineural Invasion Predicts Unfavorable Prognosis in Patients With Invasive Breast Cancer. Cancer Diagn. Progn. 2023, 3, 208–214. [Google Scholar] [CrossRef]
- Beckner, M.E.; Fellows-Mayle, W.; Agostino, N.R.; Gobbel, G.T.; Pollack, I.F. Tumor markers in pseudopodia for invasive migration. In Progress in Tumor Marker Research; Swenson, L.I., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 43–66. [Google Scholar]
- Beckner, M.E.; Gobbel, G.T.; Abounader, R.; Burovic, F.; Agostino, N.R.; Laterra, J.; Pollack, I.F. Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab. Investig. 2005, 85, 1457–1470. [Google Scholar] [CrossRef]
- Beckner, M.E.; Zhang, Z.; Agostino, N.R.; Day, B.W.; Pollack, I.F. Albumin marks pseudopodia of astrocytoma cells responding to hepatocyte growth factor or serum. Lab. Investig. 2006, 86, 1103–1114. [Google Scholar] [CrossRef]
- Silverman, J.F.; Frable, W.J. The use of the diff-quik stain in the immediate interpretation of fine-needle aspiration biopsies. Diagn. Cytopathol. 1990, 6, 366–369. [Google Scholar] [CrossRef]
- Eagle, H. Amino acid metabolism in mammalian cell cultures. Science 1959, 130, 432–437. [Google Scholar] [CrossRef]
- Clark, M.J.; Homer, N.; O’Connor, B.D.; Chen, Z.; Eskin, A.; Lee, H.; Merriman, B.; Nelson, S.F. U87MG decoded: The genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 2010, 6, e1000832, Erratum in PLoS Genet. 2018, 14, e1007392. [Google Scholar] [CrossRef]
- Becker, H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer 2020, 122, 157–167. [Google Scholar] [CrossRef]
- Noor, S.I.; Jamali, S.; Ames, S.; Langer, S.; Deitmer, J.W.; Becker, H.M. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. Elife 2018, 7, e35176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wen, J.; Wang, N.; Wang, C.; Xu, Q.; Yang, Y. Ion Channels and Vascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e146–e156. [Google Scholar] [CrossRef] [PubMed]
- Crepalde, M.A.; Faria-Campos, A.C.; Campos, S.V. Modeling and analysis of cell membrane systems with probabilistic model checking. BMC Genom. 2011, 12 (Suppl. 4), S14. [Google Scholar] [CrossRef] [PubMed]
- Sajic, J.L.; Langthaler, S.; Baumgartner, C. Creating a novel mathematical model of the Kv10.1 ion channel and controlling channel activity with nanoelectromechanical systems. Appl. Sci. 2022, 12, 3836. [Google Scholar] [CrossRef]
- Sun, X.; Lee, H.C.; Lu, T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ. Res. 2024, 134, 858–871. [Google Scholar] [CrossRef]
- Wulff, H.; Castle, N.A. Therapeutic potential of KCa3.1 blockers: An overview of recent advances, and promising trends. Expert. Rev. Clin. Pharmacol. 2010, 3, 385–396. [Google Scholar] [CrossRef]
- Zaika, O.L.; Mamenko, M.; Palygin, O.; Boukelmoune, N.; Staruschenko, A.; Pochynyuk, O. Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am. J. Physiol. Renal Physiol. 2013, 305, F1277–F1287. [Google Scholar] [CrossRef]
- Fournier, P.A.; Fairchild, T.J.; Ferreira, L.D.; Brau, L. Post-exercise muscle glycogen repletion in the extreme: Effect of food absence and active recovery. J. Sports Sci. Med. 2004, 3, 139–146. [Google Scholar] [PubMed]
- Bangsbo, J.; Gollnick, P.D.; Graham, T.E.; Saltin, B. Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J. Physiol. 1991, 434, 423–440. [Google Scholar] [CrossRef]
- Talmadge, R.J.; Scheide, J.I.; Silverman, H. Glycogen synthesis from lactate in a chronically active muscle. J. Appl. Physiol. 1989, 66, 2231–2238. [Google Scholar] [CrossRef]
- Hydrean, C.; Ghosh, A.; Nallin, M.; Ghosh, B.K. Interrelationship of carbohydrate metabolism and alkaline phosphatase synthesis in Bacillus licheniformis 749/c. J. Biol. Chem. 1977, 252, 6806–6812. [Google Scholar] [CrossRef]
- Tucci, V.; Isles, A.R.; Kelsey, G.; Ferguson-Smith, A.C.; Erice Imprinting, G. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019, 176, 952–965. [Google Scholar] [CrossRef]
- Berlin, C.; Cottard, F.; Willmann, D.; Urban, S.; Tirier, S.M.; Marx, L.; Rippe, K.; Schmitt, M.; Petrocelli, V.; Greten, F.R.; et al. KMT9 Controls Stemness and Growth of Colorectal Cancer. Cancer Res. 2022, 82, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Espinosa, L.; Alcaraz, N.; De La Rosa-Velazquez, I.A.; Diaz-Chavez, J.; Cabrera-Galeana, P.; Rebollar-Vega, R.; Reynoso-Noverón, N.; Maldonado-Martínez, H.A.; González-Barrios, R.; Rogelio Montiel-Manriquez, R.; et al. Transcriptome Analysis Identifies GATA3-AS1 as a Long Noncoding RNA Associated with Resistance to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients. J. Mol. Diagn. 2021, 23, 1306–1323. [Google Scholar] [CrossRef] [PubMed]
- Nargund, A.M.; Xu, C.; Mandoli, A.; Okabe, A.; Chen, G.B.; Huang, K.K.; Sheng, T.; Yao, X.; Teo, J.M.T.; Sundar, R.; et al. Chromatin Rewiring by Mismatch Repair Protein MSH2 Alters Cell Adhesion Pathways and Sensitivity to BET Inhibition in Gastric Cancer. Cancer Res. 2022, 82, 2538–2551. [Google Scholar] [CrossRef] [PubMed]
- Pine, A.R.; Cirigliano, S.M.; Singhania, R.; Nicholson, J.; da Silva, B.; Leslie, C.S.; Fine, H.A. Microenvironment-Driven Dynamic Chromatin Changes in Glioblastoma Recapitulate Early Neural Development at Single-Cell Resolution. Cancer Res. 2023, 83, 1581–1595. [Google Scholar] [CrossRef]
- Yu, Z.; Lv, Y.; Su, C.; Lu, W.; Zhang, R.; Li, J.; Guo, B.; Yan, H.; Liu, D.; Yang, Z. Integrative Single-Cell Analysis Reveals Transcriptional and Epigenetic Regulatory Features of Clear Cell Renal Cell Carcinoma. Cancer Res. 2023, 83, 700–719. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, C.; Qu, T.; Lu, X.; He, X.; Li, W.; Yin, D.; Han, L.; Guo, R.; Zhang, E. MNX1-AS1 Promotes Phase Separation of IGF2BP1 to Drive c-Myc-Mediated Cell-Cycle Progression and Proliferation in Lung Cancer. Cancer Res. 2022, 82, 4340–4358. [Google Scholar] [CrossRef]
- Guetta-Terrier, C.; Karambizi, D.; Akosman, B.; Zepecki, J.P.; Chen, J.S.; Kamle, S.; Fajardo, E.; Fiser, A.; Singh, R.; Toms, S.A.; et al. Chi3l1 Is a Modulator of Glioma Stem Cell States and a Therapeutic Target in Glioblastoma. Cancer Res. 2023, 83, 1984–1999. [Google Scholar] [CrossRef]
- Mohan, D.R.; Borges, K.S.; Finco, I.; LaPensee, C.R.; Rege, J.; Solon, A.L.; Little, D.W.; Else, T.; Almeida, M.Q.; Dang, D.; et al. beta-Catenin-Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res. 2023, 83, 2123–2141. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, L.V.; Barron, L.L.; Anderson, K.; Newman, R.J.; Wierda, W.G.; O’Brien, S.; Ferrajoli, A.; Luthra, M.; Talwalkar, S.; Luthra, R.; et al. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology. J. Mol. Diagn. 2007, 9, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Emmons, M.F.; Bennett, R.L.; Riva, A.; Gupta, K.; Carvalho, L.; Zhang, C.; Macaulay, R.; Dupéré-Richér, D.; Fang, B.; Seto, E.; et al. HDAC8-mediated inhibition of EP300 drives a transcriptional state that increases melanoma brain metastasis. Nat. Commun. 2023, 14, 7759. [Google Scholar] [CrossRef]
- Newman, A.C.; Kemp, A.J.; Drabsch, Y.; Behrends, C.; Wilkinson, S. Autophagy acts through TRAF3 and RELB to regulate gene expression via antagonism of SMAD proteins. Nat. Commun. 2017, 8, 1537. [Google Scholar] [CrossRef]
- Min, J.; Vega, P.N.; Engevik, A.C.; Williams, J.A.; Yang, Q.; Patterson, L.M.; Simmons, A.J.; Bliton, R.J.; Betts, J.W.; Lau, K.S.; et al. Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach. Nat. Commun. 2019, 10, 5549. [Google Scholar] [CrossRef]
- Banito, A.; Li, X.; Laporte, A.N.; Roe, J.S.; Sanchez-Vega, F.; Huang, C.H.; Dancsok, A.R.; Hatzi, K.; Chen, C.C.; Tschaharganeh, D.F.; et al. The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 2018, 33, 527–541.e8. [Google Scholar] [CrossRef]
- Pan, Y.; Han, H.; Hu, H.; Wang, H.; Song, Y.; Hao, Y.; Tong, X.; Patel, A.S.; Misirlioglu, S.; Tang, S.; et al. KMT2D deficiency drives lung squamous cell carcinoma and hypersensitivity to RTK-RAS inhibition. Cancer Cell 2023, 41, 88–105.e8. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, B.; McKeown, M.R.; Lin, C.Y.; Monti, S.; Roemer, M.G.; Qi, J.; Rahl, P.B.; Sun, H.H.; Yeda, K.T.; Doench, J.G.; et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013, 24, 777–790. [Google Scholar] [CrossRef]
- Beddows, I.; Fan, H.; Heinze, K.; Johnson, B.K.; Leonova, A.; Senz, J.; Djirackor, S.; Cho, K.R.; Pearce, C.L.; Huntsman, D.G.; et al. Cell State of Origin Impacts Development of Distinct Endometriosis-Related Ovarian Carcinoma Histotypes. Cancer Res. 2024, 84, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Shih, A.H.; Jiang, Y.; Meydan, C.; Shank, K.; Pandey, S.; Barreyro, L.; Antony-Debre, I.; Viale, A.; Socci, N.; Sun, Y.; et al. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell 2015, 27, 502–515. [Google Scholar] [CrossRef]
- Veschi, V.; Liu, Z.; Voss, T.C.; Ozbun, L.; Gryder, B.; Yan, C.; Hu, Y.; Ma, A.; Jin, J.; Mazur, S.J.; et al. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell 2017, 31, 50–63. [Google Scholar] [CrossRef]
- da Silva, L.S.; Mancano, B.M.; de Paula, F.E.; Dos Reis, M.B.; de Almeida, G.C.; Matsushita, M.; Junior, C.A.; Evangelista, A.F.; Saggioro, F.; Serafini, L.N.; et al. Expression of GNAS, TP53, and PTEN Improves the Patient Prognostication in Sonic Hedgehog (SHH) Medulloblastoma Subgroup. J. Mol. Diagn. 2020, 22, 957–966. [Google Scholar] [CrossRef]
- East, P.; Kelly, G.P.; Biswas, D.; Marani, M.; Hancock, D.C.; Creasy, T.; Sachsenmeier, K.; Swanton, C.; TRACERx Consortium; Downward, J.; et al. RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma. Nat. Commun. 2022, 13, 5632. [Google Scholar] [CrossRef]
- Ishizawa, J.; Nakamaru, K.; Seki, T.; Tazaki, K.; Kojima, K.; Chachad, D.; Zhao, R.; Heese, L.; Ma, W.; Ma, M.C.J.; et al. Predictive Gene Signatures Determine Tumor Sensitivity to MDM2 Inhibition. Cancer Res. 2018, 78, 2721–2731. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, X.Q.; Hsu, A.; Goytain, A.; Ng, T.L.T.; Nielsen, T.O. A Rapid and Cost-Effective Gene Expression Assay for the Diagnosis of Well-Differentiated and Dedifferentiated Liposarcomas. J. Mol. Diagn. 2021, 23, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.; Karpova, A.; Gritsenko, M.A.; Kyle, J.E.; Cao, S.; Li, Y.; Rykunov, D.; Colaprico, A.; Rothstein, J.H.; Hong, R.; et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 2021, 39, 509–528.e20. [Google Scholar] [CrossRef]
- Soragni, A.; Janzen, D.M.; Johnson, L.M.; Lindgren, A.G.; Thai-Quynh Nguyen, A.; Tiourin, E.; Antony-Debre, I.; Viale, A.; Socci, N.; Sun, Y.; et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell 2016, 29, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Mello, S.S.; Valente, L.J.; Raj, N.; Seoane, J.A.; Flowers, B.M.; McClendon, J.; Bieging-Rolett, K.T.; Lee, J.; Ivanochko, D.; Kozak, M.M.; et al. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 2017, 32, 460–473.e6. [Google Scholar] [CrossRef]
- Dong, L.; Lu, D.; Chen, R.; Lin, Y.; Zhu, H.; Zhang, Z.; Cai, S.; Cui, P.; Song, G.; Rao, D.; et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022, 40, 70–87.e15. [Google Scholar] [CrossRef]
- Zhang, H.; Christensen, C.L.; Dries, R.; Oser, M.G.; Deng, J.; Diskin, B.; Li, F.; Pan, Y.; Zhang, X.; Yin, Y.; et al. CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer. Cancer Cell 2020, 37, 37–54.e9. [Google Scholar] [CrossRef]
- Schwab, A.; Siddiqui, A.; Vazakidou, M.E.; Napoli, F.; Bottcher, M.; Menchicchi, B.; Raza, U.; Saatci, O.; Krebs, A.M.; Ferrazzi, F.; et al. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res. 2018, 78, 1604–1618. [Google Scholar] [CrossRef]
- Zhang, Y.; Cruickshanks, N.; Yuan, F.; Wang, B.; Pahuski, M.; Wulfkuhle, J.; Gallagher, I.; Koeppel, A.F.; Hatef, S.; Papanicolas, C.; et al. Targetable T-type Calcium Channels Drive Glioblastoma. Cancer Res. 2017, 77, 3479–3490. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.C.; Benita, Y.; Hopton, M.; Hoppe, B.; Gunnlaugsson, H.O.; Korgaonkar, P.; Vanderburg, C.R.; Nielsen, G.P.; Trepanowski, N.; Cheah, J.H.; et al. Transcriptional Profiling Supports the Notochordal Origin of Chordoma and Its Dependence on a TGFB1-TBXT Network. Am. J. Pathol. 2023, 193, 532–547. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Tiwari, N.; Pataskar, A.; Zhuang, Y.; Borisova, M.; Diken, M.; Strand, S.; Beli, P.; Tiwari, V.K. FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development. Nat. Commun. 2017, 8, 1523. [Google Scholar] [CrossRef] [PubMed]
- Verfaillie, A.; Imrichova, H.; Atak, Z.K.; Dewaele, M.; Rambow, F.; Hulselmans, G.; Christiaens, V.; Svetlichnyy, D.; Luciani, F.; Van den Mooter, L.; et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 2015, 6, 6683. [Google Scholar] [CrossRef]
- Wu, L.M.N.; Deng, Y.; Wang, J.; Zhao, C.; Wang, J.; Rao, R.; Xu, L.; Zhou, W.; Choi, K.; Rizvi, T.A.; et al. Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell 2018, 33, 292–308.e7. [Google Scholar] [CrossRef]
- Haider, S.; McIntyre, A.; van Stiphout, R.G.; Winchester, L.M.; Wigfield, S.; Harris, A.L.; Buffa, F.M. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol. 2016, 17, 140. [Google Scholar] [CrossRef]
- Zhang, D.; Park, D.; Zhong, Y.; Lu, Y.; Rycaj, K.; Gong, S.; Chen, X.; Liu, X.; Chao, H.P.; Whitney, P.; et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 2016, 7, 10798. [Google Scholar] [CrossRef]
- Ni, Y.; Schmidt, K.R.; Werner, B.A.; Koenig, J.K.; Guldner, I.H.; Schnepp, P.M.; Tan, X.; Jiang, L.; Host, M.; Sun, L.; et al. Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat. Commun. 2019, 10, 2860. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, D.; Chen, Y.J.; Xie, X.; Shi, Y.; Tabar, V.; Brennan, C.W.; Bale, T.A.; Jayewickreme, C.D.; Laks, D.R.; et al. Cell Lineage-Based Stratification for Glioblastoma. Cancer Cell 2020, 38, 366–379.e8. [Google Scholar] [CrossRef]
- Zhang, Z.; Karthaus, W.R.; Lee, Y.S.; Gao, V.R.; Wu, C.; Russo, J.W.; Liu, M.; Mota, J.M.; Abida, W.; Linton, E.; et al. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell 2020, 38, 279–296.e9. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.K.; Zhao, M.; Liu, Z.; Stevens, L.E.; Cao, P.D.; Fang, J.E.; Westbrook, T.F.; Nguyen, D.X. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell 2013, 23, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Kelenis, D.P.; Rodarte, K.E.; Kollipara, R.K.; Pozo, K.; Choudhuri, S.P.; Spainhower, K.B.; Wait, S.J.; Stastny, V.; Oliver, T.G.; Johnson, J.E. Inhibition of Karyopherin beta1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Res. 2022, 82, 3058–3073. [Google Scholar] [CrossRef]
- Pozniak, J.; Nsengimana, J.; Laye, J.P.; O’Shea, S.J.; Diaz, J.M.S.; Droop, A.P.; Filia, A.; Harland, M.; Davies, J.R.; Mell, T.; et al. Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma. Cancer Res. 2019, 79, 2684–2696. [Google Scholar] [CrossRef]
- Van de Velde, L.A.; Allen, E.K.; Crawford, J.C.; Wilson, T.L.; Guy, C.S.; Russier, M.; Zeitler, L.; Bahrami, A.; Finkelstein, D.; Pelletier, S.; et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021, 81, 5047–5059. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; DeBerardinis, R.J.; Xie, Y.; Minna, J.D.; Xiao, G. A Comparative Study of Neuroendocrine Heterogeneity in Small Cell Lung Cancer and Neuroblastoma. Mol. Cancer Res. 2023, 21, 795–807. [Google Scholar] [CrossRef]
- Kawauchi, D.; Robinson, G.; Uziel, T.; Gibson, P.; Rehg, J.; Gao, C.; Finkelstein, D.; Qu, C.; Pounds, S.; Ellison, D.W.; et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 2012, 21, 168–180. [Google Scholar] [CrossRef]
- Topham, C.; Tighe, A.; Ly, P.; Bennett, A.; Sloss, O.; Nelson, L.; Ridgway, R.A.; Huels, D.; Littler, S.; Schandl, C.; et al. MYC Is a Major Determinant of Mitotic Cell Fate. Cancer Cell 2015, 28, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Levanduski, E.; Denz, P.; Villavicencio, H.S.; Bhatta, M.; Alhorebi, L.; Zhang, Y.; Gomez, E.C.; Morreale, B.; Senchanthisai, S.; et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 2022, 40, 153–167.e11. [Google Scholar] [CrossRef] [PubMed]
- Altwegg, K.A.; Viswanadhapalli, S.; Mann, M.; Chakravarty, D.; Krishnan, S.; Liu, Z.; Liu, J.; Pratap, U.P.; Ebrahimi, B.; Sanchez, J.R.; et al. A First-in-Class Inhibitor of ER Coregulator PELP1 Targets ER+ Breast Cancer. Cancer Res. 2022, 82, 3830–3844. [Google Scholar] [CrossRef] [PubMed]
- Guieze, R.; Liu, V.M.; Rosebrock, D.; Jourdain, A.A.; Hernandez-Sanchez, M.; Martinez Zurita, A.; Sun, J.; Ten Hacken, E.; Baranowski, K.; Thompson, P.A.; et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019, 36, 369–384.e13. [Google Scholar] [CrossRef]
- Roh, W.; Geffen, Y.; Cha, H.; Miller, M.; Anand, S.; Kim, J.; Heiman, D.I.; Gainor, J.F.; Laird, P.W.; Cherniack, A.D.; et al. High-Resolution Profiling of Lung Adenocarcinoma Identifies Expression Subtypes with Specific Biomarkers and Clinically Relevant Vulnerabilities. Cancer Res. 2022, 82, 3917–3931. [Google Scholar] [CrossRef]
- Vidal, S.J.; Rodriguez-Bravo, V.; Quinn, S.A.; Rodriguez-Barrueco, R.; Lujambio, A.; Williams, E.; Sun, X.; de la Iglesia-Vicente, J.; Lee, A.; Readhead, B.; et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 2015, 27, 223–239. [Google Scholar] [CrossRef]
- Alothman, S.J.; Kang, K.; Liu, X.; Krawczyk, E.; Azhar, R.I.; Hu, R.; Goerlitz, D.; Kallakury, B.V.; Furth, P.A. Characterization of transcriptome diversity and in vitro behavior of primary human high-risk breast cells. Sci. Rep. 2022, 12, 6159. [Google Scholar] [CrossRef]
- Chen, R.; Khatri, P.; Mazur, P.K.; Polin, M.; Zheng, Y.; Vaka, D.; Hoang, C.D.; Shrager, J.; Xu, Y.; Vicent, S.; et al. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer Res. 2014, 74, 2892–2902. [Google Scholar] [CrossRef]
- Darmanis, S.; Sloan, S.A.; Croote, D.; Mignardi, M.; Chernikova, S.; Samghababi, P.; Zhang, Y.; Neff, N.; Kowarsky, M.; Caneda, C.; et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017, 21, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- de Jong, J.J.; Narayan, V.M.; Cronican, A.A.; Gupta, S.; van Leenders, G.J.L.H.; Boormans, J.L.; Gibb, E.A.; Konety, B.R. Gene expression profiling of muscle-invasive bladder cancer with secondary variant histology. Am. J. Clin. Pathol. 2021, 156, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Harlow, M.L.; Maloney, N.; Roland, J.; Guillen Navarro, M.J.; Easton, M.K.; Kitchen-Goosen, S.M.; Boguslawski, E.A.; Madaj, Z.B.; Johnson, B.K.; Bowman, M.J.; et al. Lurbinectedin Inactivates the Ewing Sarcoma Oncoprotein EWS-FLI1 by Redistributing It within the Nucleus. Cancer Res. 2016, 76, 6657–6668. [Google Scholar] [CrossRef] [PubMed]
- Scheidmann, M.C.; Castro-Giner, F.; Strittmatter, K.; Krol, I.; Paasinen-Sohns, A.; Scherrer, R.; Donato, C.; Gkountela, S.; Szczerba, B.M.; Diamantopoulou, Z.; et al. An In Vivo CRISPR Screen Identifies Stepwise Genetic Dependencies of Metastatic Progression. Cancer Res. 2022, 82, 681–694. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, J.; Ni, S.; Tan, C.; Xu, M.; Dong, L.; Yuan, L.; Wang, Q.; Du, X. Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin. Mod. Pathol. 2016, 29, 546–556. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.F.; Cao, J.; Burley, S.K.; Wang, H.Y.; Zheng, X.F.S. mTORC1 Promotes ARID1A Degradation and Oncogenic Chromatin Remodeling in Hepatocellular Carcinoma. Cancer Res. 2021, 81, 5652–5665. [Google Scholar] [CrossRef]
- Khlebus, E.; Vuttaradhi, V.K.; Welte, T.; Khurana, N.; Celestino, J.; Beird, H.C.; Gumbs, C.; Little, L. Legarreta, A.F.; Fellman, B.M.; et al. Comparative Tumor Microenvironment Analysis of Primary and Recurrent Ovarian Granulosa Cell Tumors. Mol. Cancer Res. 2023, 21, 483–494. [Google Scholar] [CrossRef]
- Mirzaei, R.; D’Mello, C.; Liu, M.; Nikolic, A.; Kumar, M.; Visser, F.; Bose, P.; Gallo, M.; Yong, V.W. Single-Cell Spatial Analysis Identifies Regulators of Brain Tumor-Initiating Cells. Cancer Res. 2023, 83, 1725–1741. [Google Scholar] [CrossRef]
- Yao, L.; Wang, J.T.; Jayasinghe, R.G.; O’Neal, J.; Tsai, C.F.; Rettig, M.P.; Guo, B.; Yan, H.; Liu, D.; Yang, Z. Single-Cell Discovery and Multiomic Characterization of Therapeutic Targets in Multiple Myeloma. Cancer Res. 2023, 83, 1214–1233. [Google Scholar] [CrossRef]
- Roda, N.; Cossa, A.; Hillje, R.; Tirelli, A.; Ruscitto, F.; Cheloni, S.; Priami, C.; Dalmasso, A.; Gambino, V.; Blandano, G.; et al. A Rare Subset of Primary Tumor Cells with Concomitant Hyperactivation of Extracellular Matrix Remodeling and dsRNA-IFN1 Signaling Metastasizes in Breast Cancer. Cancer Res. 2023, 83, 2155–2170. [Google Scholar] [CrossRef]
- Restaino, A.C.; Walz, A.; Vermeer, S.J.; Barr, J.; Kovacs, A.; Fettig, R.R.; Vermeer, D.W.; Reavis, H.; Williamson, C.S.; Lucido, C.T.; et al. Functional neuronal circuits promote disease progression in cancer. Sci. Adv. 2023, 9, eade4443. [Google Scholar] [CrossRef]
- Song, Y.; Deng, Z.; Sun, H.; Zhao, Y.; Zhao, R.; Cheng, J.; Huang, Q. Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells. J. Transl. Med. 2023, 21, 390. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; An, J.; Kurilov, R.; Brors, B.; Hu, K.; Peccerella, T.; Roessler, S.; Pfütze, K.; Schulz, A.; Wolf, S.; et al. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nat. Cancer 2023, 4, 1362–1381. [Google Scholar] [CrossRef] [PubMed]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.K.; Mitra, S.; Subhash, S.; Hertwig, F.; Kanduri, M.; Mishra, K.; Fransson, S.; Ganeshram, A.; Mondal, T.; Bandaru, S.; et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 2014, 26, 722–737. [Google Scholar] [CrossRef]
- Witt, H.; Mack, S.C.; Ryzhova, M.; Bender, S.; Sill, M.; Isserlin, R.; Benner, A.; Hielscher, T.; Milde, T.; Remke, M.; et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 2011, 20, 143–157. [Google Scholar] [CrossRef]
- Neou, M.; Villa, C.; Armignacco, R.; Jouinot, A.; Raffin-Sanson, M.L.; Septier, A.; Letourneur, F.; Diry, S.; Diedisheim, M.; Izac, B.; et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020, 37, 123–134.e5. [Google Scholar] [CrossRef]
- Fukumoto, T.; Umakoshi, H.; Iwahashi, N.; Ogasawara, T.; Yokomoto-Umakoshi, M.; Kaneko, H.; Fujita, M.; Uchida, N.; Nakao, H.; Kawamura, N.; et al. Steroids-producing nodules: A two-layered adrenocortical nodular structure as a precursor lesion of cortisol-producing adenoma. EBioMedicine 2024, 103, 105087. [Google Scholar] [CrossRef]
- Papier, K.; Atkins, J.R.; Tong, T.Y.N.; Gaitskell, K.; Desai, T.; Ogamba, C.F.; Parsaeian, M.; Reeves, G.K.; Mills, I.G.; Key, T.J.; et al. Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 circulating proteins and risk of 19 cancers in the UK Biobank. Nat. Commun. 2024, 15, 4010. [Google Scholar] [CrossRef]
- Smith-Byrne, K.; Hedman, A.; Dimitriou, M.; Desai, T.; Sokolov, A.V.; Schioth, H.B.; Koprulu, M.; Pietzner, M.; Langenberg, C.; Atkins, J.; et al. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat. Commun. 2024, 15, 3621. [Google Scholar] [CrossRef]
- Suchak, S.K.; Baloyianni, N.V.; Perkinton, M.S.; Williams, R.J.; Meldrum, B.S.; Rattray, M. The ‘glial’ glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J. Neurochem. 2003, 84, 522–532. [Google Scholar] [CrossRef]
- Al Awabdh, S.; Gupta-Agarwal, S.; Sheehan, D.F.; Muir, J.; Norkett, R.; Twelvetrees, A.E.; Griffin, L.D.; Kittler, J.T. Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures. Glia 2016, 64, 1252–1264. [Google Scholar] [CrossRef]
- Mai, D.; Chen, R.; Wang, J.; Zheng, J.; Zhang, X.; Qu, S. Critical amino acids in the TM2 of EAAT2 are essential for membrane-bound localization, substrate binding, transporter function and anion currents. J. Cell Mol. Med. 2021, 25, 2530–2548. [Google Scholar] [CrossRef]
- Molenaar, R.J. Ion channels in glioblastoma. ISRN Neurol. 2011, 2011, 590249. [Google Scholar] [CrossRef]
- Pedersen, S.F.; Stock, C. Ion channels and transporters in cancer: Pathophysiology, regulation, and clinical potential. Cancer Res. 2013, 73, 1658–1661. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jan, L.Y. Targeting potassium channels in cancer. J. Cell Biol. 2014, 206, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Pardo, L.A.; Stuhmer, W. The roles of K(+) channels in cancer. Nat. Rev. Cancer 2014, 14, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Comes, N.; Serrano-Albarras, A.; Capera, J.; Serrano-Novillo, C.; Condom, E.; Ramon, Y.C.S.; Ferreres, J.C.; Felipe, A. Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim. Biophys. Acta 2015, 1848, 2477–2492. [Google Scholar] [CrossRef]
- Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol. Rev. 2018, 98, 559–621. [Google Scholar] [CrossRef]
- Iorio, J.; Petroni, G.; Duranti, C.; Lastraioli, E. Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity 2019, 1, 188–200. [Google Scholar] [CrossRef]
- Girault, A.; Ahidouch, A.; Ouadid-Ahidouch, H. Roles for Ca(2+) and K(+) channels in cancer cells exposed to the hypoxic tumour microenvironment. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118644. [Google Scholar] [CrossRef]
- Petho, Z.; Najder, K.; Carvalho, T.; McMorrow, R.; Todesca, L.M.; Rugi, M.; Bulk, E.; Chan, A.; Löwik, C.W.G.M.; Reshkin, S.J.; et al. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers 2020, 12, 2484. [Google Scholar] [CrossRef] [PubMed]
- Ganser, K.; Klumpp, L.; Bischof, H.; Lukowski, R.; Eckert, F.; Huber, S.M. Potassium Channels in Cancer. Handb. Exp. Pharmacol. 2021, 267, 253–275. [Google Scholar] [PubMed]
- Verkhratsky, A.; Parpura, V. Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling, and Gliotransmission; Morgan & Claypool Publishers: San Rafael, CA, USA, 2015. [Google Scholar]
- Lopatin, A.N.; Makhina, E.N.; Nichols, C.G. The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines. J. Gen. Physiol. 1995, 106, 923–955. [Google Scholar] [CrossRef]
- Taura, J.; Kircher, D.M.; Gameiro-Ros, I.; Slesinger, P.A. Comparison of K(+) Channel Families. Handb. Exp. Pharmacol. 2021, 267, 1–49. [Google Scholar]
- Beckner, M.E. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem. Int. 2020, 136, 104727. [Google Scholar] [CrossRef] [PubMed]
- Schroder, W.; Hinterkeuser, S.; Seifert, G.; Schramm, J.; Jabs, R.; Wilkin, G.P.; Steinhäuser, C. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 2000, 41 (Suppl. 6), S181–S184. [Google Scholar] [CrossRef]
- Larson, V.A.; Mironova, Y.; Vanderpool, K.G.; Waisman, A.; Rash, J.E.; Agarwal, A.; Bergles, D.E. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife 2018, 7, e34829. [Google Scholar] [CrossRef]
- Song, S.; Luo, L.; Sun, B.; Sun, D. Roles of glial ion transporters in brain diseases. Glia 2020, 68, 472–494. [Google Scholar] [CrossRef]
- Aronica, E.; Gorter, J.A.; Jansen, G.H.; Leenstra, S.; Yankaya, B.; Troost, D. Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol. 2001, 101, 449–459. [Google Scholar] [CrossRef]
- Caltabiano, R.; Torrisi, A.; Condorelli, D.; Albanese, V.; Lanzafame, S. High levels of connexin 43 mRNA in high grade astrocytomas. Study of 32 cases with in situ hybridization. Acta Histochem. 2010, 112, 529–535. [Google Scholar] [CrossRef]
- McClenaghan, C.; Schewe, M.; Aryal, P.; Carpenter, E.P.; Baukrowitz, T.; Tucker, S.J. Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J. Gen. Physiol. 2016, 147, 497–505. [Google Scholar] [CrossRef]
- Woo, J.; Jun, Y.K.; Zhang, Y.H.; Nam, J.H.; Shin, D.H.; Kim, S.J. Identification of critical amino acids in the proximal C-terminal of TREK-2 K(+) channel for activation by acidic pH(i) and ATP-dependent inhibition. Pflugers Arch. 2018, 470, 327–337. [Google Scholar] [CrossRef]
- Lee, J.; Kang, M.; Kim, S.; Chang, I. Structural and molecular insight into the pH-induced low-permeability of the voltage-gated potassium channel Kv1.2 through dewetting of the water cavity. PLoS Comput. Biol. 2020, 16, e1007405. [Google Scholar] [CrossRef]
- Claydon, T.W.; Boyett, M.R.; Sivaprasadarao, A.; Ishii, K.; Owen, J.M.; O’Beirne, H.A.; Leach, R.; Komukai, K.; Orchard, C.H. Inhibition of the K+ channel kv1.4 by acidosis: Protonation of an extracellular histidine slows the recovery from N-type inactivation. J. Physiol. 2000, 526 Pt 2, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bett, G.C.; Jiang, X.; Bondarenko, V.E.; Morales, M.J.; Rasmusson, R.L. Regulation of N- and C-type inactivation of Kv1.4 by pHo and K+: Evidence for transmembrane communication. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H71–H80. [Google Scholar] [CrossRef] [PubMed]
- Abbott, G.W.; Butler, M.H.; Goldstein, S.A. Phosphorylation and protonation of neighboring MiRP2 sites: Function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J. 2006, 20, 293–301. [Google Scholar] [CrossRef]
- Kazmierczak, M.; Zhang, X.; Chen, B.; Mulkey, D.K.; Shi, Y.; Wagner, P.G.; Pivaroff-Ward, K.; Sassic, J.K.; Bayliss, D.A.; Jegla, T. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor. J. Gen. Physiol. 2013, 141, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Li, L.; McManus, M.; Wu, J.; Cui, N.; Jiang, C. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis. J. Biol. Chem. 2002, 277, 46166–46171. [Google Scholar] [CrossRef]
- Mao, J.; Wu, J.; Chen, F.; Wang, X.; Jiang, C. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis. J. Biol. Chem. 2003, 278, 7091–7098. [Google Scholar] [CrossRef]
- Wu, J.; Xu, H.; Yang, Z.; Wang, Y.; Mao, J.; Jiang, C. Protons activate homomeric Kir6.2 channels by selective suppression of the long and intermediate closures. J. Membr. Biol. 2002, 190, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Wu, J.; Xu, H.; Wang, R.; Rojas, A.; Piao, H.; Mao, J.; Abdulkadir, L.; Li, L.; Jiang, C. A threonine residue (Thr71) at the intracellular end of the M1 helix plays a critical role in the gating of Kir6.2 channels by intracellular ATP and protons. J. Membr. Biol. 2003, 192, 111–122. [Google Scholar] [CrossRef]
- Maksaev, G.; Brundl-Jirout, M.; Stary-Weinzinger, A.; Zangerl-Plessl, E.M.; Lee, S.J.; Nichols, C.G. Subunit gating resulting from individual protonation events in Kir2 channels. Nat. Commun. 2023, 14, 4538. [Google Scholar] [CrossRef] [PubMed]
- Meuth, S.G.; Kleinschnitz, C.; Broicher, T.; Austinat, M.; Braeuninger, S.; Bittner, S.; Fischer, S.; Bayliss, D.A.; Budde, T.; Stoll, G.; et al. The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol. Dis. 2009, 33, 1–11. [Google Scholar] [CrossRef]
- Buckler, K.J. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch. 2015, 467, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Decher, N.; Maier, M.; Dittrich, W.; Gassenhuber, J.; Bruggemann, A.; Busch, A.E.; Steinmeyer, K. Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 2001, 492, 84–89. [Google Scholar] [CrossRef]
- Bales, C.E.; Durfee, G.R. Part I: Cytologic Techniques. In Diagnostic Cytology and Its Histopathologic Bases; Koss, L.G., Ed.; J.B. Lippincott Company: Philadelphia, PA, USA, 1992; pp. 1484–1486. [Google Scholar]
- Folstad, L.; Look, M.; Pallavicini, M. A polycarbonate filter technique for collection of sorted cells. Cytometry 1982, 3, 64–65. [Google Scholar] [CrossRef]
- Druzhkova, I.; Lukina, M.; Dudenkova, V.; Ignatova, N.; Snopova, L.; Gavrina, A.; Shimolina, L.; Belousov, V.; Zagaynova, E.; Shirmanova, M.; et al. Tracing of intracellular pH in cancer cells in response to Taxol treatment. Cell Cycle 2021, 20, 1540–1551. [Google Scholar] [CrossRef]
- Lemasters, J.J. Molecular Mechanisms of Cell Death. In Molecular Pathology, The Molecular Basis of Human Disease; Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–24. [Google Scholar]
- Green, D.R. Nonapoptotic cell death pathways. In Cell Death, Apoptosis and Other Means to an End; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2018; p. 135. [Google Scholar]
- Gow, I.F.; Thomson, J.; Davidson, J.; Shennan, D.B. The effect of a hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human breast cancer cells. Biochim. Biophys. Acta 2005, 1712, 52–61. [Google Scholar] [CrossRef]
- Nakada, T. The Molecular Mechanisms of Neural Flow Coupling: A New Concept. J. Neuroimaging 2015, 25, 861–865. [Google Scholar] [CrossRef]
- Li, C.; Voth, G.A. A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces. Proc. Natl. Acad. Sci. USA 2021, 118, e2113141118. [Google Scholar] [CrossRef]
- Drew, D.; Boudker, O. Ion and lipid orchestration of secondary active transport. Nature 2024, 626, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Persi, E.; Duran-Frigola, M.; Damaghi, M.; Roush, W.R.; Aloy, P.; Cleveland, J.L.; Gillies, R.J.; Ruppin, E. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 2018, 9, 2997. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Xu, L.; Kam, Y.; Abrahams, D.; Ordway, B.; Lopez, A.S.; Bui, M.M.; Johnson, J.; Epstein, T.; Ruiz, E.; et al. Proton export upregulates aerobic glycolysis. BMC Biol. 2022, 20, 163. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P.; Spitzer, K.W.; Vaughan-Jones, R.D. pH-Dependence of extrinsic and intrinsic H(+)-ion mobility in the rat ventricular myocyte, investigated using flash photolysis of a caged-H(+) compound. Biophys. J. 2007, 92, 641–653. [Google Scholar] [CrossRef]
- Barron, T.; Yalcin, B.; Su, M.; Byun, Y.G.; Gavish, A.; Shamardani, K.; Xu, H.; Ni, L.; Soni, N.; Mehta, V.; et al. GABAergic neuron-to-glioma synapses in diffuse midline gliomas. Nature 2025, 639, 1060–1068. [Google Scholar] [CrossRef]
- Garofano, L.; Migliozzi, S.; Oh, Y.T.; D’Angelo, F.; Najac, R.D.; Ko, A.; Frangaj, B.; Caruso, F.P.; Yu, K.; Yuan, J.; et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Cancer 2021, 2, 141–156. [Google Scholar] [CrossRef]
- Xia, J.; Wang, H.; Li, S.; Wu, Q.; Sun, L.; Huang, H.; Zeng, M. Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol. Cancer 2017, 16, 54. [Google Scholar] [CrossRef]
- Kurzeder, C.; Nguyen-Strauli, B.D.; Krol, I.; Ring, A.; Castro-Giner, F.; Nuesch, M.; Asawa, S.; Zhang, Y.W.; Budinjas, S.; Gvozdenovic, A.; et al. Digoxin for reduction of circulating tumor cell cluster size in metastatic breast cancer: A proof-of-concept trial. Nat. Med. 2025, 31, 1120–1124. [Google Scholar] [CrossRef]
- Moriyama, T.; Kataoka, H.; Seguchi, K.; Tsubouchi, H.; Koono, M. Effects of hepatocyte growth factor (HGF) on human glioma cells in vitro: HGF acts as a motility factor in glioma cells. Int. J. Cancer 1996, 66, 678–685. [Google Scholar] [CrossRef]
- Yamamoto, S.; Wakimoto, H.; Aoyagi, M.; Hirakawa, K.; Hamada, H. Modulation of motility and proliferation of glioma cells by hepatocyte growth factor. Jpn. J. Cancer Res. 1997, 88, 564–577. [Google Scholar] [CrossRef]
- Yuan, S.; Almagro, J.; Fuchs, E. Beyond genetics: Driving cancer with the tumour microenvironment behind the wheel. Nat. Rev. Cancer 2024, 24, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Baumann, F.; Leukel, P.; Doerfelt, A.; Beier, C.P.; Dettmer, K.; Oefner, P.J.; Kastenberger, M.; Kreutz, M.; Nickl-Jockschat, T.; Bogdahn, U.; et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 2009, 11, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Hirschhaeuser, F.; Sattler, U.G.; Mueller-Klieser, W. Lactate: A metabolic key player in cancer. Cancer Res. 2011, 71, 6921–6925. [Google Scholar] [CrossRef] [PubMed]
- Seliger, C.; Leukel, P.; Moeckel, S.; Jachnik, B.; Lottaz, C.; Kreutz, M.; Brawanski, A.; Proescholdt, M.; Bogdahn, U.; Bosserhoff, A.K.; et al. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS ONE 2013, 8, e78935. [Google Scholar] [CrossRef]
- Ward, C.; Meehan, J.; Gray, M.E.; Murray, A.F.; Argyle, D.J.; Kunkler, I.H.; Langdon, S.P. The impact of tumour pH on cancer progression: Strategies for clinical intervention. Explor. Target. Antitumor Ther. 2020, 1, 71–100. [Google Scholar] [CrossRef]
- Zhou, R.; Tang, X.; Wang, Y. Emerging strategies to investigate the biology of early cancer. Nat. Rev. Cancer 2024, 24, 850–866. [Google Scholar] [CrossRef]
- Putnam, R.W.; Roos, A.; Wilding, T.J. Properties of the intracellular pH-regulating systems of frog skeletal muscle. J. Physiol. 1986, 381, 205–219. [Google Scholar] [CrossRef]
- Fraser, S.P.; Pardo, L.A. Ion channels: Functional expression and therapeutic potential in cancer. Colloquium on Ion Channels and Cancer. EMBO Rep. 2008, 9, 512–515. [Google Scholar] [CrossRef]
- Lang, F.; Stournaras, C. Ion channels in cancer: Future perspectives and clinical potential. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130108. [Google Scholar] [CrossRef]
- Martina, M. Ion channel screening: Advances in technologies and analysis. Front. Pharmacol. 2012, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, P.; Zhao, Q.; Ma, X.; Zhang, Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front. Oncol. 2023, 12, 1074469. [Google Scholar] [CrossRef]
- Kahleova, H.; Maracine, C.; Himmelfarb, J.; Jayaraman, A.; Znayenko-Miller, T.; Holubkov, R.; Barnard, N.D. Dietary acid load on the Mediterranean and a vegan diet: A secondary analysis of a randomized, cross-over trial. Front. Nutr. 2025, 12, 1634215. [Google Scholar] [CrossRef]
- Bretschneider, F.; Wrisch, A.; Lehmann-Horn, F.; Grissmer, S. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels. Biophys. J. 1999, 76, 2351–2360. [Google Scholar] [CrossRef]
- Somodi, S.; Hajdu, P.; Gaspar, R.; Panyi, G.; Varga, Z. Effects of changes in extracellular pH and potassium concentration on Kv1.3 inactivation. Eur. Biophys. J. 2008, 37, 1145–1156. [Google Scholar] [CrossRef]
- Somodi, S.; Varga, Z.; Hajdu, P.; Starkus, J.G.; Levy, D.I.; Gaspar, R.; Panyi, G. pH-dependent modulation of Kv1.3 inactivation: Role of His399. Am. J. Physiol. Cell Physiol. 2004, 287, C1067–C1076. [Google Scholar]
- Steidl, J.V.; Yool, A.J. Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Mol. Pharmacol. 1999, 55, 812–820. [Google Scholar] [CrossRef]
- Jager, H.; Grissmer, S. Regulation of a mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH. FEBS Lett. 2001, 488, 45–50. [Google Scholar] [CrossRef]
- Kehl, S.J.; Eduljee, C.; Kwan, D.C.; Zhang, S.; Fedida, D. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn(2+). J. Physiol. 2002, 541, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Trapani, J.G.; Korn, S.J. Effect of external pH on activation of the Kv1.5 potassium channel. Biophys. J. 2003, 84, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kurata, H.T.; Kehl, S.J.; Fedida, D. Rapid induction of P/C-type inactivation is the mechanism for acid-induced K+ current inhibition. J. Gen. Physiol. 2003, 121, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Fedida, D.; Zhang, S.; Kwan, D.C.; Eduljee, C.; Kehl, S.J. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification. Cell Biochem. Biophys. 2005, 43, 231–242. [Google Scholar] [CrossRef]
- Wang, S.; Ding, W.G.; Bai, J.Y.; Toyoda, F.; Wei, M.J.; Matsuura, H. Regulation of human cardiac Kv1.5 channels by extracellular acidification. Pflug. Arch. 2016, 468, 1885–1894. [Google Scholar] [CrossRef]
- Tipparaju, S.M.; Barski, O.A.; Srivastava, S.; Bhatnagar, A. Catalytic mechanism and substrate specificity of the beta-subunit of the voltage-gated potassium channel. Biochemistry 2008, 47, 8840–8854. [Google Scholar] [CrossRef] [PubMed]
- Raph, S.M.; Bhatnagar, A.; Nystoriak, M.A. Biochemical and physiological properties of K(+) channel-associated AKR6A (Kvbeta) proteins. Chem. Biol. Interact. 2019, 305, 21–27. [Google Scholar] [CrossRef]
- Singarayar, S.; Bursill, J.; Wyse, K.; Bauskin, A.; Wu, W.; Vandenberg, J.; Breit, S.; Campbell, T. Extracellular acidosis modulates drug block of Kv4.3 currents by flecainide and quinidine. J. Cardiovasc. Electrophysiol. 2003, 14, 641–650. [Google Scholar] [CrossRef]
- Singarayar, S.; Singleton, C.; Tie, H.; Wyse, K.; Bursill, J.; Bauskin, A.; Wu, W.; Valenzuela, S.; Breit, S.; Campbell, T. Effects of components of ischemia on the Kv4.3 current stably expressed in Chinese hamster ovary cells. J. Mol. Cell Cardiol. 2002, 34, 197–207. [Google Scholar] [CrossRef]
- Saegusa, N.; Garg, V.; Spitzer, K.W. Modulation of ventricular transient outward K(+) current by acidosis and its effects on excitation-contraction coupling. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1680–H1696. [Google Scholar] [CrossRef]
- Heitzmann, D.; Grahammer, F.; von Hahn, T.; Schmitt-Graff, A.; Romeo, E.; Nitschke, R.; Gerlach, U.; Lang, H.J.; Verrey, F.; Barhanin, J.; et al. Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J. Physiol. 2004, 561, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Heitzmann, D.; Koren, V.; Wagner, M.; Sterner, C.; Reichold, M.; Tegtmeier, I.; Volk, T.; Warth, R. KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels. Cell Physiol. Biochem. 2007, 19, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Heitzmann, D.; Warth, R. No potassium, no acid: K+ channels and gastric acid secretion. Physiology 2007, 22, 335–341. [Google Scholar] [CrossRef]
- Abbott, G.W.; Roepke, T.K. KCNE2 and gastric cancer: Bench to bedside. Oncotarget 2016, 7, 17286–17287. [Google Scholar] [CrossRef]
- Engevik, A.C.; Kaji, I.; Goldenring, J.R. The Physiology of the Gastric Parietal Cell. Physiol. Rev. 2020, 100, 573–602. [Google Scholar] [CrossRef]
- Terlau, H.; Ludwig, J.; Steffan, R.; Pongs, O.; Stuhmer, W.; Heinemann, S.H. Extracellular Mg2+ regulates activation of rat eag potassium channel. Pflugers Arch. 1996, 432, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Anumonwo, J.M.; Horta, J.; Delmar, M.; Taffet, S.M.; Jalife, J. Proton and zinc effects on HERG currents. Biophys. J. 1999, 77, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Berube, J.; Chahine, M.; Daleau, P. Modulation of HERG potassium channel properties by external pH. Pflug. Arch. 1999, 438, 419–422. [Google Scholar]
- Jiang, M.; Dun, W.; Tseng, G.N. Mechanism for the effects of extracellular acidification on HERG-channel function. Am. J. Physiol. 1999, 277, H1283–H1292. [Google Scholar] [CrossRef]
- Jo, S.H.; Youm, J.B.; Kim, I.; Lee, C.O.; Earm, Y.E.; Ho, W.K. Blockade of HERG channels expressed in Xenopus oocytes by external H+. Pflug. Arch. 1999, 438, 23–29. [Google Scholar] [CrossRef]
- Terai, T.; Furukawa, T.; Katayama, Y.; Hiraoka, M. Effects of external acidosis on HERG current expressed in Xenopus oocytes. J. Mol. Cell Cardiol. 2000, 32, 11–21. [Google Scholar] [CrossRef]
- Vereecke, J.; Carmeliet, E. The effect of external pH on the delayed rectifying K+ current in cardiac ventricular myocytes. Pflug. Arch. 2000, 439, 739–751. [Google Scholar]
- Zhou, Q.; Bett, G.C. Regulation of the voltage-insensitive step of HERG activation by extracellular pH. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1710–H1718. [Google Scholar] [CrossRef] [PubMed]
- Van Slyke, A.C.; Cheng, Y.M.; Mafi, P.; Allard, C.R.; Hull, C.M.; Shi, Y.P.; Claydon, T.W. Proton block of the pore underlies the inhibition of hERG cardiac K+ channels during acidosis. Am. J. Physiol. Cell Physiol. 2012, 302, C1797–C1806. [Google Scholar] [CrossRef]
- Shi, Y.P.; Cheng, Y.M.; Van Slyke, A.C.; Claydon, T.W. External protons destabilize the activated voltage sensor in hERG channels. Eur. Biophys. J. 2014, 43, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.P.; Thouta, S.; Cheng, Y.M.; Claydon, T.W. Extracellular protons accelerate hERG channel deactivation by destabilizing voltage sensor relaxation. J. Gen. Physiol. 2019, 151, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.P.; Thouta, S.; Claydon, T.W. Modulation of hERG K(+) Channel Deactivation by Voltage Sensor Relaxation. Front. Pharmacol. 2020, 11, 139. [Google Scholar] [CrossRef]
- Wilson, S.L.; Dempsey, C.E.; Hancox, J.C.; Marrion, N.V. Identification of a proton sensor that regulates conductance and open time of single hERG channels. Sci. Rep. 2019, 9, 19825. [Google Scholar] [CrossRef]
- Ukachukwu, C.U.; Jimenez-Vazquez, E.N.; Jain, A.; Jones, D.K. hERG1 channel subunit composition mediates proton inhibition of rapid delayed rectifier potassium current (I(Kr)) in cardiomyocytes derived from hiPSCs. J. Biol. Chem. 2023, 299, 102778. [Google Scholar] [CrossRef]
- Shi, W.; Wang, H.S.; Pan, Z.; Wymore, R.S.; Cohen, I.S.; McKinnon, D.; Dixon, J.E. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia. J. Physiol. 1998, 511 Pt 3, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Sala-Rabanal, M.; Nichols, C.G. Inward rectifying potassium channels. In Handbook of Ion Channels; Zheng, J., Trudeau, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 241–260. [Google Scholar]
- Davies, N.W. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990, 343, 375–377. [Google Scholar] [CrossRef]
- Davies, N.W.; Standen, N.B.; Stanfield, P.R. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. J. Physiol. 1992, 445, 549–568. [Google Scholar] [CrossRef]
- Vivaudou, M.; Forestier, C. Modification by protons of frog skeletal muscle KATP channels: Effects on ion conduction and nucleotide inhibition. J. Physiol. 1995, 486 Pt 3, 629–645. [Google Scholar] [CrossRef]
- Forestier, C.; Pierrard, J.; Vivaudou, M. Mechanism of action of K channel openers on skeletal muscle KATP channels: Interactions with nucleotides and protons. J. Gen. Physiol. 1996, 107, 489–502. [Google Scholar] [CrossRef]
- Santa, N.; Kitazono, T.; Ago, T.; Ooboshi, H.; Kamouchi, M.; Wakisaka, M.; Ibayashi, S.; Iida, M. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Stroke 2003, 34, 1276–1280. [Google Scholar] [CrossRef]
- Butt, A.M.; Kalsi, A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J. Cell Mol. Med. 2006, 10, 33–44. [Google Scholar] [CrossRef]
- Shuck, M.E.; Piser, T.M.; Bock, J.H.; Slightom, J.L.; Lee, K.S.; Bienkowski, M.J. Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3). J. Biol. Chem. 1997, 272, 586–593. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, C. Opposite effects of pH on open-state probability and single channel conductance of kir4.1 channels. J. Physiol. 1999, 520 Pt 3, 921–927. [Google Scholar] [CrossRef]
- Xu, H.; Yang, Z.; Cui, N.; Giwa, L.R.; Abdulkadir, L.; Patel, M.; Zeng, M. Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels. Am. J. Physiol. Cell Physiol. 2000, 279, C1464–C1471. [Google Scholar] [CrossRef]
- Xu, H.; Cui, N.; Yang, Z.; Qu, Z.; Jiang, C. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. 2000, 524 Pt 3, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.J.; Imbrici, P.; Salvatore, L.; D’Adamo, M.C.; Pessia, M. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J. Biol. Chem. 2000, 275, 16404–16407. [Google Scholar] [CrossRef] [PubMed]
- Tanemoto, M.; Kittaka, N.; Inanobe, A.; Kurachi, Y. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. 2000, 525 Pt 3, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, H.; Cui, N.; Qu, Z.; Chanchevalap, S.; Shen, W.; Jiang, C. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J. Gen. Physiol. 2000, 116, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Pessia, M.; Imbrici, P.; D’Adamo, M.C.; Salvatore, L.; Tucker, S.J. Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J. Physiol. 2001, 532, 359–367. [Google Scholar] [CrossRef]
- Hibino, H.; Fujita, A.; Iwai, K.; Yamada, M.; Kurachi, Y. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J. Biol. Chem. 2004, 279, 44065–44073. [Google Scholar] [CrossRef]
- Sepulveda, F.V.; Pablo Cid, L.; Teulon, J.; Niemeyer, M.I. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol. Rev. 2015, 95, 179–217. [Google Scholar] [CrossRef]
- Hughes, B.A.; Swaminathan, A. Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH. Am. J. Physiol. Cell Physiol. 2008, 294, C423–C431. [Google Scholar] [CrossRef]
- Lesage, F.; Guillemare, E.; Fink, M.; Duprat, F.; Lazdunski, M.; Romey, G.; Barhanin, J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 1996, 15, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Lesage, F.; Lazdunski, M. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol. 2000, 279, F793–F801. [Google Scholar] [CrossRef]
- Rajan, S.; Plant, L.D.; Rabin, M.L.; Butler, M.H.; Goldstein, S.A. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 2005, 121, 37–47. [Google Scholar] [CrossRef]
- Feliciangeli, S.; Chatelain, F.C.; Bichet, D.; Lesage, F. The family of K2P channels: Salient structural and functional properties. J. Physiol. 2015, 593, 2587–2603. [Google Scholar] [CrossRef]
- Turney, T.S.; Li, V.; Brohawn, S.G. Structural Basis for pH-gating of the K(+) channel TWIK1 at the selectivity filter. Nat. Commun. 2022, 13, 3232. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, F.C.; Gilbert, N.; Bichet, D.; Jauch, A.; Feliciangeli, S.; Lesage, F.; Bignucolo, O. Mechanistic basis of the dynamic response of TWIK1 ionic selectivity to pH. Nat. Commun. 2024, 15, 3849. [Google Scholar] [CrossRef] [PubMed]
- Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 1999, 274, 26691–26696. [Google Scholar] [CrossRef]
- Honore, E.; Maingret, F.; Lazdunski, M.; Patel, A.J. An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J. 2002, 21, 2968–2976. [Google Scholar] [CrossRef]
- Cohen, A.; Ben-Abu, Y.; Hen, S.; Zilberberg, N. A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 2008, 283, 19448–19455. [Google Scholar] [CrossRef]
- Sandoz, G.; Douguet, D.; Chatelain, F.; Lazdunski, M.; Lesage, F. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc. Natl. Acad. Sci. USA 2009, 106, 14628–14633. [Google Scholar] [CrossRef]
- Ryoo, K.; Park, J.Y. Two-pore Domain Potassium Channels in Astrocytes. Exp. Neurobiol. 2016, 25, 222–232. [Google Scholar] [CrossRef]
- Nasr, N.; Faucherre, A.; Borsotto, M.; Heurteaux, C.; Mazella, J.; Jopling, C.; Maati, H.M.O. Identification and characterization of two zebrafish Twik related potassium channels, Kcnk2a and Kcnk2b. Sci. Rep. 2018, 8, 15311. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, L.; Liao, P.; Jiang, R. Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast. 2021, 2021, 8643129. [Google Scholar] [CrossRef] [PubMed]
- Duprat, F.; Lesage, F.; Fink, M.; Reyes, R.; Heurteaux, C.; Lazdunski, M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997, 16, 5464–5471. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.A.; Barratt, L.; Southan, A.P.; Page, K.M.; Fyffe, R.E.; Robertson, B.; Mathie, A. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 2000, 97, 3614–3618. [Google Scholar] [CrossRef]
- Torborg, C.L.; Berg, A.P.; Jeffries, B.W.; Bayliss, D.A.; McBain, C.J. TASK-like conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations. J. Neurosci. 2006, 26, 7362–7367. [Google Scholar] [CrossRef]
- Shvetsova, A.A.; Lazarenko, V.S.; Gaynullina, D.K.; Tarasova, O.S.; Schubert, R. TWIK-Related Acid-Sensitive Potassium Channels (TASK-1) Emerge as Contributors to Tone Regulation in Renal Arteries at Alkaline pH. Front. Physiol. 2022, 13, 895863. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.; Duprat, F.; Lesage, F.; Fink, M.; Salinas, M.; Farman, N.; Lazdunski, M. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J. Biol. Chem. 1998, 273, 30863–30869. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.J.; Abohamed, A.; Sivaprasadarao, A.; Hunter, M. pH sensing in the two-pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. USA 2005, 102, 16102–16106. [Google Scholar] [CrossRef] [PubMed]
- Gonczi, M.; Szentandrassy, N.; Johnson, I.T.; Heagerty, A.M.; Weston, A.H. Investigation of the role of TASK-2 channels in rat pulmonary arteries; pharmacological and functional studies following RNA interference procedures. Br. J. Pharmacol. 2006, 147, 496–505. [Google Scholar] [CrossRef]
- Niemeyer, M.I.; Cid, L.P.; Pena-Munzenmayer, G.; Sepulveda, F.V. Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J. Biol. Chem. 2010, 285, 16467–16475. [Google Scholar] [CrossRef]
- Zuniga, L.; Marquez, V.; Gonzalez-Nilo, F.D.; Chipot, C.; Cid, L.P.; Sepulveda, F.V.; Niemeyer, M.I. Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter. PLoS ONE 2011, 6, e16141. [Google Scholar] [CrossRef]
- Cid, L.P.; Roa-Rojas, H.A.; Niemeyer, M.I.; Gonzalez, W.; Araki, M.; Araki, K.; Sepulveda, F.V. TASK-2: A K2P K(+) channel with complex regulation and diverse physiological functions. Front. Physiol. 2013, 4, 198. [Google Scholar] [CrossRef]
- Bustos, D.; Bedoya, M.; Ramirez, D.; Concha, G.; Zuniga, L.; Decher, N.; Hernández-Rodríguez, E.W.; Sepúlveda, F.V.; Martínez, L.; Gonzále, W. Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 K(2)P Channels. Int. J. Mol. Sci. 2020, 21, 532. [Google Scholar] [CrossRef]
- Khoubza, L.; Gilbert, N.; Kim, E.J.; Chatelain, F.C.; Feliciangeli, S.; Abelanet, S.; Kang, D.; Lesage, F.; Bichet, D. Alkaline-sensitive two-pore domain potassium channels form functional heteromers in pancreatic beta-cells. J. Biol. Chem. 2022, 298, 102447. [Google Scholar] [CrossRef]
- Chavez, R.A.; Gray, A.T.; Zhao, B.B.; Kindler, C.H.; Mazurek, M.J.; Mehta, Y.; Forsayeth, J.R.; Yost, C.S. TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J. Biol. Chem. 1999, 274, 7887–7892. [Google Scholar] [CrossRef]
- Patel, A.J.; Maingret, F.; Magnone, V.; Fosset, M.; Lazdunski, M.; Honore, E. TWIK-2, an inactivating 2P domain K+ channel. J. Biol. Chem. 2000, 275, 28722–28730. [Google Scholar] [CrossRef]
- Rinne, S.; Schick, F.; Vowinkel, K.; Schutte, S.; Krasel, C.; Kauferstein, S.; Schäfer, M.K.J.; Kiper, A.K.; Müller, T.; Decher, N. Potassium channel TASK-5 forms functional heterodimers with TASK-1 and TASK-3 to break its silence. Nat. Commun. 2024, 15, 7548. [Google Scholar] [CrossRef]
- Cook, D.L.; Ikeuchi, M.; Fujimoto, W.Y. Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature 1984, 311, 269–271. [Google Scholar] [CrossRef]
- Christensen, O.; Zeuthen, T. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflug. Arch. 1987, 408, 249–259. [Google Scholar] [CrossRef]
- Kume, H.; Takagi, K.; Satake, T.; Tokuno, H.; Tomita, T. Effects of intracellular pH on calcium-activated potassium channels in rabbit tracheal smooth muscle. J. Physiol. 1990, 424, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Peers, C.; Green, F.K. Inhibition of Ca(2+)-activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body. J. Physiol. 1991, 437, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Schubert, R.; Krien, U.; Gagov, H. Protons inhibit the BK(Ca) channel of rat small artery smooth muscle cells. J. Vasc. Res. 2001, 38, 30–38. [Google Scholar] [CrossRef]
- Avdonin, V.; Tang, X.D.; Hoshi, T. Stimulatory action of internal protons on Slo1 BK channels. Biophys. J. 2003, 84, 2969–2980. [Google Scholar] [CrossRef] [PubMed]
- Brelidze, T.I.; Magleby, K.L. Protons block BK channels by competitive inhibition with K+ and contribute to the limits of unitary currents at high voltages. J. Gen. Physiol. 2004, 123, 305–319. [Google Scholar] [CrossRef]
- Raingo, J.; Rebolledo, A.; Grassi de Gende, A.O.; Sanz, N.; Tommasi, J.; Milesi, V. pH effects on high conductance Ca2+-activated K+ channels (BK(Ca)) in human internal mammary artery smooth muscle cells. Life Sci. 2005, 77, 1993–2003. [Google Scholar] [CrossRef]
- Petroff, E.; Snitsarev, V.; Gong, H.; Abboud, F.M. Acid sensing ion channels regulate neuronal excitability by inhibiting BK potassium channels. Biochem. Biophys. Res. Commun. 2012, 426, 511–515. [Google Scholar] [CrossRef]
- Petroff, E.Y.; Price, M.P.; Snitsarev, V.; Gong, H.; Korovkina, V.; Abboud, F.M.; Welsh, M.J. Acid-sensing ion channels interact with and inhibit BK K+ channels. Proc. Natl. Acad. Sci. USA 2008, 105, 3140–3144. [Google Scholar] [CrossRef]
- Hou, S.; Horrigan, F.T.; Xu, R.; Heinemann, S.H.; Hoshi, T. Comparative effects of H+ and Ca2+ on large-conductance Ca2+- and voltage-gated Slo1 K+ channels. Channels 2009, 3, 249–258. [Google Scholar] [CrossRef]
- Yang, H.; Cui, J. BK channels. In Handbook of Ion Channels; Zheng, J., Trudeau, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 227–239. [Google Scholar]
- Guarina, L.; Vandael, D.H.; Carabelli, V.; Carbone, E. Low pH(o) boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J. Physiol. 2017, 595, 2587–2609. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, X.M.; Lingle, C.J. BK channel inhibition by strong extracellular acidification. Elife 2018, 7, e38060. [Google Scholar] [CrossRef] [PubMed]
- Dopico, A.M.; Bukiya, A.N.; Jaggar, J.H. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflug. Arch. 2018, 470, 1271–1289. [Google Scholar] [CrossRef] [PubMed]
- Sancho, M.; Kyle, B.D. The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Front. Physiol. 2021, 12, 750615. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.T.; Zeng, X.H.; Xia, X.M.; Lingle, C.J. Interactions between beta subunits of the KCNMB family and Slo3: Beta4 selectively modulates Slo3 expression and function. PLoS ONE 2009, 4, e6135. [Google Scholar] [CrossRef]
- Wen, D.; Cornelius, R.J.; Yuan, Y.; Sansom, S.C. Regulation of BK-alpha expression in the distal nephron by aldosterone and urine pH. Am. J. Physiol. Renal Physiol. 2013, 305, F463–F476. [Google Scholar] [CrossRef]
- Wen, D.; Cornelius, R.J.; Rivero-Hernandez, D.; Yuan, Y.; Li, H.; Weinstein, A.M.; Sansom, S.C. Relation between BK-alpha/beta4-mediated potassium secretion and ENaC-mediated sodium reabsorption. Kidney Int. 2014, 86, 139–145. [Google Scholar] [CrossRef]
- Wang, B.; Wang-France, J.; Li, H.; Sansom, S.C. Furosemide reduces BK-alphabeta4-mediated K(+) secretion in mice on an alkaline high-K(+) diet. Am. J. Physiol. Renal Physiol. 2019, 316, F341–F350. [Google Scholar] [CrossRef]
- Al-Qusairi, L.; Ferdaus, M.Z.; Pham, T.D.; Li, D.; Grimm, P.R.; Zapf, A.M.; Abood, D.C.; Tahaei, E.; Delpire, E.; Wal, S.M.; et al. Dietary anions control potassium excretion: It is more than a poorly absorbable anion effect. Am. J. Physiol. Renal Physiol. 2023, 325, F377–F393. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, S.J.; Lamy, C.; Seutin, V.; Marrion, N.V. Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J. Gen. Physiol. 2009, 134, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Li, Z.; Ko, K.; Choudhury, P.; Albaqumi, M.; Johnson, A.K.; Yan, Y.; Backer, J.M.; Unutmaz, D.; Coetzee, W.A.; et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol. Cell 2006, 24, 665–675. [Google Scholar] [CrossRef]
- Kee, J.M.; Muir, T.W. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem. Biol. 2012, 7, 44–51. [Google Scholar] [CrossRef]
- Kalagiri, R.; Hunter, T. The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem. J. 2021, 478, 3575–3596. [Google Scholar] [CrossRef]
- Ning, J.; Sala, M.; Reina, J.; Kalagiri, R.; Hunter, T.; McCullough, B.S. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int. J. Mol. Sci. 2024, 25, 7975. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Furukawa, T.; Horikawa, S.; Hiraoka, M. External pH regulates the slowly activating potassium current IsK expressed in Xenopus oocytes. FEBS Lett. 1993, 319, 229–232. [Google Scholar] [CrossRef]
- Freeman, L.C.; Lippold, J.J.; Mitchell, K.E. Glycosylation influences gating and pH sensitivity of I(sK). J Membr Biol 2000, 177, 65–79. [Google Scholar] [CrossRef]
- Unsold, B.; Kerst, G.; Brousos, H.; Hubner, M.; Schreiber, R.; Nitschke, R.; Greger, R.; Bleich, M. KCNE1 reverses the response of the human K+ channel KCNQ1 to cytosolic pH changes and alters its pharmacology and sensitivity to temperature. Pflug. Arch. 2000, 441, 368–378. [Google Scholar] [CrossRef]
- Peretz, A.; Schottelndreier, H.; Aharon-Shamgar, L.B.; Attali, B. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification. J. Physiol. 2002, 545, 751–766. [Google Scholar] [CrossRef]
- Roepke, T.K.; King, E.C.; Purtell, K.; Kanda, V.A.; Lerner, D.J.; Abbott, G.W. Genetic dissection reveals unexpected influence of beta subunits on KCNQ1 K+ channel polarized trafficking in vivo. FASEB J. 2011, 25, 727–736. [Google Scholar] [CrossRef]
- Dixit, G.; Dabney-Smith, C.; Lorigan, G.A. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183148. [Google Scholar] [CrossRef] [PubMed]
- Abbott, G.W. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front. Physiol. 2020, 11, 583. [Google Scholar] [CrossRef]
- Prole, D.L.; Lima, P.A.; Marrion, N.V. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons. J. Gen. Physiol. 2003, 122, 775–793. [Google Scholar] [CrossRef] [PubMed]
- Mehrdel, B.; Villalba-Galea, C.A. Effect of a sensing charge mutation on the deactivation of KV7.2 channels. J. Gen. Physiol. 2024, 156, e202213284. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.S.; Callo, K.; Jespersen, T.; Jensen, B.S.; Olesen, S.P. The KCNQ5 potassium channel from mouse: A broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Brain Res. Mol. Brain Res. 2005, 139, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ruffin, V.A.; Gu, X.Q.; Zhou, D.; Douglas, R.M.; Sun, X.; Trouth, C.O.; Haddad, G.G. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience 2008, 151, 410–418. [Google Scholar] [CrossRef]
- Ruffin, V.A.; Salameh, A.I.; Boron, W.F.; Parker, M.D. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front. Physiol. 2014, 5, 43. [Google Scholar] [CrossRef]
- Kaczmarek, L.K. Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci. 2013, 2013, 354262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaczmarek, L.K.; Aldrich, R.W.; Chandy, K.G.; Grissmer, S.; Wei, A.D.; Wulff, H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol. Rev. 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Schreiber, M.; Wei, A.; Yuan, A.; Gaut, J.; Saito, M.; Salkoff, L. Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J. Biol. Chem. 1998, 273, 3509–3516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, X.; Lingle, C.J. Slo3 K+ channels: Voltage and pH dependence of macroscopic currents. J. Gen. Physiol. 2006, 128, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, X.; Xia, X.M.; Lingle, C.J. pH-regulated Slo3 K+ channels: Properties of unitary currents. J. Gen. Physiol. 2006, 128, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Kirichok, Y.; Clapham, D.E. KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc. Natl. Acad. Sci. USA 2007, 104, 7688–7692. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, M.D.; Yuan, P.; Hsiung, Y.; Mackinnon, R. Functional and structural analysis of the human SLO3 pH- and voltage-gated K+ channel. Proc. Natl. Acad. Sci. USA 2012, 109, 19274–19279. [Google Scholar] [CrossRef]
- Brenker, C.; Zhou, Y.; Muller, A.; Echeverry, F.A.; Trotschel, C.; Poetsch, A.; Xia, X.M.; Bönigk, W.; Lingle, C.J.; Kaupp, U.B.; et al. The Ca2+-activated K+ current of human sperm is mediated by Slo3. Elife 2014, 3, e01438. [Google Scholar] [CrossRef]
- Ludwig, M.G.; Vanek, M.; Guerini, D.; Gasser, J.A.; Jones, C.E.; Junker, U.; Hofstetter, H.; Wolf, R.M.; Seuwen, K. Proton-sensing G-protein-coupled receptors. Nature 2003, 425, 93–98. [Google Scholar] [CrossRef]
- Weiss, K.T.; Fante, M.; Kohl, G.; Schreml, J.; Haubner, F.; Kreutz, M.; Haverkampf, S.; Berneburg, M.; Schreml, S. Proton-sensing G protein-coupled receptors as regulators of cell proliferation and migration during tumor growth and wound healing. Exp. Dermatol. 2017, 26, 127–132. [Google Scholar] [CrossRef]
- Hosford, P.S.; Mosienko, V.; Kishi, K.; Jurisic, G.; Seuwen, K.; Kinzel, B.; Ludwig, M.G.; Wells, J.A.; Christie, I.N.; Koolen, L.; et al. CNS distribution, signalling properties and central effects of G-protein coupled receptor 4. Neuropharmacology 2018, 138, 381–392. [Google Scholar] [CrossRef]
- Mashiko, M.; Kurosawa, A.; Tani, Y.; Tsuji, T.; Takeda, S. GPR31 and GPR151 are activated under acidic conditions. J. Biochem. 2019, 166, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Klatt, W.; Wallner, S.; Brochhausen, C.; Stolwijk, J.A.; Schreml, S. Expression profiles of proton-sensing G-protein coupled receptors in common skin tumors. Sci. Rep. 2020, 10, 15327. [Google Scholar] [CrossRef]
- Sisignano, M.; Fischer, M.J.M.; Geisslinger, G. Proton-Sensing GPCRs in Health and Disease. Cells 2021, 10, 2050. [Google Scholar] [CrossRef] [PubMed]
- Forch, A.; Wallner, S.; Zeman, F.; Ettl, T.; Brochhausen, C.; Schreml, S. Expression of Proton-Sensitive GPR31, GPR151, TASK1 and TASK3 in Common Skin Tumors. Cells 2021, 11, 27. [Google Scholar] [CrossRef]
- Imenez Silva, P.H.; Camara, N.O.; Wagner, C.A. Role of proton-activated G protein-coupled receptors in pathophysiology. Am. J. Physiol. Cell Physiol. 2022, 323, C400–C414. [Google Scholar] [CrossRef]
- Imenez Silva, P.H.; Wagner, C.A. Physiological relevance of proton-activated GPCRs. Pflug. Arch. 2022, 474, 487–504. [Google Scholar] [CrossRef]
- Kumar, N.N.; Velic, A.; Soliz, J.; Shi, Y.; Li, K.; Wang, S.; Weaver, J.L.; Sen, J.; Abbott, S.B.G.; Lazarenko, R.M.; et al. PHYSIOLOGY. Regulation of breathing by CO(2) requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science 2015, 348, 1255–1260. [Google Scholar] [CrossRef]
- Guyenet, P.G.; Bayliss, D.A. Neural Control of Breathing and CO2 Homeostasis. Neuron 2015, 87, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, S.; Qin, J.; Tao, B.; Thomas, N.E.; Cao, E.; Wu, R.; Sandoval, D.R.; Piermatteo, A.; Grunddal, K.V.; Ma, F.; et al. Bone-marrow macrophage-derived GPNMB protein binds to orphan receptor GPR39 and plays a critical role in cardiac repair. Nat. Cardiovasc. Res. 2024, 3, 1356–1373. [Google Scholar] [CrossRef]
- Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006, 281, 22021–22028. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Simonavicius, N.; Tian, H.; Ling, L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem. 2006, 281, 34457–34464. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckner, M.E. Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal. Biomolecules 2025, 15, 1177. https://doi.org/10.3390/biom15081177
Beckner ME. Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal. Biomolecules. 2025; 15(8):1177. https://doi.org/10.3390/biom15081177
Chicago/Turabian StyleBeckner, Marie E. 2025. "Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal" Biomolecules 15, no. 8: 1177. https://doi.org/10.3390/biom15081177
APA StyleBeckner, M. E. (2025). Cell Settling, Migration, and Stochastic Cancer Gene Expression Suggest Potassium Membrane Flux May Initiate pH Reversal. Biomolecules, 15(8), 1177. https://doi.org/10.3390/biom15081177