Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = on-board hydrogen system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3544 KB  
Article
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
by Hongjun Fan, Peggy Shu-Ling Chen, Andrew Harris, Nagi Abdussamie, Evan Mac A. Gray, Irene Penesis and Javad A. Mehr
J. Mar. Sci. Eng. 2025, 13(11), 2037; https://doi.org/10.3390/jmse13112037 - 24 Oct 2025
Viewed by 597
Abstract
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating [...] Read more.
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania, Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems—either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing, onboard hydrogen storage integration, operational constraints, lifecycle cost, and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs, rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations, with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets, while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture, while clarifying near-term trade-offs between cost and emissions. Full article
(This article belongs to the Special Issue Infrastructure for Offshore Aquaculture Farms)
Show Figures

Figure 1

25 pages, 22171 KB  
Article
Physics-Informed Co-Optimization of Fuel-CellFlying Vehicle Propulsion and Control Systems with Onboard Catalysis
by Yifei Bao, Chaoyi Chen, Hao Zhang and Nuo Lei
Electronics 2025, 14(21), 4150; https://doi.org/10.3390/electronics14214150 - 23 Oct 2025
Viewed by 303
Abstract
Fuel-cell flying vehicles suffer from limited endurance, while ammonia, decomposed onboard to supply hydrogen, offers a carbon-free, high-density solution to extend flight missions. However, the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end, this paper [...] Read more.
Fuel-cell flying vehicles suffer from limited endurance, while ammonia, decomposed onboard to supply hydrogen, offers a carbon-free, high-density solution to extend flight missions. However, the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end, this paper introduces a novel optimization paradigm, termed physics-informed gradient-enhanced multi-objective optimization (PI-GEMO), to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition, powertrain sizing, and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model, which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PI-GEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results. Full article
(This article belongs to the Special Issue Eco-Safe Intelligent Mobility Development and Application)
Show Figures

Figure 1

17 pages, 1608 KB  
Article
Modeling and Validation of High-Pressure Hydrogen Joule-Thomson Effect for Enhanced Hydrogen Energy System Safety
by Mu-Yao Zhou, Yi Fang, Qian-Hua Wang, Yi-Ming Dai, Zhan-Hao Liu, Ji-Qiang Li and Jeong-Tae Kwon
Energies 2025, 18(17), 4573; https://doi.org/10.3390/en18174573 - 28 Aug 2025
Viewed by 1124
Abstract
With the rapid development of hydrogen fuel cell vehicles, the research on the throttling effect of high-pressure hydrogen is crucial to the safety of hydrogen circulation systems for fuel cells. This paper studies the Joule-Thomson coefficients (μJT) of ten [...] Read more.
With the rapid development of hydrogen fuel cell vehicles, the research on the throttling effect of high-pressure hydrogen is crucial to the safety of hydrogen circulation systems for fuel cells. This paper studies the Joule-Thomson coefficients (μJT) of ten gas state equations. The four equations, Van Der Waals (VDW), Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Beattie Bridgeman (BB), were selected for calculation. These were compared with the database of the National Institute of Standards and Technology (NIST), aiming to determine the optimal state equation under different temperature and pressure conditions. The empirical formula of the μJT pressure and temperature was compounded, and the temperature rise effect was further calculated using the empirical formula of compounding. The results show that the calculated value of μJT by using the VDW equation in the low-pressure range (0–2 MPa) is closer to the value in the NIST database with an error less than 0.056 K·MPa1. The tendency of μJT described by the RK equation corresponds to the NIST database; meanwhile, the maximum error in the SRK equation is 0.143916 K·MPa1. The BB equation is more applicable within the pressure range of 20 to 50 MPa with a maximum error of 0.042853 K·MPa1. The fitting error of the empirical formula is within 9.52%, and the relative error of the calculated temperature rise is less than 4%. This research might provide several technical ideas for the study of the throttling effect of hydrogen refueling stations and the hydrogen circulation system of on-board hydrogen fuel cells. Full article
Show Figures

Figure 1

20 pages, 4388 KB  
Article
Investigation of Cryogenic Mechanical Performance of Epoxy Resin and Carbon Fibre-Reinforced Polymer Composites for Cryo-Compressed Hydrogen Storage Onboard Gas Vessels
by Liangliang Qi, Keqing Wang, Zhoutian Ge, Zhuangzhuang Cao, Peiyu Hu, Yuhang He, Sohail Yasin and Jianfeng Shi
Polymers 2025, 17(17), 2296; https://doi.org/10.3390/polym17172296 - 25 Aug 2025
Cited by 1 | Viewed by 1162
Abstract
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior [...] Read more.
To address the brittle matrix failure frequently observed in filament-wound composite layers of onboard pressure vessels operating under cryogenic and high-pressure conditions, we studied a bisphenol-A epoxy resin (DGEBA) system modified with polyetheramine (T5000) and 3,4-Epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (CY179). The curing and rheological behavior of the modified resin were first evaluated, revealing a favorable processing, with viscosity suitable for wet-filament winding. Subsequently, its coefficient of thermal expansion (CTE) and tensile properties were characterized over the 300 K–90 K range, demonstrating a linear increase in elastic modulus and tensile strength with decreasing temperature. Carbon fibre-reinforced polymer composites (CFRP) were then fabricated using this resin system, and both longitudinal and transverse tensile tests, along with microscopic fracture surface analyses, were conducted. The results showed that CFRP-0° specimens exhibited an initial increase followed by a decrease in elastic modulus with decreasing temperature, whereas CFRP-90° specimens demonstrated pronounced cryogenic strengthening, with tensile strength and modulus enhanced by 52.2% and 82.4%, respectively. The findings provide comprehensive properties for the studied resin system and its CFRP under room temperature (RT) to cryogenic conditions, offering a basis for the design and engineering of cryo-compressed hydrogen storage vessels. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

29 pages, 2829 KB  
Review
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
by Rashed Kaiser and Ayesha Munira Chowdhury
Clean Technol. 2025, 7(3), 68; https://doi.org/10.3390/cleantechnol7030068 - 11 Aug 2025
Cited by 1 | Viewed by 2473
Abstract
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged [...] Read more.
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods, storage technologies, onboard propulsion systems, and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogen-powered vessels with conventional diesel engines, revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs, storage limitations, and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies, technological innovation, and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector. Full article
Show Figures

Figure 1

22 pages, 8744 KB  
Article
Simulation Analysis of the Leakage and Diffusion Risk of a Hydrogen Storage System in Hydrogen Aircraft
by Xiangjun Dang, Mingwen Zhong, Wei Jia, Xiaojun Yang, Haoming Liu, Yongxuan Shao and Zhe Yang
Aerospace 2025, 12(6), 489; https://doi.org/10.3390/aerospace12060489 - 29 May 2025
Cited by 2 | Viewed by 941
Abstract
Hydrogen is an alternative energy source for the aviation industry due to its renewability and cleanliness, although this novel application needs to be reassessed for the potential leakage risk. For this reason, we take a small hydrogen-powered aircraft as the research object and [...] Read more.
Hydrogen is an alternative energy source for the aviation industry due to its renewability and cleanliness, although this novel application needs to be reassessed for the potential leakage risk. For this reason, we take a small hydrogen-powered aircraft as the research object and investigate hydrogen diffusion behavior in the cabin after 35 MPa onboard hydrogen storage system leakage. Firstly, the effectiveness of the numerical simulation model is verified. Secondly, the numerical simulation model is utilized to simulate the changes in hydrogen mole fraction in the cabin under various scenario conditions (different leakage diameters, directions, and environment parameters). Finally, we investigate the impact of ventilation. Forced ventilation could significantly reduce the hydrogen mole fraction in the cabin in a short time. However, forced ventilation also promotes the diffusion of residual hydrogen in the cabin, resulting in a large proportion of the volume having a hydrogen mole fraction greater than 0.04, but it can significantly reduce the proportion of high hydrogen mole fraction (>0.1 or >0.2) regions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

41 pages, 5521 KB  
Article
Integrated Approach to Ship Electrification Using Fuel Cells and an Ammonia Decomposition System
by Onur Yuksel, Eduardo Blanco-Davis, David Hitchmough, G Viknash Shagar, Andrew Spiteri, Maria Carmela Di Piazza, Marcello Pucci, Nikolaos Tsoulakos, Milad Armin and Jin Wang
J. Mar. Sci. Eng. 2025, 13(5), 977; https://doi.org/10.3390/jmse13050977 - 18 May 2025
Cited by 1 | Viewed by 1968
Abstract
This study investigates the environmental and economic performance of integrating a proton exchange membrane fuel cell, battery systems, and an organic Rankine cycle-based waste heat recovery system for ship electrification. The analysis examines an onboard ammonia decomposition system for hydrogen production and ammonia [...] Read more.
This study investigates the environmental and economic performance of integrating a proton exchange membrane fuel cell, battery systems, and an organic Rankine cycle-based waste heat recovery system for ship electrification. The analysis examines an onboard ammonia decomposition system for hydrogen production and ammonia production pathways. Additionally, the study benchmarks the effectiveness of onboard ammonia decomposition against green hydrogen bunkering scenarios (H2-BS). The analysis is based on data collected over two years from a bulk carrier provided by Laskaridis Shipping Co., Ltd. The environmental analysis includes well-to-wake emissions calculations. At the same time, economic performance is assessed through levelised cost of energy (LCOE) computations for 2025 and 2040, factoring in different fuel and carbon price scenarios. Consequently, the analysis utilises the Complex Proportional Assessment method to compare configurations featuring various ammonia production pathways across economic cases. The results indicate that green and pink ammonia feedstocks achieve maximum equivalent carbon dioxide reductions in the electrification plant of up to 47.28% and 48.47%, respectively, compared to H2-BS and 95.56% and 95.66% compared to the base scenario. Ammonia decomposition systems prove more economically viable than H2-BS due to lower storage and fuel costs, leading to competitive LCOE values that improve under higher carbon pricing scenarios. Full article
(This article belongs to the Special Issue Marine Fuel Cell Technology: Latest Advances and Prospects)
Show Figures

Figure 1

33 pages, 4824 KB  
Article
Risk Assessment of Hydrogen-Powered Aircraft: An Integrated HAZOP and Fuzzy Dynamic Bayesian Network Framework
by Xiangjun Dang, Yongxuan Shao, Haoming Liu, Zhe Yang, Mingwen Zhong, Huimin Zhao and Wu Deng
Sensors 2025, 25(10), 3075; https://doi.org/10.3390/s25103075 - 13 May 2025
Cited by 4 | Viewed by 1339
Abstract
To advance the hydrogen energy-driven low-altitude aviation sector, it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based [...] Read more.
To advance the hydrogen energy-driven low-altitude aviation sector, it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based analytical models to ensure operational safety and regulatory compliance. In this context, this study proposes a comprehensive hazard and operability analysis-fuzzy dynamic Bayesian network (HAZOP-FDBN) framework, which quantifies risk without relying on historical data. This framework systematically maps the risk factor relationships identified in HAZOP results into a dynamic Bayesian network (DBN) graphical structure, showcasing the risk propagation paths between subsystems. Expert knowledge is processed using a similarity aggregation method to generate fuzzy probabilities, which are then integrated into the FDBN model to construct a risk factor relationship network. A case study on low-altitude aircraft hydrogen storage systems demonstrates the framework’s ability to (1) visualize time-dependent failure propagation mechanisms through bidirectional probabilistic reasoning, and (2) quantify likelihood distributions of system-level risks triggered by component failures. Results validate the predictive capability of the model in capturing emergent risk patterns arising from subsystem interactions under low-altitude operational constraints, thereby providing critical support for safety design optimization in the absence of historical failure data. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

26 pages, 4161 KB  
Article
Exergy Analysis of an On-Vehicle Floating Piston Hydrogen Compression System for Direct-Injection Engines
by Mehdi Nikkhah Koojehri, Ashish Singh, Sandeep Munshi and Gordon McTaggart-Cowan
Energies 2025, 18(9), 2151; https://doi.org/10.3390/en18092151 - 22 Apr 2025
Viewed by 737
Abstract
Direct injection of hydrogen at high pressures into an otherwise unmodified heavy-duty diesel engine offers a near-term pathway to near-zero greenhouse gas emissions for commercial vehicles. Hydrogen direct-injection engines maintain diesel-like performance with equal or better thermal efficiency. Supplying the hydrogen for injection [...] Read more.
Direct injection of hydrogen at high pressures into an otherwise unmodified heavy-duty diesel engine offers a near-term pathway to near-zero greenhouse gas emissions for commercial vehicles. Hydrogen direct-injection engines maintain diesel-like performance with equal or better thermal efficiency. Supplying the hydrogen for injection pressures of ~30 MPa requires a high-pressure supply. Onboard hydrogen compression enables more complete utilization of the stored compressed hydrogen; however, it introduces a significant parasitic load on the engine. The magnitude of this load depends on factors such as the compressor’s configuration, capacity, pressure ratio, efficiency, and the engine’s operating conditions. This paper presents an exergy analysis of an onboard hydrogen compression system that uses hydraulically driven free-floating pistons, sized for heavy-duty commercial vehicles. Minimizing the parasitic loads from the compressor is essential to retain vehicle performance and maximize system-wide efficiency. The exergy analysis approach provides a comprehensive understanding of the whole compression system by comparably quantifying the losses across all components. A one-dimensional model of the compression system, developed in GT-SUITETM and validated with experimental data, is used to quantify the main exergy loss components. Exergy efficiency ranges from 12% to 45% under varying pressure ratios and cycle frequencies, with a pronounced increase in efficiency observed at higher cycle frequencies. Major exergy losses occur in the hydraulic driving system up to 79%, especially during retracting and idle phases for lower pressure ratios and cycle frequencies. Within the compression cylinder, exergy destructions account for less than 10% of the total work input, wherein heat transfer and piston friction are identified as the dominant contributors to exergy destruction, with their effects intensifying at higher pressure ratios. This work highlights the challenges of onboard gas compression and develops a systematic framework that can compare compressor design alternatives for different driving cycles. Full article
Show Figures

Figure 1

23 pages, 10074 KB  
Article
Drone Electric Propulsion System with Hybrid Power Source
by Jenica-Ileana Corcau, Liviu Dinca, Andra-Adelina Cucu and Dmitrii Condrea
Drones 2025, 9(4), 301; https://doi.org/10.3390/drones9040301 - 11 Apr 2025
Viewed by 4584
Abstract
Unmanned aerial vehicles, known today as drones, in the beginning, were small-dimension research models powered by small electric motors fed from electrical batteries. The propulsion system for these drones had to be adapted to the specific applications along their development. Electric and hybrid-electric [...] Read more.
Unmanned aerial vehicles, known today as drones, in the beginning, were small-dimension research models powered by small electric motors fed from electrical batteries. The propulsion system for these drones had to be adapted to the specific applications along their development. Electric and hybrid-electric propulsion drones represent a rapidly developing field in the aerospace industry. Electric drones are those with purely electric propulsion fed from batteries, while hybrid-electric ones have a hybrid propulsion system combining a thermal engine and an electric motor. Another class of hybrid-electric drones includes those with an electric propulsion system fed from fuel cells and batteries. This paper proposes the configuration of an electric propulsion system with a hybrid power source for a transport drone, as well as an analysis of the special electrical components onboard an electric drone, such as batteries, fuel cells, and electric motors. In the final part of the paper, this propulsion system is modeled and analyzed in Matlab/Simulink version 2021a. Design software and simulation tools specifically developed for hybrid-electric drones are essential for ensuring the accuracy and efficiency of these processes. Electric drones have the advantage of zero emissions, but at present, the batteries are still too heavy for aviation applications. By using hydrogen fuel cells as the main power source, it is possible to considerably reduce the power source weight. This is an important advantage of the system proposed in this work. Using hydrogen fuel cells in aircraft and drone propulsion is an important trend in the scientific world. This technology seems to be mature enough to be implemented in aviation. From a technical point of view, these kinds of systems are already feasible. Their usefulness and reliability have to be proven in time. Full article
Show Figures

Figure 1

25 pages, 7652 KB  
Article
A High-Precision Frequency Synchronization Method Based on a Novel Geostationary Communication Satellite Phase-Locked Transponder
by Xueyi Tang, Chenhao Yan, Haiyuan Sun, Lijiaoyue Meng, Yibin He, Rui Liu, Shiguang Wang and Lijun Wang
Remote Sens. 2025, 17(7), 1280; https://doi.org/10.3390/rs17071280 - 3 Apr 2025
Cited by 1 | Viewed by 1150
Abstract
Equipping satellites with a series of high-precision frequency references is essential; however, even advanced active hydrogen masers can often be too heavy and expensive for the current satellite payload constraints. Moreover, in geostationary Earth-orbit communication satellites lacking atomic clocks, onboard oscillators can degrade [...] Read more.
Equipping satellites with a series of high-precision frequency references is essential; however, even advanced active hydrogen masers can often be too heavy and expensive for the current satellite payload constraints. Moreover, in geostationary Earth-orbit communication satellites lacking atomic clocks, onboard oscillators can degrade the performance of time–frequency transmission methods. To address these challenges, this study proposes a novel phase-locked transponder that leverages Einstein’s synchronization theory and real-time carrier-phase compensation to improve the transmission performance of satellite frequency transfer systems while mitigating the noise from onboard satellite oscillators. Notably, this requires only simple modifications to the existing transponder structure. By replicating the high-precision atomic frequency standards from ground stations to satellites, the proposed system achieves enhanced frequency synchronization without additional onboard clocks. The feasibility of the satellite-to-ground link was validated through both a theoretical analysis and an experimental verification. Specifically, ground experiments demonstrated a reproducibility of 6.33 ps (1σ) over a 24 h period, with a long-term frequency stability of 3.36 × 10−16 at an average time of 10,000 s under dynamic conditions, showcasing the potential of this approach for advanced frequency synchronization. This paper presents a cost-effective and scalable solution for enhancing frequency synchronization in geostationary satellites, improving communication reliability, supporting advanced scientific and navigational applications, and enabling the development of high-precision, space-air-ground integrated time–frequency synchronization networks. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

23 pages, 4317 KB  
Article
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
by Gabriele Sirtori, Benedikt Aigner, Erich Wehrle, Carlo E. D. Riboldi and Lorenzo Trainelli
Aerospace 2025, 12(3), 240; https://doi.org/10.3390/aerospace12030240 - 15 Mar 2025
Cited by 1 | Viewed by 1847
Abstract
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be [...] Read more.
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories, from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust, combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios, the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions, hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation, commuter and regional), typically driven by propellers. For short- to long-range jet aircraft, direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios, 2030 and 2050, and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally, introducing such innovative architectures will face a lack of applicable regulation, which could hamper a smooth entry into service. These regulatory gaps are assessed, detailing the level of maturity in current regulations for the different technologies and aircraft categories. Full article
Show Figures

Figure 1

22 pages, 7199 KB  
Article
Deep Reinforcement Learning-Based Energy Management Strategy for Green Ships Considering Photovoltaic Uncertainty
by Yunxiang Zhao, Shuli Wen, Qiang Zhao, Bing Zhang and Yuqing Huang
J. Mar. Sci. Eng. 2025, 13(3), 565; https://doi.org/10.3390/jmse13030565 - 14 Mar 2025
Cited by 2 | Viewed by 1600
Abstract
Owing to the global concern regarding fossil energy consumption and carbon emissions, the power supply for traditional diesel-driven ships is being replaced by low-carbon power sources, which include hydrogen energy generation and photovoltaic (PV) power generation. However, the uncertainty of shipboard PV power [...] Read more.
Owing to the global concern regarding fossil energy consumption and carbon emissions, the power supply for traditional diesel-driven ships is being replaced by low-carbon power sources, which include hydrogen energy generation and photovoltaic (PV) power generation. However, the uncertainty of shipboard PV power generation due to weather changes and ship motion variations has become an essential factor restricting the energy management of all-electric ships. In this paper, a deep reinforcement learning-based optimization algorithm is proposed for a green ship energy management system (EMS) coupled with hydrogen fuel cells (HFCs), lithium batteries, PV generation, an electric power propulsion system, and service loads. The focus of this study is reducing the total operation cost and improving energy efficiency by jointly optimizing power generation and voyage scheduling, considering shipboard PV uncertainty. To verify the effectiveness of the proposed method, real-world data for a hybrid hydrogen- and PV-driven ship are selected for conducting case studies under various sailing conditions. The numerical results demonstrate that, compared to those obtained with the Double DQN algorithm, the PPO algorithm, and the DDPG algorithm without considering the PV system, the proposed DDPG algorithm reduces the total economic cost by 1.36%, 0.96%, and 4.42%, while effectively allocating power between the hydrogen fuel cell and the lithium battery and considering the uncertainty of on-board PV generation. The proposed approach can reduce energy waste and enhance economic benefits, sustainability, and green energy utilization while satisfying the energy demand for all-electric ships. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships—2nd Edition)
Show Figures

Figure 1

45 pages, 3618 KB  
Review
Prospects of Solar Energy in the Context of Greening Maritime Transport
by Olga Petrychenko, Maksym Levinskyi, Sergey Goolak and Vaidas Lukoševičius
Sustainability 2025, 17(5), 2141; https://doi.org/10.3390/su17052141 - 1 Mar 2025
Cited by 10 | Viewed by 3565
Abstract
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse [...] Read more.
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse gas emissions levels, production and transportation characteristics, onboard storage conditions, and technoeconomic indicators have been proposed. The analysis of fuel types reveals that hydrogen has zero greenhouse gas emissions. However, transportation and storage issues, along with the high investment required for implementation, pose barriers to the widespread use of hydrogen as fuel for maritime vessels. This article demonstrates that solar energy can serve as an alternative to gases and liquid fuels in maritime transport. The technologies and challenges in utilizing solar energy for shipping are analyzed, trends in solar energy for maritime transport are discussed, and future research directions for the use of solar energy in the maritime sector are proposed. The most significant findings include the identification of future research directions in the application of solar energy in the maritime sector, including the adaptation of concentrated solar power (CSP) systems for maritime applications; the development of materials and designs for solar panels specifically tailored to marine conditions; the development of methods for assessing the long-term economic benefits of using solar energy on vessels; and the creation of regulatory frameworks and international standards for the use of solar energy on ships. Furthermore, for hybrid photovoltaic and diesel power systems, promising research directions could include efforts to implement direct torque control systems instead of field-orientated control systems, as well as working on compensating higher harmonics in the phase current spectra of asynchronous motors. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

32 pages, 11817 KB  
Article
Internal Model Control for Onboard Methanol-Reforming Hydrogen Production Systems
by Fengxiang Chen, Yuanyuan Duan, Yaowang Pei and Bo Zhang
Energies 2025, 18(3), 476; https://doi.org/10.3390/en18030476 - 21 Jan 2025
Cited by 1 | Viewed by 1576
Abstract
Methanol reforming is considered to be one of the most promising hydrogen production technologies for hydrogen fuel cells. It is expected to solve the problem of hydrogen storage and transportation because of its high hydrogen production rate, low cost, and good safety. However, [...] Read more.
Methanol reforming is considered to be one of the most promising hydrogen production technologies for hydrogen fuel cells. It is expected to solve the problem of hydrogen storage and transportation because of its high hydrogen production rate, low cost, and good safety. However, the strong nonlinearity and slow response of the pressure and temperature subsystems pose challenges to the tracking control of the methanol reforming hydrogen production system. In this paper, two internal model-based temperature and pressure controllers are proposed, in which the temperature is adjusted by controlling the air flow and the pressure is adjusted by controlling the opening of the back-pressure valve. Firstly, a lumped parameter model of the methanol reforming hydrogen production system is constructed using MATLAB/Simulink® (produced by MathWorks in Natick, Massachusetts, USA). In addition, the transfer function model of the system is obtained by system identification at the equilibrium point, and the internal model controller is further designed. The simulation results show that the control method achieves the robustness of the system, and the temperature and pressure of the reforming reactor can quickly and accurately track the target value when the load changes. Small-load step tests indicate stable tracking of the temperature and pressure for the reforming reactor, without steady-state errors. Under large-temperature step signal testing, the response time for the reforming temperature is about 148 s, while the large-pressure step signal test shows that the response time for the reforming pressure is about 8 s. Compared to the PID controller, the internal model controller exhibits faster response, zero steady-state error, and no overshoot. The results show that the internal model control method has strong robustness and dynamic characteristics. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

Back to TopTop