Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (645)

Search Parameters:
Keywords = olive oil processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 (registering DOI) - 31 Jul 2025
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 (registering DOI) - 30 Jul 2025
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

25 pages, 1438 KiB  
Article
Optimized Ultrasound-Assisted Extraction for Enhanced Recovery of Valuable Phenolic Compounds from Olive By-Products
by Xavier Expósito-Almellón, Álvaro Munguía-Ubierna, Carmen Duque-Soto, Isabel Borrás-Linares, Rosa Quirantes-Piné and Jesús Lozano-Sánchez
Antioxidants 2025, 14(8), 938; https://doi.org/10.3390/antiox14080938 - 30 Jul 2025
Abstract
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound [...] Read more.
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound amplitude, and specific energy) were optimized via Response Surface Methodology (RSM) to enhance polyphenol recovery and yield. Ethanol concentration proved to be the most influential factor. Optimal conditions for olive pomace were 100% ethanol, 46 μm amplitude, and 25 J∙mL−1 specific energy, while olive leaves required 72% ethanol with similar ultrasound settings. Under these conditions, extracts were prepared and analyzed using HPLC-ESI-QTOF-MS and DPPH assays. The optimized UAE process achieved yields of 15–20% in less than 5 min and under mild conditions. Optimal extracts showed high oleuropein content (6 mg/g in leaves, 5 mg/g in pomace), lower hydroxytyrosol levels, and minimal oxidized derivatives, suggesting reduced degradation compared to conventional methods. These findings demonstrate UAE’s effectiveness in recovering valuable phenolics from olive by-products, supporting sustainable and efficient resource use. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Figure 1

42 pages, 914 KiB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 463
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

22 pages, 1957 KiB  
Article
Preliminary Evaluation of the Nutraceutical Properties in Monovarietal Extra-Virgin Olive Oils and Monitoring Their Stability During Storage
by Lina Cossignani, Ornella Calderini, Antonello Marinotti, Emiliano Orrico, Andrea Domesi, Luisa Massaccesi, Mirko Cucina and Marina Bufacchi
Molecules 2025, 30(15), 3143; https://doi.org/10.3390/molecules30153143 - 26 Jul 2025
Viewed by 298
Abstract
In this paper, an in-depth characterization of the composition of extra-virgin olive oil (EVOO) from different cultivars was performed, with the aim of obtaining the fingerprint profile of bioactive constituents and studying the oxidative stability of the samples, both by an accelerated stability [...] Read more.
In this paper, an in-depth characterization of the composition of extra-virgin olive oil (EVOO) from different cultivars was performed, with the aim of obtaining the fingerprint profile of bioactive constituents and studying the oxidative stability of the samples, both by an accelerated stability test and after four months of storage at room temperature. Among the investigated cultivars, some were typical of Umbria (Central Italy), namely Moraiolo, Frantoio, and Dolce Agogia, others of Apulia (Southern Italy), Coratina, Peranzana, and Bella di Cerignola, and others were typical Spanish cultivars cultivated in Umbria (Arbequina and Arbosana). The comparison of the chemical parameters among oils from the different cultivars allowed for their discrimination by multivariate statistical analysis. Some phenolic compounds were mainly responsible for the sample group’s differentiation, with the oils from the Spanish cultivars clearly distinguished from the Umbrian and Apulian sample groups. The processing of the results by chemometric analysis during oil storage and stability tests again allowed the discrimination of the samples analyzed at different storage times. This study contributes to increasing knowledge on olive oils—chemical and nutraceutical properties from specific cultivars, particularly some less studied so far, such as the Bella di Cerignola cultivar, and their changes in their nutraceutical properties during storage. Full article
(This article belongs to the Special Issue Critical Quality Attributes of Natural Products)
Show Figures

Figure 1

18 pages, 1459 KiB  
Article
Observance of the Atlantic Diet in a Healthy Population from Galicia (NW Spain): A Comparative Study Using a New Scale-Based Procedure to Assess Adherence
by Inés Rivas-Fernández, Paula Roade-Pérez, Marta López-Alonso, Víctor Pereira-Lestayo, Rafael Monte-Secades, Rosa Argüeso-Armesto and Carlos Herrero-Latorre
Foods 2025, 14(15), 2614; https://doi.org/10.3390/foods14152614 - 25 Jul 2025
Viewed by 218
Abstract
The Atlantic Diet (AD) is based on traditional dietary patterns in Galicia (northwestern Spain) and northern Portugal and is known for its health benefits. The AD focuses on fresh, local, and seasonal foods, especially fish, seafood, vegetables, legumes, whole grains, fruit, olive oil, [...] Read more.
The Atlantic Diet (AD) is based on traditional dietary patterns in Galicia (northwestern Spain) and northern Portugal and is known for its health benefits. The AD focuses on fresh, local, and seasonal foods, especially fish, seafood, vegetables, legumes, whole grains, fruit, olive oil, and a moderate consumption of wine. However, it has received less attention from researchers than other dietary patterns. The present study had two main objectives: (i) to evaluate the dietary habits of a Galician population in relation to the AD and (ii) to create a numerical index to measure adherence to the AD. In 2022, a validated food frequency questionnaire was administered to 500 healthy adults living in Galicia. The data on participants’ dietary habits showed notable deviations from the ideal AD, especially regarding consumption of fruits, grains, and seafood. However, an adequate intake of legumes and nuts was observed, along with a reduction in the consumption of processed foods (except among younger participants) relative to that revealed in previous surveys. To assess adherence to the diet, statistical and chemometric analyses were applied, leading to the development of a new index: the Atlantic Diet Scale (ADS). The ADS was compared with three existing tools and proved to be a simple, flexible, and effective method for assessing dietary adherence based on optimal intake levels across food groups. When applied to dietary data, the ADS yielded adherence levels similar to two of the three traditional methods, with some differences relative to the third. These findings highlight the need for standardized evaluation tools, including clear definitions of food groups and consistent scoring systems, to better assess and promote adherence to the Atlantic Diet. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 277
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

26 pages, 2613 KiB  
Article
Sustainable Olive Pomace Extracts for Skin Barrier Support
by Roberta Cougo Riéffel, Lucas Agostini, Naira Poener Rodrigues, Simone Jacobus Berlitz, Lígia Damasceno Ferreira Marczak and Irene Clemes Külkamp-Guerreiro
Pharmaceutics 2025, 17(8), 962; https://doi.org/10.3390/pharmaceutics17080962 - 25 Jul 2025
Viewed by 306
Abstract
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To [...] Read more.
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To develop a natural extract rich in antioxidants from olive pomace using sustainable solvents (water and 1,3-propanediol) for skin barrier support. Methods: The phenolic composition and in vitro biological activities of the extracts were analyzed. Results: The extracts demonstrated a reducing capacity (15 to 33 mg GAE/g) and flavonoid content (4 to 5 mg QE/g). In addition, their antioxidant capacity was proven through the inhibition of the DPPH radical (7% to 91%) and ABTS (7% to 95%) and the reduction in oxidation in the beta-carotene/linoleic acid system (6% to 35%), presenting results superior to those of tocopherol acetate. The hydroxytyrosol and oleuropein compounds, ranging from 28 to 54 and 51 to 85 µg/mL, respectively, were quantified via HPLC. The extract with the highest levels of hydroxytyrosol and oleuropein was analyzed via UHPLC-QqTOF-MS, and 33 compounds were identified. This extract showed antiglycation activity (24% to 40%). The incorporation of this extract into a cosmetic emulsion resulted in sufficient antioxidant capacity to replace tocopherol acetate. Conclusions: The use of effective extraction techniques and nontoxic solvents ensures the sustainability and safety of the extract for application as a natural cosmetic ingredient, aiming to promote the health and integrity of the skin barrier. Full article
Show Figures

Graphical abstract

15 pages, 2799 KiB  
Article
Revalorization of Olive Stones from Olive Pomace: Phenolic Compounds Obtained by Microwave-Assisted Extraction
by Alicia Castillo-Rivas, Paloma Álvarez-Mateos and Juan Francisco García-Martín
Agronomy 2025, 15(8), 1761; https://doi.org/10.3390/agronomy15081761 - 23 Jul 2025
Viewed by 202
Abstract
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone [...] Read more.
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone was assayed. A central composite design of experiments was used to determine the optimal extraction conditions, with the independent variables being temperature, process time, and aqueous acetone (v/v). The dependent variables were the total content of phenolic compounds (TPC) measured by the Folin–Ciocalteu method and the main phenolic compounds identified and quantified by UPLC. Under optimal conditions (75 °C, 20 min, and 60% acetone), 3.32 mg TPC was extracted from 100 g of dry matter (DM) OS. The most suitable extraction conditions were different for each polyphenol. Therefore, 292.11 μg vanillin/g DM; 10.94 μg oleuropein/g DM; and 10.11 protocatechuic acid μg/g DM were obtained under conditions of 60 °C, 15 min, and 100% acetone; 43.8 °C, 10.45 min, and 61.3% acetone; and 64.8 °C, 16.58 min, and 97.8% acetone, respectively. Finally, MAE was compared with the traditional Soxhlet method under the same conditions. As a result, MAE was proven to be an enhanced and more feasible method for polyphenol extraction from OS. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

26 pages, 612 KiB  
Article
Improvement of Oxidative Stability and Antioxidative Capacity of Virgin Olive Oil by Flash Thermal Pretreatment—Optimization Process
by Dubravka Škevin, Sandra Balbino, Mirella Žanetić, Maja Jukić Špika, Olivera Koprivnjak, Katarina Filipan, Marko Obranović, Karla Žanetić, Edina Smajić, Mateo Radić, Magdalena Bunić, Monika Dilber and Klara Kraljić
Foods 2025, 14(15), 2564; https://doi.org/10.3390/foods14152564 - 22 Jul 2025
Viewed by 425
Abstract
Flash thermal pretreatment (FTT) is a promising technique for enhancing virgin olive oil (VOO) quality. This study investigated the effects of FTT, both cooling (15–25 °C) and heating (30–40 °C), on phenolics, tocopherols, fatty acid composition, oxidative stability (OSI), antioxidant capacity (AC), and [...] Read more.
Flash thermal pretreatment (FTT) is a promising technique for enhancing virgin olive oil (VOO) quality. This study investigated the effects of FTT, both cooling (15–25 °C) and heating (30–40 °C), on phenolics, tocopherols, fatty acid composition, oxidative stability (OSI), antioxidant capacity (AC), and volatile composition in VOOs from three Croatian varieties: Istarska Bjelica, Levantinka, and Oblica. A full factorial experimental design was used with two independent variables: treatment temperature and olive variety. Olive pastes were treated after crushing and before malaxation. Data were evaluated using ANOVA, partial least squares (PLS) regression, and response surface methodology (RSM). Istarska Bjelica showed the highest OSI improvement (+16%) mostly linked to elevated phenolic compounds. Levantinka exhibited moderate responses, with slight OSI and AC declines. Oblica was most sensitive to heating, showing OSI and AC reductions (up to 28%), despite increased oleocanthal and olacein. RSM identified optimal FTT temperatures for each variety: 18.9 °C (Istarska Bjelica), 15.4 °C (Levantinka), and 15.5 °C (Oblica). These findings support variety-specific FTT as an effective strategy to improve VOO functional and sensory quality. Full article
Show Figures

Figure 1

22 pages, 2538 KiB  
Article
Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract
by Irene García-Meilán, Sara Balbuena-Pecino, Manel Montblanch, Sara Ramos-Romero, Ramón Fontanillas, Joaquim Gutiérrez, Encarnación Capilla, Isabel Navarro and Ángeles Gallardo
Animals 2025, 15(14), 2102; https://doi.org/10.3390/ani15142102 - 16 Jul 2025
Viewed by 413
Abstract
High-fat diets are commonly used in fish farming due to their protein-sparing effect, contributing to reduced production costs. However, this practice may have adverse effects such as metabolic impairment and inflammation. These problems can be assessed in two ways: by developing functional diets [...] Read more.
High-fat diets are commonly used in fish farming due to their protein-sparing effect, contributing to reduced production costs. However, this practice may have adverse effects such as metabolic impairment and inflammation. These problems can be assessed in two ways: by developing functional diets or using food restriction, which leads to compensatory growth. The present study characterized digestion in gilthead sea bream fed a high-fat diet in the presence (HT) or absence (HF) of an olive oil polyphenol as an additive, hydroxytyrosol, under two different dietary regimes: feeding to satiation (ST) or at a 40% restriction (R). Digestive enzyme activities, specifically trypsin-like activities, were mainly upregulated by dietary treatment (HT). In contrast, restriction effects mainly appeared during digestion in the pyloric caeca, where a significant rise in chymotrypsin-like activities was detected. Moreover, those fish tended to have an increased relative intestinal length compared to those fish fed at a standard ration. Feed restriction enhanced the growth of γ-Proteobacteria in pyloric caeca and proximal intestinal regions, without altering their population in the distal intestine. Overall, it is suggested that hydroxytyrosol inclusion at a standard ration could improve digestion processes in gilthead sea bream fed high-fat diets under healthier conditions than without this additive. Full article
Show Figures

Figure 1

41 pages, 1636 KiB  
Review
Valorization of Olive Oil and Wine Industry Byproducts: Challenges and Opportunities in Sustainable Food Applications
by María Rodríguez-Pérez, Beatriz García-Béjar, Emma Burgos-Ramos and Paula Silva
Foods 2025, 14(14), 2475; https://doi.org/10.3390/foods14142475 - 15 Jul 2025
Viewed by 544
Abstract
The historical co-production of olive oil and wine has influenced the Mediterranean landscape and economy. Olive oil and wine production generates substantial organic waste, including olive pomace, grape pomace, and wastewater, which poses environmental challenges if untreated. These byproducts contain bioactive compounds, including [...] Read more.
The historical co-production of olive oil and wine has influenced the Mediterranean landscape and economy. Olive oil and wine production generates substantial organic waste, including olive pomace, grape pomace, and wastewater, which poses environmental challenges if untreated. These byproducts contain bioactive compounds, including polyphenols, such as hydroxytyrosol, resveratrol, and flavonoids, which possess antioxidant and anti-inflammatory properties, making them valuable for the development of functional foods and nutraceuticals. A combined waste valorization strategy can enhance bioactive compound recovery and align it with circular economic principles. The incorporation of olive oil and wine byproducts into food matrices, such as bread, pasta, dairy products, baked goods, chocolates, beverages, and processed items, has been explored to enhance antioxidant content, dietary fiber, and nutritional value. However, successful integration depends on maintaining acceptable sensory qualities and addressing the technical challenges in extraction, processing, and regulatory compliance. Realizing the potential benefits of dual valorization requires a systemic shift integrating scientific innovation, regulatory adaptability, and consumer engagement, guided by evidence, transparent communication, and inclusive governance to ensure that sustainability goals translate into environmental, economic, and public health outcomes. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Food Science)
Show Figures

Graphical abstract

17 pages, 4406 KiB  
Article
Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance
by Sergio Hernández, Samuel Verdú, Pau Talens and Raúl Grau
Foods 2025, 14(14), 2462; https://doi.org/10.3390/foods14142462 - 14 Jul 2025
Viewed by 270
Abstract
This study aimed to improve the visual appeal of texture-modified (TM) dishes for individuals with dysphagia by developing a method to unify the texture of solid and liquid components through innovative food processing techniques. It investigated various meat-softening methods while preserving its solid [...] Read more.
This study aimed to improve the visual appeal of texture-modified (TM) dishes for individuals with dysphagia by developing a method to unify the texture of solid and liquid components through innovative food processing techniques. It investigated various meat-softening methods while preserving its solid appearance and ensuring a uniform texture when combined with a thickened soup. A grinding and reconstitution approach enabled the incorporation of pea protein (0% and 1%), olive oil (0%, 5%, or 10%), and papain (0% and 0.2%) to enhance the nutritional and sensory properties. This method successfully matched the firmness of TM meat with that of the thickened soup. Papain significantly reduced the firmness, and olive oil decreased the cohesiveness. After categorizing the TM meat and thickened soup as IDDSI level 4, four dishes at three firmness levels were developed. This study highlighted the potential of this approach to integrate solid and liquid food matrices, contributing to the advancement of TM food engineering and to the challenge of improving visual sensory acceptance and personalizing TM diets for individuals with dysphagia. Full article
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 645
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

Back to TopTop