Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = oleoresin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1907 KB  
Review
Topical β-Caryophyllene for Dermatologic Disorders: Mechanisms, Human Evidence, and Clinical Translation
by Amina M. Bagher
Pharmaceuticals 2025, 18(11), 1605; https://doi.org/10.3390/ph18111605 - 23 Oct 2025
Cited by 1 | Viewed by 2125
Abstract
Background: Chronic inflammatory skin disorders, including atopic dermatitis, psoriasis, acne, and chronic wounds, affect nearly two billion people worldwide, impose substantial morbidity and economic burden, and remain only partially controlled by existing therapies. The cutaneous endocannabinoid system (ECS), comprising cannabinoid receptors, endocannabinoids, and [...] Read more.
Background: Chronic inflammatory skin disorders, including atopic dermatitis, psoriasis, acne, and chronic wounds, affect nearly two billion people worldwide, impose substantial morbidity and economic burden, and remain only partially controlled by existing therapies. The cutaneous endocannabinoid system (ECS), comprising cannabinoid receptors, endocannabinoids, and their metabolic enzymes, regulates inflammation, pruritus, barrier integrity, and tissue repair; cannabinoid receptor type 2 (CB2) has emerged as a particularly relevant target. β-Caryophyllene (BCP), a dietary sesquiterpene and highly selective CB2 agonist with favorable safety and pharmacokinetic attributes, has attracted attention as a promising topical candidate. Methods: We systematically searched PubMed, Embase, and Web of Science (inception–30 July 2025) for studies on “β-caryophyllene” and dermatological outcomes, prioritizing purified BCP and analytically characterized BCP-rich fractions. Quantitative parameters, including tested concentration ranges (0.5 µM–10%) and principal mechanistic outcomes, were extracted to provide a translational context. Results: BCP penetrates the stratum corneum, suppresses NF-κB/MAPK and IL-4/TSLP pathways, enhances Nrf2-driven antioxidant defenses, and accelerates re-epithelialization and collagen remodeling. Across in vitro, in vivo, and formulation studies, BCP produced consistent anti-inflammatory and barrier-restorative effects within this concentration range. CB2 antagonism attenuated these responses, confirming receptor specificity. BCP’s volatility and autoxidation to β-caryophyllene oxide (BCPO) necessitate stability-by-design strategies using antioxidants, low-oxygen processing, and protective packaging. Human evidence, limited to BCP-rich botanicals such as Copaifera oleoresins, suggests benefits for scars, wounds, and acne but lacks compound-specific validation. Conclusions: BCP exhibits coherent CB2-mediated anti-inflammatory, antipruritic, antioxidant, and reparative actions with a favorable safety profile. Dose-defined, oxidation-controlled clinical trials of purified BCP are warranted to establish its potential as a steroid-sparing topical therapy. Full article
Show Figures

Graphical abstract

20 pages, 7431 KB  
Article
Secretory Structures and Essential Oil Composition in Santolina chamaecyparissus L. Cultivated in Northern Italy
by Claudia Giuliani, Fabrizia Milani, Sara Falsini, Alberto Spada, Piero Bruschi, Alessio Papini, Laura Santagostini, Martina Bottoni and Gelsomina Fico
Horticulturae 2025, 11(10), 1184; https://doi.org/10.3390/horticulturae11101184 - 2 Oct 2025
Viewed by 753
Abstract
Santolina chamaecyparissus L. (Asteraceae), cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, Brescia, Northern Italy) of the University of Milan, was investigated adopting a multidisciplinary research approach: micromorphological and histochemical, with special attention on the secretory structures producing secondary metabolites; phytochemical, with the [...] Read more.
Santolina chamaecyparissus L. (Asteraceae), cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, Brescia, Northern Italy) of the University of Milan, was investigated adopting a multidisciplinary research approach: micromorphological and histochemical, with special attention on the secretory structures producing secondary metabolites; phytochemical, with the analysis of the essential oil (EO) composition from the air-dried, flowered aerial parts gathered once per year across two consecutive years (2021 and 2022); bio-ecological, focusing, based on literature data, on the biological activity and ecology of the main EO compounds; didactic–educational, with the ex novo realization of an interpretative apparatus at the study site. Two distinct types of secretory structures were described: biseriate glandular trichomes and secretory ducts, both producing an oleoresin rich in flavonoids. Phytochemical analysis revealed stable EO profiles across the two years with regards to the total number of compounds (39 vs. 40), the main chemical classes (oxygenated monoterpenes (72.67% vs. 78.61%) and monoterpenes hydrocarbons (15.06% vs. 10.48%) and the key single components (artemisia ketone, 52.74% vs. 55.67%; camphor, 13.00% vs. 16.18%). The literature data on the bio-ecology of the main compounds allowed us to confirm antimicrobial, antioxidant, and anti-inflammatory properties. Concerning the dissemination actions, the outcomes of this multidisciplinary work were integrated into a new interpretive apparatus for S. chamaecyparissus at the Ghirardi Botanic Garden. The research results enhance our understanding of this species, supporting its potential EO application in medicine and agriculture. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Graphical abstract

15 pages, 784 KB  
Article
Advancing the Chemical Characterization of Eperua oleifera Duke Oleoresin: A UHPLC-HRMS-Based Approach
by Rayssa Ribeiro, Gabriel Reis Alves Carneiro, Gustavo Ramalho Cardoso dos Santos, Márcio Vinícius da Silva Gomes, Henrique Marcelo Gualberto Pereira, Monica Costa Padilha and Valdir F. Veiga-Junior
Plants 2025, 14(18), 2893; https://doi.org/10.3390/plants14182893 - 18 Sep 2025
Viewed by 621
Abstract
Eperua oleifera Ducke (Fabaceae), commonly known as copaíba-jacaré, is traditionally used for therapeutic purposes, like Copaifera oleoresins. Previous GC-MS studies reported its chemical composition as mainly composed of diterpenic acids, consistent with species of the same genus. Although GC-MS remains widely used [...] Read more.
Eperua oleifera Ducke (Fabaceae), commonly known as copaíba-jacaré, is traditionally used for therapeutic purposes, like Copaifera oleoresins. Previous GC-MS studies reported its chemical composition as mainly composed of diterpenic acids, consistent with species of the same genus. Although GC-MS remains widely used for comparing compound retention times and fragmentation patterns, its application to diterpenic acids requires a derivatization step to form methyl esters due to the poor chromatographic performance of carboxylic acids on methyl silicone stationary phases. This step may lead to misinterpretations, especially considering recent findings of naturally occurring methyl esters in oleoresins that may co-elute with derivatized acids. This study aimed to apply more sensitive analytical techniques to identify both target and untargeted compounds. The resin of E. oleifera was analyzed by GC-MS to assess the presence of volatile components. Additionally, UHPLC-HRMS was employed using full-scan MS, data-dependent acquisition (DDA), and parallel reaction monitoring (PRM) in both positive and negative ESI modes. GC-MS confirmed the absence of volatile sesquiterpenes, classifying E. oleifera as a resin. Targeted UHPLC-HRMS detected natural methyl esters of diterpenic acids, while untargeted analysis using Compound Discoverer 3.3 software revealed flavonoids and phenolic compounds not previously reported. These findings support the application of UHPLC-HRMS as a powerful tool in phytochemical studies. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

12 pages, 1019 KB  
Article
The Mutual Influence of Oleoresin Between Rootstock and Scion in Grafted Pine
by Junkang Xie, Yuanheng Feng, Zhangqi Yang, Jianhui Tan, Zhonglei Meng, Jie Jia and Dongshan Wu
Horticulturae 2025, 11(9), 996; https://doi.org/10.3390/horticulturae11090996 - 22 Aug 2025
Viewed by 755
Abstract
Grafting constitutes a crucial approach for the preservation of pine clones. Slash pine is commonly used as the rootstock for grafting Masson pine scions in Guangxi. In this context, the fresh oleoresin samples of Masson pine, slash pine, and grafted pine (with Masson [...] Read more.
Grafting constitutes a crucial approach for the preservation of pine clones. Slash pine is commonly used as the rootstock for grafting Masson pine scions in Guangxi. In this context, the fresh oleoresin samples of Masson pine, slash pine, and grafted pine (with Masson pine as scion and slash pine as rootstock) were analyzed by gas chromatography–mass spectrometry and gas chromatography, and the key chemical components (α-pinene, β-pinene, longifolene, and isopimaric acid) that can quickly and accurately distinguish the oleoresin of Masson pine and slash pine were found and identified. According to the changes in the relative content of key compounds of oleoresin in scion and rootstock, it was found that the oleoresin of rootstock and scion could interact. Further research showed that the mutual influence of oleoresin between rootstock and scion was persistent, and the influence of rootstock on oleoresin at the scion was affected by height. However, the height effect included a large individual differences, which were not significantly related to the grafting height, tree height, diameter at breast height, etc., but may have been related to the differences in synthesis speed of oleoresin between rootstocks and scions. This work reveals the possible mechanism of mutual influence and secretion of oleoresin in grafted pine trees, laying a foundation for the study of the characteristics of oleoresin from pines grafted by different types, with great significance for the breeding of pine with high yield of oleoresin, and the production and application of special compounds containing oleoresin. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

13 pages, 1921 KB  
Article
Antiviral Activity of Haematococcus pluvialis Algae Extract Is Not Exclusively Due to Astaxanthin
by Paula Peinsipp, Tanja Gerlza, Julia Kircher, Kurt Zatloukal, Corinna Jäger, Peter Pucher and Andreas J. Kungl
Pathogens 2025, 14(8), 791; https://doi.org/10.3390/pathogens14080791 - 7 Aug 2025
Cited by 1 | Viewed by 1775
Abstract
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We [...] Read more.
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We therefore hypothesized that the compound’s beneficial effects are not only related to astaxanthin. Thus, a “green” algae extract (i.e., poor astaxanthin content < 0.2%; ASXp) of the microalgae Haematococcus pluvialis, as well as an astaxanthin-rich algae extract (astaxanthin content = 20%; ASXr), were tested in in vitro cellular viral infection assays. Thereby, it was found that both extracts reduced viral infections significantly. As a potential mode of inhibitory action, the binding of ASX-oleoresin to the viral spike protein was investigated by isothermal fluorescence titration, revealing binding affinities of Kd = 1.05 µM for ASXr and Kd = 1.42 µM for ASXp. Based on our data, we conclude that several ASX-oleoresin fractions from H. pluvialis exhibit antiviral activity, which extends beyond the known antioxidant activity of astaxanthin. From a molecular dynamic simulation of ASX-oleoresin, fatty acid domains could be considered as activity-chaperoning factors of ASX. Therefore, microalgae biomass should be considered in the future for further antiviral activities. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
Show Figures

Figure 1

20 pages, 2717 KB  
Article
Unlocking the Potential of Gracilaria chilensis Against Prostate Cancer
by Verónica Torres-Estay, Lorena Azocar, Camila Schmidt, Macarena Aguilera-Olguín, Catalina Ramírez-Santelices, Emilia Flores-Faúndez, Paula Sotomayor, Nancy Solis, Daniel Cabrera, Loretto Contreras-Porcia, Francisca C. Bronfman and Alejandro S. Godoy
Plants 2025, 14(15), 2352; https://doi.org/10.3390/plants14152352 - 31 Jul 2025
Viewed by 1182
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in most Western countries. Current therapies for PCa are limited, often ineffective, and associated with significant side effects. As a result, there is a growing interest in exploring new therapeutic [...] Read more.
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in most Western countries. Current therapies for PCa are limited, often ineffective, and associated with significant side effects. As a result, there is a growing interest in exploring new therapeutic agents, particularly from the polyphyletic group of algae, which offers a promising source of compounds with anticancer properties. Our research group has focused on investigating the effects of a novel oleoresin from Gracilaria chilensis, known as Gracilex®, as a potential therapeutic agent against PCa using both in vitro and in vivo models. Our findings indicate that Gracilex® exhibits a time- and dose-dependent inhibitory effect on cell survival in LNCaP and PC-3 PCa, reducing viability by over 50% and inducing apoptosis, as evidenced by a significant increase in activated caspase-3 expression in both cell lines. Moreover, Gracilex® significantly reduces the proliferation rate of both LNCaP and PC-3 prostate cancer cell lines, as evidenced by a marked decrease in the growth curve slope (p = 0.0034 for LNCaP; p < 0.0001 for PC-3) and a 40–50% reduction in the proportion of Ki-67-positive PCa cells. In addition, Gracilex® significantly reduces in vitro cell migration and invasion in LNCaP and PC-3 cell lines. Lastly, Gracilex® inhibits tumor growth in an in vivo xenograft model, an effect that correlates with the reduced PCa cell proliferation observed in tumor tissue sections. Collectively, our data strongly support the broad antitumoral effects of Gracilex® on PCa cells in vitro and in vivo. These findings advance our understanding of its potential therapeutic role in PCa and highlight the relevance of further investigating algae-derived compounds for cancer treatment. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 1375 KB  
Article
Photodegradation of Turmeric Oleoresin Under Fluorescent Light and White LED: Impacts on the Chemical Stability, Bioactivity, and Photosensitizing Property of Curcuminoids
by Heejeong Kim, Juyeon Oh and Jungil Hong
Molecules 2025, 30(15), 3187; https://doi.org/10.3390/molecules30153187 - 30 Jul 2025
Cited by 1 | Viewed by 2682
Abstract
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. [...] Read more.
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. This study investigated the impact of common light sources, fluorescent light and white LED (both at 10 W/m2), on the chemical stability, antioxidant activity, cytotoxicity, and photosensitizing properties of TO. Exposure to both light sources significantly reduced TO’s color and fluorescence intensity, with white LED causing greater instability. HPLC analysis confirmed a decrease in individual curcuminoid levels, with curcumin degrading most rapidly under both conditions. The DPPH radical scavenging activity of irradiated TO decreased compared to fresh or dark-stored turmeric, whereas its ABTS radical scavenging activity increased upon light exposure. Photosensitizing potency, measured by formazan decolorization and lipid peroxide formation, declined as TO decomposed under light. Conversely, the cytotoxicity of TO against B16F10 melanoma cells was significantly enhanced under light exposure, though this effect was diminished significantly after 24 h of pre-irradiation. These findings underscore the instability of turmeric pigment under common lighting conditions, which should be a crucial consideration when processing, storing, and distributing turmeric-containing products. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

25 pages, 5521 KB  
Article
Trypanosoma cruzi Growth Is Impaired by Oleoresin and Leaf Hydroalcoholic Extract from Copaifera multijuga in Human Trophoblast and Placental Explants
by Guilherme de Souza, Clara Peleteiro Teixeira, Joed Pires de Lima Júnior, Marcos Paulo Oliveira Almeida, Marina Paschoalino, Luana Carvalho Luz, Natália Carine Lima dos Santos, Rafael Martins de Oliveira, Izadora Santos Damasceno, Matheus Carvalho Barbosa, Guilherme Vieira Faria, Maria Anita Lemos Vasconcelos Ambrosio, Rodrigo Cassio Sola Veneziani, Jairo Kenupp Bastos, Angelica Oliveira Gomes, Rosiane Nascimento Alves, Carlos Henrique Gomes Martins, Samuel Cota Teixeira, Eloisa Amália Vieira Ferro and Bellisa Freitas Barbosa
Pathogens 2025, 14(8), 736; https://doi.org/10.3390/pathogens14080736 - 25 Jul 2025
Cited by 1 | Viewed by 834
Abstract
Congenital Chagas disease (CCD) is caused when Trypanosoma cruzi crosses the placental barrier during pregnancy and reaches the fetus, which can lead to serious consequences in the developing fetus. Current treatment is carried out with nifurtimox or benznidazole, but their effectiveness is limited, [...] Read more.
Congenital Chagas disease (CCD) is caused when Trypanosoma cruzi crosses the placental barrier during pregnancy and reaches the fetus, which can lead to serious consequences in the developing fetus. Current treatment is carried out with nifurtimox or benznidazole, but their effectiveness is limited, and they cause side effects, requiring the search for new therapeutic strategies. In this sense, many studies have demonstrated the potential of different compounds of the Copaifera genus in the control of parasitic diseases. Here, we aimed to evaluate the effect of oleoresin (OR) and leaf hydroalcoholic extract (LHE) of Copaifera multijuga on Trypanosoma cruzi infection in human villous trophoblast cells (BeWo line) and human placenta explants. Treatment with both compounds reduced invasion, proliferation, and release of trypomastigotes. Furthermore, OR and LHE affected the trypomastigotes and amastigote morphology, compromising their ability to invade and proliferate in BeWo cells, respectively. Also, treatment with OR decreased ROS production in infected BeWo cells, while LHE induced an increase. In addition, both compounds induced pro-inflammatory and anti-inflammatory cytokine production. In human placental explants, both compounds also decreased T. cruzi infection, in addition to inducing the production of pro-inflammatory cytokines. Thus, both OR and LHE of C. multijuga control T. cruzi infection at the human maternal–fetal interface, highlighting the possible therapeutic potential of these compounds for the treatment of CCD. Full article
Show Figures

Graphical abstract

16 pages, 4338 KB  
Article
The First Report on Agarwood Formation of Aquilaria sinensis (Lour.) Spreng Induced by Fusarium equiseti
by Libao Zhang, Jianglongze Yang, Ruiling Yuan, Dan Feng and Peng Chen
Plants 2025, 14(15), 2272; https://doi.org/10.3390/plants14152272 - 23 Jul 2025
Cited by 1 | Viewed by 2748
Abstract
Aquilaria sinensis (Lour.) Gilg, the exclusive botanical source of Chinese agarwood, holds significant medicinal value. This study investigated the agarwood-inducing potential of a Fusarium strain obtained through prior isolation work. Through integrated morphological characterization and molecular phylogenetic analysis, the strain was conclusively identified [...] Read more.
Aquilaria sinensis (Lour.) Gilg, the exclusive botanical source of Chinese agarwood, holds significant medicinal value. This study investigated the agarwood-inducing potential of a Fusarium strain obtained through prior isolation work. Through integrated morphological characterization and molecular phylogenetic analysis, the strain was conclusively identified as Fusarium equiseti. GC-MS analysis revealed that fungal inoculation induced the synthesis of characteristic sesquiterpenes and aromatic compounds consistent with natural agarwood profiles. Quantitative determination demonstrated progressive accumulation of agarotetrol, a key quality marker, reaching 0.034%, 0.039%, and 0.038% at 2, 4, and 6 months post-inoculation, respectively—significantly exceeding levels from physical wounding (p < 0.05) and PDA control treatments. Histological examination showed characteristic yellow-brown oleoresin deposits concentrated in the inner phloem, mirroring the anatomical features of wild-type agarwood. Critical quality parameters measured in December-harvested samples included ethanol extractives (17.69%), chromone derivatives 2-[2-(4-methoxyphenyl) ethyl] chromone, and 2-(2-phenylethyl) chromone (2.13%), all meeting or surpassing the specifications outlined in the National Standard for Agarwood Classification (LY/T 3223-2020). These comprehensive findings establish F. equiseti as a promising microbial agent for sustainable agarwood production in A. sinensis plantations. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

27 pages, 3410 KB  
Article
Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach
by Sabina Primožič, Cathrine Terro, Lidija Strojnik, Nataša Šegatin, Nataša Poklar Ulrih and Nives Ogrinc
Foods 2025, 14(13), 2323; https://doi.org/10.3390/foods14132323 - 30 Jun 2025
Cited by 1 | Viewed by 2250
Abstract
The authentication of high-value spices such as paprika and cinnamon is critical due to increasing food fraud. This study explored the potential of a multi-analytical approach, combined with chemometric tools, to differentiate 45 paprika and 46 cinnamon samples from the Slovenian market based [...] Read more.
The authentication of high-value spices such as paprika and cinnamon is critical due to increasing food fraud. This study explored the potential of a multi-analytical approach, combined with chemometric tools, to differentiate 45 paprika and 46 cinnamon samples from the Slovenian market based on their geographic origin, production methods, and possible adulteration. The applied techniques included stable isotope ratio analysis (δ13C, δ15N, δ34S), multi-elemental profiling, FTIR, and antioxidant compound analysis. Distinct isotopic and elemental markers (e.g., δ13C, δ34S, Rb, Cs, V, Fe, Al) contributed to classification by geographic origin, with preliminary classification accuracies of 90% for paprika (Hungary, Serbia, Spain) and 89% for cinnamon (Sri Lanka, Madagascar, Indonesia). Organic paprika samples showed higher values of δ15N, δ34S, and Zn, whereas conventional ones had more Na, Al, V, and Cr. For cinnamon, a 95% discrimination accuracy was achieved between production practice using δ34S and Ba, as well as As, Rb, Na, δ13C, S, Mg, Fe, V, Al, and Cu. FTIR differentiated Ceylon from cassia cinnamon and suggested possible paprika adulteration, as indicated by spectral features consistent with oleoresin removal or azo dye addition, although further verification is required. Antioxidant profiling supported quality assessment, although the high antioxidant activity in cassia cinnamon may reflect non-phenolic contributors. Overall, the results demonstrate the promising potential of the applied analytical techniques to support spice authentication. However, further studies on larger, more balanced datasets are essential to validate and generalize these findings. Full article
Show Figures

Figure 1

20 pages, 888 KB  
Article
The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role?
by Tatiele Casagrande do Nascimento, Patrícia Acosta Caetano, Marcylene Vieira da Silveira, Luiz Eduardo Lobo, Uashington Da Silva Riste, Mariany Costa Deprá, Maria Rosa Chitolina Schetinger, Cristiano Ragagnin de Menezes, Roger Wagner, Eduardo Jacob-Lopes and Leila Queiroz Zepka
Foods 2025, 14(13), 2172; https://doi.org/10.3390/foods14132172 - 21 Jun 2025
Viewed by 830
Abstract
This study investigated the cecal distribution of lipophilic pigments (carotenoids and chlorophylls) from Scenedesmus obliquus and their effects on the activity of the intestinal microbiota in rats. Oleoresins containing different concentrations of microalgal pigments (from 0 to 600 µg·kg−1bw·d1 [...] Read more.
This study investigated the cecal distribution of lipophilic pigments (carotenoids and chlorophylls) from Scenedesmus obliquus and their effects on the activity of the intestinal microbiota in rats. Oleoresins containing different concentrations of microalgal pigments (from 0 to 600 µg·kg−1bw·d1), previously characterized by chromatographic and spectrometric analyses, were administered for four weeks. At the end of the intervention, cecal content samples were collected and analyzed for their pigment composition, short-chain fatty acids (SCFAs), and probiotic microbiota. Nine pigments were identified in the cecal samples, with all-trans-zeaxanthin and pheophytin being the most abundant in all groups. Furthermore, 15-cis-lutein, all-trans-β-cryptoxanthin, and 9-cis-β-carotene—found exclusively in microalgal oleoresin—were detected only in animals receiving doses above 300 µg·kg−1bw.day−1, indicating a link with the SCFA modulation. These supplementations significantly increased the levels of acetate (300 and 450 µg·kg−1bw·d−1 −13% and 14%), butyrate (300 µg kg−1bw·d−1 −19%), and propionate (600 µg·kg−1bw·d−1 −16%). Notably, 300 µg·kg−1bw·d−1 significantly increased Bifidobacterium and Lactobacillus populations. Overall, the pigment supplementation positively influenced the gut microbiota composition and SCFA production in a dose-dependent manner, particularly at 300 µg·kg−1bw·d−1. These results support the potential application of microalgal pigments as functional food ingredients or supplements with gut health benefits. Full article
Show Figures

Figure 1

13 pages, 256 KB  
Article
Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows
by Hajer Khelil-Arfa, Sara Maria Tondini, Alejandro Belanche, Juan Manuel Palma-Hidalgo, Alexandra Blanchard, David Yáñez-Ruiz, Guillermo Elcoso and Alex Bach
Methane 2025, 4(2), 13; https://doi.org/10.3390/methane4020013 - 28 May 2025
Viewed by 1927
Abstract
An in vitro and an in vivo study were conducted to investigate the effects of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin (CEC) on rumen fermentation parameters, animal performance, and methane (CH4) emissions in dairy cows. Continuous culture fermenters (CCF) [...] Read more.
An in vitro and an in vivo study were conducted to investigate the effects of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin (CEC) on rumen fermentation parameters, animal performance, and methane (CH4) emissions in dairy cows. Continuous culture fermenters (CCF) were utilized to test one of two treatments: (1) CON; no supplementation and (2) CEC supplemented at 0.0125 g/d. The basal diet consisted of grass hay and concentrate (50:50). Supplementation with CEC increased (p < 0.01) total volatile fatty acids (VFA; mM) and decreased (p = 0.02) CH4 concentration compared with CON in vitro. Additionally, protozoa abundance tended (p = 0.07) to decrease in CEC compared with CON. The in vivo experiment utilized forty Holstein-Friesian dairy cows (32% primiparous and 68% multiparous) averaging 163 ± 48 days in milk (DIM) and 38 ± 6.2 kg/d of milk yield (MY). Cows were blocked by parity and randomly assigned to one of two treatments: (1) CON; no supplementation and (2) CEC supplemented at 1.2 g/cow/d. The basal diet consisted of grass hay and concentrate (40:60). Individual CH4 emissions were recorded using the sniffer technique. Dry matter intake (DMI) and eating rate were increased (p < 0.01; 3.6% and 5.2%, respectively), while feed efficiency decreased (p < 0.05) in CEC compared with CON. Additionally, CEC decreased (p = 0.02) CH4 yield by 16.4% and tended to reduce daily CH4 production (p = 0.09) and CH4 intensity (p = 0.08) by 13.4% and 14.0%, respectively. Supplementing CEC decreased CH4 concentration in vitro and CH4 yield in vivo without negatively impacting performance parameters. Full article
17 pages, 2346 KB  
Article
Analysis of Antioxidant Activity and Volatile Components in Rapeseed Flower-Enriched Persimmon Wine
by Zhijie Li, Kaishuo Sun, Yanyan Wang, Fang Yu and Zhiwen Liu
Foods 2025, 14(10), 1804; https://doi.org/10.3390/foods14101804 - 19 May 2025
Viewed by 1381
Abstract
The quality of persimmon wine is closely related to various compounds, including polysaccharides. Polysaccharides are an essential class of macromolecules that modulate the wine’s chemical and physical characteristics by influencing the colloidal state or interacting with other compounds through non-covalent bonds. Polyphenols, on [...] Read more.
The quality of persimmon wine is closely related to various compounds, including polysaccharides. Polysaccharides are an essential class of macromolecules that modulate the wine’s chemical and physical characteristics by influencing the colloidal state or interacting with other compounds through non-covalent bonds. Polyphenols, on the other hand, exhibit antioxidant properties and effectively neutralize free radicals. This study employed Luotian sweet persimmons and Brassica napus (rapeseed) as core ingredients for producing functional fermented wine. Using GC-MS, rapeseed polysaccharides were subjected to trifluoroacetic acid hydrolysis and then derivatized via silylation for qualitative analysis of their monosaccharide composition. Molecular docking and molecular dynamics simulations were performed to provide molecular-level insights into the interactions between D-glucopyranose from rapeseed polysaccharides and quercetin, a polyphenol present in persimmon wine. The objective was to explore the binding mechanisms of these compounds during fermentation and to assess how these molecular interactions in-fluence the wine’s flavor and stability. In addition, volatile flavor compounds in two types of persimmon wine (pure persimmon wine and oleoresin-enriched persimmon wine) were qualitatively and quantitatively analyzed using headspace solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry (GC-MS). The results reveal that D-glucopyranose forms hydrogen bonds with quercetin, modulating its redox behavior and thereby enhancing the antioxidant capacity of persimmon wine. The results from four in vitro antioxidant assays, including DPPH, ABTS, FRAP, and vitamin C analysis, demonstrate that the addition of rapeseed flowers improved the antioxidant activity of persimmon wine. HS-SPME-GC-MS analysis revealed that esters, alcohols, and aldehydes were the primary components contributing to the aroma of persimmon wine. Persimmon wines with varying levels of oleoresin addition exhibited significant differences in the contents of key compounds, which subsequently influenced the aroma complexity and flavor balance. In conclusion, these findings provide reliable data and a theoretical foundation for understanding the role of rapeseed flower in regulating the aroma profile of persimmon wine. These findings also offer theoretical support for a deeper understanding of the fermentation mechanisms of persimmon wine while providing practical guidance to optimize production processes, ultimately improving both product flavor and stability. This study fills a critical academic gap in understanding microscopic molecular interactions during fermentation and offers a novel perspective for innovation in the fermented food industry. Full article
Show Figures

Figure 1

20 pages, 4553 KB  
Article
Spicy Food Ingredient from Red Habanero By-Product Obtained by Ultrasound-Assisted Extraction
by António Toscano, Andreia F. R. Silva, Maria P. Ramos, Norton Komora, Filipa V. M. Silva and Patrícia Fradinho
Foods 2025, 14(8), 1407; https://doi.org/10.3390/foods14081407 - 18 Apr 2025
Viewed by 1670
Abstract
The production of spicy sauces from chili peppers (Capsicum spp.) generates 5–30% of spicy by-product which is rich in valuable compounds (e.g., capsaicinoids, carotenoids, phenolics, etc.) and can serve as a source of Capsicum oleoresins, providing spice and color ingredients for food [...] Read more.
The production of spicy sauces from chili peppers (Capsicum spp.) generates 5–30% of spicy by-product which is rich in valuable compounds (e.g., capsaicinoids, carotenoids, phenolics, etc.) and can serve as a source of Capsicum oleoresins, providing spice and color ingredients for food products. This study primarily focused on the optimization of Capsicum oleoresin extraction from Red Habanero chili pepper (Capsicum chinense Jacq.) by-product using ultrasound-assisted extraction (UAE). A second focus was the comparison between UAE and reflux-assisted extraction (RAE). Response Surface Methodology (RSM) was employed to optimize the extraction time (3 to 17 min) and acoustic power density (APD, 0.30 to 1.00 W/mL). The optimal UAE conditions (8 min, 0.87 W/mL) showed a higher extraction yield (26%) and high quality oleoresin extracts rich in bioactives (capsaicinoids: 7 mg/g; phenolics: 4 mg GAE/g) with antioxidant activity (FRAP: 139 µmol FeSO4 eq/g; DPPH: 33 µmol TEAC/g). Optimum UAE extracts proved more colored, energy-efficient (95% less consumption), equally spicy (466,000 SHU) and had higher antioxidant activity than RAE. These results demonstrated UAE as a sustainable method for producing high value spicy additives from chili pepper by-product, turning them into products with enhanced bioactivity, favoring a circular economy in the agri-food industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 293 KB  
Article
Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens
by Fernando Sevillano, Marta Blanch, Jose J. Pastor, Miguel Angel Ibáñez and David Menoyo
Animals 2025, 15(6), 808; https://doi.org/10.3390/ani15060808 - 12 Mar 2025
Cited by 2 | Viewed by 1509
Abstract
This research aimed to evaluate the effects of an olive pomace extract (OE) and a fat-encapsulated extract composed of a blend of oleoresins from Capsicum sp., black pepper, and ginger (SPICY) on broiler chicken performance and antioxidant function. In total, 640 1-day-old male [...] Read more.
This research aimed to evaluate the effects of an olive pomace extract (OE) and a fat-encapsulated extract composed of a blend of oleoresins from Capsicum sp., black pepper, and ginger (SPICY) on broiler chicken performance and antioxidant function. In total, 640 1-day-old male chicks were randomly assigned to five experimental diets (eight replicates/treatment, 16 birds/replicate). Diets included a basal diet with no added vitamin E (NC), NC plus 100 ppm of vitamin E (PC), NC plus 1250 ppm of OE, NC plus 250 ppm of (SPICY), and NC plus 1250 ppm OE plus 250 ppm of SPICY (SPIOE). Phytogenic additives were supplied by Lucta S.A., Spain. Compared to the NC, the PC significantly (p < 0.05) increased ADG from 8 to 14 days of age, with both OE and SPICY showing intermediate values between both controls. At the end of this trial, at 35 days of age, a significant (p < 0.05) increase in plasma GPx activity was observed in PC-fed birds compared to the NC, with no effects of malonyl dialdehyde (MDA) and total antioxidant capacity. Birds fed the OE and SPICY displayed intermediate values of GPx activity compared to both controls. The expression of heat shock protein 70 (HSP70) and glutathione S-Transferase Alpha 4 (GSTA4) was significantly lower (p < 0.05) in the jejunal mucosa of birds fed the OE compared to the NC. Moreover, the expression of HSP70 was significantly lower (p < 0.05) in birds fed the OE compared to SPICY but was not significantly different compared to the blend of both extracts (SPIOE). In conclusion, OE and SPICY were useful in maintaining growth performance in no vit E-supplemented diets, particularly in the case of OE mediated by its antioxidant action through HSP70. Full article
(This article belongs to the Section Poultry)
Back to TopTop