The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microalgal Strain and Biomass Production
2.3. Microalgal Pigments Extraction
2.4. HPLC-PDA-MS/MS Pigments Analysis
2.5. In Vivo Experimental Design
2.5.1. Eutrophic Status
2.5.2. Determination of Pigments in Commercial Diet and Fecal Samples
2.5.3. Determination of Short-Chain Fatty Acids (SCFAs) and Total Microbiota (Bifidobacterium and Lactobacillus)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Eutrophic Status Analysis
3.2. Carotenoids and Chlorophylls Identification by HPLC-PDA-MS/MS
3.3. Carotenoids and Chlorophylls Quantification
3.4. SCFA Levels and Microbiota
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Ficagna, C.A.; Silva, A.S.d.; Rofino, R.D.; Zatti, E.; Esposito, T.; Xavier, A.C.H.; Wagner, R.; Bissacotti, B.F.; Seghetto, R.B.; Ternus, E.M.; et al. Effects on Performance, Immunological Response and Short-Chain Fatty Acid Profile in Feces of Nursery Piglets Fed with Organic Acids and Yeast Wall. Animals 2025, 15, 1051. [Google Scholar] [CrossRef]
- Jamar, G.; Santamarina, A.B.; Casagrande, B.P.; Estadella, D.; de Rosso, V.V.; Wagner, R.; Fagundes, M.B.; Pisani, L.P. Prebiotic Potencial of Juçara Berry on Changes in Gut Bacteria and Acetate of Individuals with Obesity. Eur. J. Nutr. 2020, 59, 3767–3778. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; You, Y.; Hua, M.; Wu, P.; Liu, Y.; Chen, Z.; Zhang, L.; Wei, H.; Li, Y.; Luo, M.; et al. Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front. Physiol. 2018, 9, 1671. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, F.; Wang, X.; Hu, X.; Liao, X.; Zhang, Y. Biological Transformation of Chlorophyll-Rich Spinach (Spinacia oleracea L.) Extracts Under In Vitro Gastrointestinal Digestion and Colonic Fermentation. Food Res. Int. 2021, 139, 109941. [Google Scholar] [CrossRef]
- Rocha, H.R.; Pintado, M.E.; Gomes, A.M.; Coelho, M.C. Carotenoids and Intestinal Harmony: Exploring the Link for Health. Foods 2024, 13, 1599. [Google Scholar] [CrossRef]
- Nascimento, T.C.; Cazarin, C.B.B.; Maróstica, M.R.; Mercadante, A.Z.; Jacob-Lopes, E.; Zepka, L.Q. Microalgae Carotenoids Intake: Influence on Cholesterol Levels, Lipid Peroxidation and Antioxidant Enzymes. Food Res. Int. 2020, 128, 108770. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.S.; Nascimento, T.C.; Pinheiro, P.N.; Vendruscolo, R.G.; Wagner, R.; de Rosso, V.V.; Jacob-Lopes, E.; Zepka, L.Q. Bioaccessibility of Microalgae-Based Carotenoids and Their Association with the Lipid Matrix. Food Res. Int. 2021, 148, 110596. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Nascimento, T.C.; Pinheiro, P.N.; de Rosso, V.V.; de Menezes, C.R.; Jacob-Lopes, E.; Zepka, L.Q. Insights on the Intestinal Absorption of Chlorophyll Series from Microalgae. Food Res. Int. 2021, 140, 110031. [Google Scholar] [CrossRef]
- Guo, B.; Oliviero, T.; Fogliano, V.; Ma, Y.; Chen, F.; Capuano, E. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga Nitzschia Laevis. J. Agric. Food Chem. 2020, 68, 1844–1850. [Google Scholar] [CrossRef]
- de Medeiros, V.P.B.; de Souza, E.L.; de Albuquerque, T.M.R.; da Costa Sassi, C.F.; dos Santos Lima, M.; Sivieri, K.; Pimentel, T.C.; Magnani, M. Freshwater Microalgae Biomasses Exert a Prebiotic Effect on Human Colonic Microbiota. Algal Res. 2021, 60, 102547. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, G.; Liu, J.; Hu, W.; Jin, P. Gut Microbiota Dysbiosis and Decreased Levels of Acetic and Propionic Acid Participate in Glucocorticoid-Induced Glycolipid Metabolism Disorder. mBio 2024, 15, e02943-23. [Google Scholar] [CrossRef]
- Livingston, D.B.H.; Sweet, A.; Chowdary, M.; Demissie, M.S.; Rodrigue, A.; Gedara, K.P.; Kishore, L.; Mahmoodianfard, S.; Power, K.A. Diet Alters the Effects of Lipopolysaccharide on Intestinal Health and Cecal Microbiota Composition in C57Bl/6 Male Mice. J. Nutr. Biochem. 2025, 144, 109951. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, A.C.; Gagliardi, J.; Bouhan, D.; Spollen, W.G.; Givan, S.A.; Franklin, C.L. The Influence of Caging, Bedding, and Diet on the Composition of the Microbiota in Different Regions of the Mouse Gut. Sci. Rep. 2018, 8, 4065. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Menezes, C.R.; Mercadante, A.Z.; Jacob-lopes, E.; Zepka, L.Q. Bioactive Pigments from Microalgae Phormidium autumnale. Food Res. Int. 2015, 77, 273–279. [Google Scholar] [CrossRef]
- Giuffrida, D.; Zoccali, M.; Giofrè, S.V.; Dugo, P.; Mondello, L. Apocarotenoids Determination in Capsicum chinense Jacq. Cv. Habanero, by Supercritical Fluid Chromatography-Triple-Quadrupole/Mass Spectrometry. Food Chem. 2017, 231, 316–323. [Google Scholar] [CrossRef]
- Patias, L.D.; Fernandes, A.S.; Petry, F.C.; Mercadante, A.Z.; Jacob-Lopes, E.; Zepka, L.Q. Carotenoid Profile of Three Microalgae/Cyanobacteria Species with Peroxyl Radical Scavenger Capacity. Food Res. Int. 2017, 100, 260–266. [Google Scholar] [CrossRef]
- Nascimento, T.C.; Pinheiro, P.N.; Fernandes, A.S.; Murador, D.C.; Neves, B.V.; de Menezes, C.R.; de Rosso, V.V.; Jacob-Lopes, E.; Zepka, L.Q. Bioaccessibility and Intestinal Uptake of Carotenoids from Microalgae Scenedesmus obliquus. LWT 2021, 140, 110780. [Google Scholar] [CrossRef]
- Do Nascimento, T.C.; Pinheiro, P.N.; Fernandes, A.S.; Caetano, P.A.; Jacob-Lopes, E.; Zepka, L.Q. Insights on the Bioaccessibility of Natural Pigments from Diatom Chaetoceros Calcitrans. Molecules 2022, 27, 3305. [Google Scholar] [CrossRef]
- Nass, P.P.; do Nascimento, T.C.; Fernandes, A.S.; Caetano, P.A.; de Rosso, V.V.; Jacob-Lopes, E.; Zepka, L.Q. Guidance for Formulating Ingredients/Products from Chlorella Vulgaris and Arthrospira Platensis Considering Carotenoid and Chlorophyll Bioaccessibility and Cellular Uptake. Food Res. Int. 2022, 157, 111469. [Google Scholar] [CrossRef]
- Dressler, V.L.; Ogunmodede, O.T.; Heidrich, G.M.; Neves, V.M.; Schetinger, M.R.C.; Morsch, V.M. Investigative Analysis of Lanthanum Oxide Nanoparticles on Elements in Bone of Wistar Rats After 30 Days of Repeated Oral Administration. Biol. Trace Elem. Res. 2020, 196, 153–167. [Google Scholar] [CrossRef]
- Sheu, T.Y.; Marshall, R.T.; Heymann, H. Improving Survival of Culture Bacteria in Frozen Desserts by Microentrapment. J. Dairy Sci. 1993, 76, 1902–1907. [Google Scholar] [CrossRef]
- Bonet, M.L.; Ribot, J.; Galmés, S.; Serra, F.; Palou, A. Carotenoids and Carotenoid Conversion Products in Adipose Tissue Biology and Obesity: Pre-Clinical and Human Studies. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158676. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. Identification and Quantification of Carotenoids, by HPLC-PDA-MS/MS, from Amazonian Fruits. J. Agric. Food Chem. 2007, 55, 5062–5072. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, A.; Çağır, A.; Dalay, M.C.; Eroğlu, A.E. Composition of Carotenoids in Scenedesmus Protuberans: Application of Chromatographic and Spectroscopic Methods. Food Anal. Methods 2015, 8, 1970–1978. [Google Scholar] [CrossRef]
- Vendruscolo, R.G.; Fagundes, M.B.; Maroneze, M.M.; do Nascimento, T.C.; de Menezes, C.R.; Barin, J.S.; Zepka, L.Q.; Jacob-Lopes, E.; Wagner, R. Scenedesmus obliquus Metabolomics: Effect of Photoperiods and Cell Growth Phases. Bioprocess Biosyst. Eng. 2019, 42, 727–739. [Google Scholar] [CrossRef]
- Gebregziabher, B.S.; Zhang, S.R.; Azam, M.; Qi, J.; Agyenim-Boateng, K.G.; Feng, Y.; Liu, Y.T.; Li, J.; Li, B.; Sun, J.M. Natural Variations and Geographical Distributions of Seed Carotenoids and Chlorophylls in 1167 Chinese Soybean Accessions. J. Integr. Agric. 2023, 22, 2632–2647. [Google Scholar] [CrossRef]
- da Silva, J.C.; Lombardi, A.T. Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis. In Pigments from Microalgae Handbook; Springer: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Tao, W.; Ye, X.; Cao, Y. Isomerization and Degradation of All-Trans-β-Carotene During In-Vitro Digestion. Food Sci. Hum. Wellness 2021, 10, 370–374. [Google Scholar] [CrossRef]
- Kopec, R.E.; Failla, M.L. Recent Advances in the Bioaccessibility and Bioavailability of Carotenoids and Effects of Other Dietary Lipophiles. J. Food Compos. Anal. 2018, 68, 16–30. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Margier, M.; Desmarchelier, C.; Halimi, C.; Nowicki, M.; Borel, P.; Meléndez-Martínez, A.J.; Reboul, E. Comparison of the Bioavailability and Intestinal Absorption Sites of Phytoene, Phytofluene, Lycopene and β-Carotene. Food Chem. 2019, 300, 125232. [Google Scholar] [CrossRef]
- Garrett, D.A.; Failla, M.L.; Sarama, R.J. Estimation of Carotenoid Bioavailability from Fresh Stir-Fried Vegetables Using an in Vitro Digestion/Caco-2 Cell Culture Model. J. Nutr. Biochem. 2000, 11, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.R.; Coelho, M.C.; Gomes, A.M.; Pintado, M.E. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023, 15, 2265. [Google Scholar] [CrossRef]
- Kaulmann, A.; André, C.M.; Schneider, Y.J.; Hoffmann, L.; Bohn, T. Carotenoid and Polyphenol Bioaccessibility and Cellular Uptake from Plum and Cabbage Varieties. Food Chem. 2016, 197, 325–332. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’Abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv. Nutr. 2023, 14, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Viera, I.; Chen, K.; Ríos, J.J.; Benito, I.; Pérez-Gálvez, A.; Roca, M. First-Pass Metabolism of Chlorophylls in Mice. Mol. Nutr. Food Res. 2018, 62, 1800562. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic Acid Upregulates the Expression of Genes for Fatty Acid Oxidation Enzymes in Liver to Suppress Body Fat Accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Agus, A.; Clément, K.; Sokol, H. Gut Microbiota-Derived Metabolites as Central Regulators in Metabolic Disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short Chain Fatty Acids: Microbial Metabolites for Gut-Brain Axis Signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Z.; Shi, E.; Nie, M.; Feng, L.; Chen, G.; Gao, R.; Zeng, X.; Li, D. Study on the Interaction Between Four Typical Carotenoids and Human Gut Microflora Using an In Vitro Fermentation Model. J. Agric. Food Chem. 2022, 70, 13592–13601. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dai, Z.; Shi, E.; Wan, P.; Chen, G.; Zhang, Z.; Xu, Y.; Gao, R.; Zeng, X.; Li, D. Study on the Interaction between β-Carotene and Gut Microflora Using an in Vitro Fermentation Model. Food Sci. Hum. Wellness 2023, 12, 1369–1378. [Google Scholar] [CrossRef]
- Djuric, Z.; Bassis, C.M.; Plegue, M.A.; Ren, J.; Chan, R.; Sidahmed, E.K.; Turgeon, D.K.; Ruffin, M.T.; Kato, I.; Sen, A. Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. J. Acad. Nutr. Diet. 2018, 118, 606–616.e3. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef]
- Yin, R.; Kuo, H.C.; Hudlikar, R.; Sargsyan, D.; Li, S.; Wang, L.; Wu, R.; Kong, A.N. Gut Microbiota, Dietary Phytochemicals, and Benefits to Human Health. Curr. Pharmacol. Rep. 2019, 5, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.M.L.; Chee, J.; Lim, K.L.M.; Ng, M.; Gong, M.; Xu, J.; Tin, F.; Natarajan, P.; Lee, B.L.; Ong, C.N.; et al. Safety, Tolerability, and Pharmacokinetics of β-Cryptoxanthin Supplementation in Healthy Women: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 2325. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Haddad, E.N.; Sugino, K.Y.; Vevang, K.R.; Peterson, L.A.; Koratkar, R.; Gross, M.D.; Kerver, J.M.; Comstock, S.S. Dietary and Plasma Carotenoids Are Positively Associated with Alpha Diversity in the Fecal Microbiota of Pregnant Women. J. Food Sci. 2021, 86, 602–613. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Lu, F.; Wang, X.; Liao, X.; Hu, X.; Zhang, Y. Beneficial Effects of a Chlorophyll-Rich Spinach Extract Supplementation on Prevention of Obesity and Modulation of Gut Microbiota in High-Fat Diet-Fed Mice. J. Funct. Foods 2019, 60, 103436. [Google Scholar] [CrossRef]
- Alves, J.L.d.B.; Costa, P.C.T.d.; Sales, L.C.S.d.; Silva Luis, C.C.; Bezerra, T.P.T.; Souza, M.L.A.; Costa, B.A.; de Souza, E.L. Shedding Light on the Impacts of Spirulina Platensis on Gut Microbiota and Related Health Benefits. Crit. Rev. Food Sci. Nutr. 2024, 65, 2062–2075. [Google Scholar] [CrossRef]
- Böhm, F.; Edge, R.; Truscott, G. Interactions of Dietary Carotenoids with Activated (Singlet) Oxygen and Free Radicals: Potential Effects for Human Health. Mol. Nutr. Food Res. 2012, 56, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gómez, V.; Gómez-Gallego, C.; Kolehmainen, M.; González-Barrio, R.; Periago, M.J. In Vitro Colonic Fermentation of Orange Peel Fibres: Effect on Microbial Modulation, SCFAs Production and Carotenoid Degradation. LWT 2025, 219, 117536. [Google Scholar] [CrossRef]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; De Lera, A.R.; Desmarchelier, C.; et al. From Carotenoid Intake to Carotenoid Blood and Tissue Concentrations-Implications for Dietary Intake Recommendations. Nutr. Rev. 2021, 79, 544–573. [Google Scholar] [CrossRef]
Composition * |
---|
Folic acid |
Nicotinic acid |
Antioxidant additive (BHA and BHT) |
Biotin |
Calcitic limestone |
Choline chloride |
Sodium chloride (Common salt) |
Soybean meal (GMO from Agrobacterium SP.) |
Wheat bran |
Dicalcium phosphate |
Calcium iodate |
Lysine |
Methionine |
Ground whole corn (GMO from Bacillus thuringiensis, Streptomyces sp.) |
Calcium pantothenate |
Sodium selenite |
Ground whole soybean (GMO from Agrobacterium sp./Pressure treatment) |
Cobalt sulfate |
Copper sulfate |
Iron sulfate |
Manganese sulfate |
Zinc sulfate |
Whole wheat |
Vitamin A, B1, B12, B2, B6, C, E, K3 |
Peak | Pigments | tR (min) a | UV–Vis Characteristics | Fragment Ions (Positive Mode) (m/z) | |||
---|---|---|---|---|---|---|---|
λmáx (nm) b | III/II (%) c | AB/II (%) d | [M+H]+ | MS/MS | |||
1 | all-trans-violaxanthin | 8.1 | 415,438,468 | 85 | 0 | 601 | 583 [M+H–18]+, 565 [M+H–18–18]+, 509 [M+H–92]+ |
2 | 9-cis-violaxanthin | 9.0 | 326, 411, 435,464 | 72 | 18 | 601 | 584 [M+H–18]+, 565 [M+H–18–18]+, 509 [M+H–92]+ |
3 | 15-cis-lutein | 11.2 | 328,412,439,464 | 16 | 24 | 569 | 551 [M+H–18]+, 533 [M+H–18–18]+ |
4 | hydroxychlorophyll a | 11.2 | 430, 664 | na e | na | 909 | 631 [M+H–278]+ |
5 | chlorophyll b | 11.7 | 465,654 | na | na | 907 | 629 [M+H–278]+, 569 [M+H–278–60]+ |
6 | 13-cis-lutein | 12.4 | 415,440,465 | 37 | nc f | 569 | 551 [M+H–18]+, 533 [M+ –18–18]+ |
7 | all-trans-lutein | 13.6 | 420, 445, 472 | 50 | 0 | 569 | 551 [M+H–18]+, 533 [M+H–18–18]+ |
8 | all-trans-zeaxanthin | 15.8 | 425,451, 476 | 22 | 0 | 569 | 551 [M+H−18]+, 533 [M+H−18−18]+, 495, 477 [M+H−92]+, 459 |
9 | chlorophyll a | 15.7 | 431, 664 | na | na | 893 | 615 [M+H−278]+, 583 [M+H−278−31]+, 555 [M+H−278–59]+ |
10 | 9-cis-lutein | 16.4 | 418, 440, 470 | 50 | nd g | 569 | 550 [M+H−18]+, 533 [M+H−18−18]+ |
11 | canthaxanthin | 17.0 | 460 | nc | nd | 565 | 547 [M+H−18]+ |
12 | chlorophyll a′ | 17.4 | 430, 664 | na | na | 893 | 615 [M+H−278]+, 583 [M+H−278−31]+, 555 [M+H−278–59]+ |
13 | 9-cis-zeaxanthin | 20.9 | 420, 446, 471 | 25 | nc | 569 | 551 [M+H−18]+, 533 [M+H−18−18]+, 495, 477 [M+H−92]+, 459 |
14 | 2′-dehydrodeoxymyxol | 22.0 | 445,474,504 | 63 | 0 | 567 | 549 [M+H−18]+ |
15 | 5,6-epoxy-β-carotene | 22.9 | 420,446,471 | 50 | 0 | 553 | 535 [M+H−18]+, 461 [M+H−92]+, 205 |
16 | all-trans-β-cryptoxanthin | 24–24.6 | 425,450,476 | 25 | 0 | 553 | 535 [M+H−18]+ |
17 | all-trans-echinenone | 25.1 | 461 | nc | 0 | 551 | 533 [M+H−18]+, 427, 203 |
18 | hydroxypheophytin a | 26–27.2 | 408,666 | na | na | 887 | 869 [M+H−18]+; 803 [M+H−63]+; 609 [M+H−278]+; 591 [M+H−278−18]+; 531 [M+H−278-18−60]+ |
19 | 9-cis-echinenone | 27.6 | 454 | nc | nc | 551 | 533 [M+H−18]+, 427, 203 |
20 | all-trans-β-carotene | 33.6 | 425, 451, 476 | 25 | 0 | 537 | 444 [M+H−92]+, 399, 355 |
21 | pheophytin a | 34.4–36.0 | 408,666 | na | na | 871 | 593 [M+H−278]+; 533 [M+H−278−60]+ |
22 | 9-cis-β-carotene | 36.6 | 425, 451, 476 | 30 | nc | 537 | 444 [M+H−92]+, 399, 355 |
Peak | Pigments | The Pigment Content of the Fecal Sample (µg·g−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
S. oliquus Oleoresin | Commercial Diet | 0 (Control) | 75 * | 150 * | 300 * | 450 * | 600 * | ||
1 | all-trans-violaxanthin | 61.52 ± 0.52 | nd | nd | nd | nd | nd | nd | nd |
2 | 9-cis-violaxanthin | 49.53 ± 0.39 | nd | nd | nd | nd | nd | nd | nd |
3 | 15-cis-lutein | 81.30 ± 1.19 | nd | nd | nd | nd | 0.20 ± 0.24 | 0.21 ± 0.31 | 0.22 ± 0.99 |
4 | hydroxychlorophyll a | 136.43 ± 0.41 | nd | nd | nd | nd | nd | nd | nd |
5 | chlorophyll b | 84.87 ± 1.26 | nd | nd | nd | nd | nd | nd | nd |
6 | 13-cis-lutein | 65.25 ± 1.48 | nd | nd | nd | nd | nd | nd | 0.21 ± 0.30 |
7 | all-trans-lutein | 622.98 ± 1.20 | 1.60 ± 0.25 | 0.46 ± 0.36 | 0.48 ± 0.60 | 0.45 ± 0.49 | 1.18 ± 0.30 | 0.93 ± 0.33 | 2.53 ± 0.14 |
8 | all-trans-zeaxanthin | 290.13 ± 0.33 | 1.46 ± 1.10 | 1.52 ± 1.03 | 1.65 ± 1.60 | 2.03 ± 0.23 | 1.80 ± 1.78 | 2.48 ± 1.09 | 3.15 ± 1.10 |
9 | chlorophyll a | 4459.81 ± 2.17 | nd | ||||||
10 | 9-cis-lutein | 52.53 ± 0.30 | nd | nd | nd | nd | 0.13 ± 0.08 | 0.17 ± 0.20 | 0.23 ± 0.89 |
11 | canthaxanthin | 49.46 ± 0.40 | nd | nd | nd | nd | nd | nd | nd |
12 | chlorophyll a′ | 136.14 ± 6.8 | nd | nd | nd | nd | nd | nd | nd |
13 | 9-cis-zeaxanthin | 70.74 ± 1.37 | 0.80 ± 0.29 | 0.28 ± 0.83 | 0.30 ± 0.58 | 0.24 ± 47 | 0.33 ± 0.99 | 0.34 ± 0.70 | 0.87 ± 0.81 |
14 | 2′-dehydrodeoxymyxol | 125.32 ± 0.24 | nd | nd | nd | nd | nd | nd | nd |
15 | 5,6-epoxy-β-carotene | 56.60 ± 0.33 | nd | nd | nd | nd | nd | nd | nd |
16 | all-trans-β-cryptoxanthin | 55.49 ± 0.17 | nd | nd | nd | nd | 0.27 ± 0.51 | 0.28 ± 0.69 | 0.42 ± 0.50 |
17 | all-trans-echinenone | 309.93 ± 0.31 | nd | nd | nd | nd | nd | nd | nd |
18 | hydroxypheophytin a | nd | 0.18 ± 0.51 | 0.33 ± 0.39 | 0.24 ± 1.87 | 0.25 ± 1.03 | 0.31 ± 0.60 | 0.64 ± 0.84 | 0.84 ± 0.77 |
19 | 9-cis-echinenone | 121.31 ± 0.23 | nd | nd | nd | nd | nd | nd | nd |
20 | all-trans-β-carotene | 264.66 ± 0.27 | nd | nd | nd | nd | nd | nd | nd |
21 | pheophytin a | 162.21 ± 6.53 | 0.14 ± 0.82 | 1.73 ± 0.13 | 1.75 ± 0.86 | 1.86 ± 0.38 | 2.03 ± 1.98 | 2.51 ± 0.39 | 3.17 ± 0.19 |
22 | 9-cis-β-caroten | 73.09 ± 0.26 | nd | nd | nd | nd | 0.19 ± 0.92 | 0.21 ± 0.31 | 0.32 ± 0.60 |
Total carotenoids | 2349.77 ± 1.11 | 3.85 ± 0.57 | 1.98 ± 0.62 a | 2.43 ± 1.04 b | 2.72 ± 0.07 c | 4.09 ± 1.01 d | 4.62 ± 0.30 e | 7.94 ± 0.60 f | |
Total chlorophylls | 4979.45 ± 2.28 | 0.32 ± 0.55 | 2.06 ± 0.17 a | 1.98 ± 0.50 a | 2.11 ± 0.59 b | 2.34 ± 0.49 c | 3.15 ± 0.22 d | 4.01 ± 0.31 e | |
Total pigments | 7329.09 ± 1.56 | 4.17 ± 0.68 | 4.04± 0.82 a | 4.44 ± 0.54 b | 4.83 ± 0.19 c | 6.43 ± 0.60 d | 7.77 ± 0.70 e | 11.95 ± 0.34 f |
Pigments/Biomass | Effects | Reference |
---|---|---|
Lutein; zeaxanthin | Pronounced effect on gut microbiota modulation | [42] |
β-Carotene | ↑ Bacteroidetes, ↑ Proteobacteria, ↓ harmful bacteria, ↑ Bifidobacterium, Collinsella (intermediate), and Lactobacillus (high doses) | [43] |
Lycopene | ↓ Proteobacteria, ↑ Bifidobacterium, and Lactobacillus | [44] |
Carotenoids (fruits and vegetables) | ↑ SCFAs in gut and feces; ↑ butyrate production; modulate IgA production; and prevent/delay dysbiosis | [6,45,46] |
β-Cryptoxanthin | No significant changes after 8 weeks of supplementation (3 mg/day) | [47] |
Carotenoids (general) | ↑ Butyrate production | [6] |
Carotenoids (general) | Regulation of immunoglobulin A (IgA) production and the prevention or delay of dysbiosis | [48] |
Chlorophylls | ↓ Firmicutes and ↑ Bacteroidetes | [4] |
Chlorophyll-rich extract | ↑ Akkermansia (linked to glucose metabolism) | [49] |
Spirulina biomass | ↑ SCFAs (acetate, propionate, butyrate, hexanoate, isovalerate, and isobutyrate); ↑ Lachnospiraceae, Lactobacillus, and Bifidobacterium (due to fiber and phenolics) | [50] |
Pigments (general) | ↑ Antioxidant activity in intestinal lumen; beneficial microbiota modulation | [51,52] |
Pigments (general) | May modulate GI transit time, pH, antimicrobial peptides, and secretory IgA | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, T.C.d.; Caetano, P.A.; da Silveira, M.V.; Lobo, L.E.; Riste, U.D.S.; Deprá, M.C.; Schetinger, M.R.C.; de Menezes, C.R.; Wagner, R.; Jacob-Lopes, E.; et al. The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role? Foods 2025, 14, 2172. https://doi.org/10.3390/foods14132172
Nascimento TCd, Caetano PA, da Silveira MV, Lobo LE, Riste UDS, Deprá MC, Schetinger MRC, de Menezes CR, Wagner R, Jacob-Lopes E, et al. The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role? Foods. 2025; 14(13):2172. https://doi.org/10.3390/foods14132172
Chicago/Turabian StyleNascimento, Tatiele Casagrande do, Patrícia Acosta Caetano, Marcylene Vieira da Silveira, Luiz Eduardo Lobo, Uashington Da Silva Riste, Mariany Costa Deprá, Maria Rosa Chitolina Schetinger, Cristiano Ragagnin de Menezes, Roger Wagner, Eduardo Jacob-Lopes, and et al. 2025. "The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role?" Foods 14, no. 13: 2172. https://doi.org/10.3390/foods14132172
APA StyleNascimento, T. C. d., Caetano, P. A., da Silveira, M. V., Lobo, L. E., Riste, U. D. S., Deprá, M. C., Schetinger, M. R. C., de Menezes, C. R., Wagner, R., Jacob-Lopes, E., & Zepka, L. Q. (2025). The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role? Foods, 14(13), 2172. https://doi.org/10.3390/foods14132172