Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows
Abstract
:1. Introduction
2. Results
2.1. Experiment 1 (In Vitro)
2.2. Experiment 2 (In Vivo)
2.2.1. Enteric Methane Emissions
2.2.2. Animal Performance
3. Discussion
3.1. Experiment 1 (In Vitro)
3.2. Experiment 2 (In Vivo)
4. Materials and Methods
4.1. Experiment 1 (In Vitro)
4.1.1. Experimental Design
4.1.2. Fermentation Parameter Analyses
4.1.3. Real-Time qPCR Analysis
4.2. Experiment 2 (In Vivo)
4.2.1. Animals, Design, and Diets
4.2.2. Sample Collection and Chemical Analyses
4.2.3. Gas Emissions
4.2.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP. United Nations Environment Programme and Climate and Clean Air Coalition, Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions (United Nations Environment Programme, Nairobi, 2021). Available online: https://www.ccacoalition.org/resources/global-methane-assessment-full-report (accessed on 1 January 2025).
- IPPC. Mitigation of Climate Change. In Climate Change 2022: Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Collins, W.J.; Webber, C.P.; Cox, P.M.; Huntingford, C.; Lowe, J.; Sitch, S.; Chadburn, S.E.; Comyn-Platt, E.; Harper, A.B.; Hayman, G.; et al. Increased importance of methane reduction for a 1.5 degree target. Environ. Res. Lett. 2018, 13, 054003. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not by 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Smith, F.; Spengler, K.; Reinicke, F.; Heider-van Diepen, C. Impact of essential oils on methane emissions, milk yield, and feed efficiency and resulting influence on the carbon footprint of dairy production systems. Environ. Sci. Pollut. Res. 2023, 30, 48824–48836. [Google Scholar]
- Hart, K.J.; Jones, H.G.; Waddams, K.E.; Worgan, H.J.; Zweifel, B.; Newbold, C.J. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open J. Anim. Sci. 2019, 9, 259–267. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Yanez-Ruiz, D.; Khelil-Arfa, H.; Blanchard, A.; Bannink, A. Effect of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows. J. Dairy Sci. 2023, 107, 857–869. [Google Scholar] [CrossRef]
- Tondini, S.M.; Bayat, A.R.; Khelil-Arfa, H.; Blanchard, A.; Yanez-Ruiz, D.R. Effect of a blend of cinnamaldehyde, eugenol and capsicum oleoresin on methane emission and lactation performance of Nordic Red dairy cows fed grass silage-based diets. Livest. Sci. 2024, 284, 105494. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Front. Vet. Sci. 2018, 5, 113. [Google Scholar] [CrossRef]
- Hegarty, R.S.; Passetti, R.A.C.; Dittmer, K.M.; Wang, Y.; Shelton, S.W.; Emmet-Booth, J.; Wollenberg, E.K.; McAllister, T.; Leahy, S.; Beauchemin, K.; et al. An Evaluation of Emerging Feed Additives to Reduce Methane Emissions from Livestock, 1st ed.; Climate Change, Agriculture and Food Security (CCAFS) and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Global Research Alliance (GRA): Palmerston North, New Zealand, 2021. [Google Scholar]
- Morgavi, D.P.; Cantalapiedra-Hijar, G.; Eugène, M.; Martin, C.; Noziere, P.; Popova, M.; Ortigues-Marty, I.; Muñoz-Tamayo, R.; Ungerfeld, E.M. Review: Reducing enteric methane emissions improves energy metabolism in livestock: Is the tenet right? Animal 2023, 17 (Suppl. S3), 100830. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed. Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed. Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Lotfalizadeh, M.; Badpeyma, M.; Shakeri, A.; Soheili, V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother. Res. 2022, 36, 33–52. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Guo, T.; Gao, C.; Yang, Y.; Yang, L.; Cui, Z.; Mao, J.; Liu, N.; An, X.; et al. Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community. Animals 2023, 13, 1663. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Kreuzer, M.; Kirchgessner, M.; Müller, H.L. Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Anim. Feed. Sci. Technol. 1986, 16, 233–241. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet1. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef]
- Geraci, J.I.; Garciarena, A.D.; Gagliostro, G.A.; Beauchemin, K.A.; Colombatto, D. Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: Ruminal environment, short term intake pattern and animal performance. Anim. Feed. Sci. Technol. 2012, 176, 123–130. [Google Scholar] [CrossRef]
- Chaves, A.; He, M.; Yang, W.; Hristov, A.; Mcallister, T.; Benchaar, C. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can. J. Anim. Sci. 2008, 88, 117–122. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Bannink, A.; Battelli, M.; Belanche, A.; Sanz, M.C.C.; Fernandez-Turren, G.; Garcia, F.; Jonker, A.; Kenny, D.A.; Lind, V.; et al. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J. Dairy Sci. 2025, 108, 322–355. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J. Anim. Sci. 2012, 90, 1879–1884. [Google Scholar] [CrossRef]
- Kirkland, R.M.; Gordon, F.J. The effects of milk yield and stage of lactation on the partitioning of nutrients in lactating dairy cows. J. Dairy Sci. 2001, 84, 233–240. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Zebeli, Q. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermetnaiton charactersistics and feed efficiency in ruminants. J. Anim. Sci. 2013, 91, 1819–1830. [Google Scholar] [CrossRef]
- Bach, A.; Elcoso, G.; Escartín, M.; Spengler, K.; Jouve, A. Modulation of milking performance, methane emissions, and rumen microbiome on dairy cows by dietary supplementation of a blend of essential oils. Animal 2023, 17, 100825. [Google Scholar] [CrossRef]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Muetzel, S.; Lawrence, P.; Hoffmann, E.M.; Becker, K. Evaluation of a stratified continuous rumen incubation system. Anim. Feed. Sci. Technol. 2009, 151, 32–43. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Arco-Perez, A.; Martin-Garcia, A.I.; Yanez-Ruiz, D.R. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef]
- Moloney, A.P.; McHugh, T.V.; Moloney, B.C. Volume of liquid in the rumen of Friesian steers offered diets based on grass silage. Ir. J. Agric. Food Res. 1993, 32, 133–145. [Google Scholar]
- Reynolds, C.K.; Durst, B.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Visceral tissue mass and rumen volume in dairy cows during transition from late gestation to early lactation. J. Dairy Sci. 2004, 87, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, G.; Abecia, L.; Martin-Garcia, A.I.; Ramos-Morales, E.; Denman, S.E.; Newbold, C.J.; Molina-Alcaide, E.; Yanez-Ruiz, D.R. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters. FEMS Microbiol. Ecol. 2015, 91, fiv079. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.; Abecia, L.; Martín-García, A. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Barker, S.B.; Summerson, W.H. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 1941, 138, 535–554. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Cardozo, P.W.; Kamel, C. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 2005, 88, 2508–2516. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba, S. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 2003, 39, 81–86. [Google Scholar] [CrossRef]
- Sylvester, J.T.; Karnati, S.K.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef]
- Denman, S.E.; Tomkins, N.W.; McSweeney, C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromocholoromethane. FEMS Microbiol. Ecol. 2007, 62, 313–322. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Rey, J.; Atxaerandio, R.; Ruiz, R.; Ugarte, E.; González-Recio, O.; Garcia-Rodriguez, A.; Goiri, I. Comparison Between Non-Invasive Methane Measurement Techniques in Cattle. Animals 2019, 9, 563. [Google Scholar] [CrossRef]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Pedersen, S.; Blanes-Vidal, V.; Joergensen, H.; Chwalibog, A.; Haeussermann, A.; Heetkamp, M.J.W.; Aarnink, A.J.A. Carbon dioxide production in animal houses: A literature review. Agric. Eng. Int. CIGR J. 2008, 10, 1–19. [Google Scholar]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef]
Treatement 1 | p-Value | |||
---|---|---|---|---|
CON | CEC | SEM | Trt | |
Gas Production (mL) | 16.5 | 17.5 | 0.35 | 0.12 |
CH4 Concentration (mL/100 mL gas) | 0.16 | 0.14 | 0.042 | 0.02 |
CH4 Production 2 (mL) | 26.8 | 24.7 | 0.83 | 0.26 |
CH4:VFA 3 | 0.28 | 0.24 | 0.012 | 0.08 |
Treatement 1 | p-Value | |||
---|---|---|---|---|
CON | CEC | SEM | Trt | |
Microbial abundance 2 | ||||
Bacteria | 8.50 | 8.42 | 0.061 | 0.42 |
Archaea | 5.09 | 5.08 | 0.079 | 0.97 |
Protozoa | 6.34 | 6.17 | 0.049 | 0.07 |
Fungi | 4.51 | 4.45 | 0.092 | 0.69 |
Treatement 1 | p-Value | |||
---|---|---|---|---|
CON | CEC | SEM | Trt | |
Total VFA, mM | 95.6 | 102.5 | 0.64 | <0.01 |
Proportions, % | ||||
Acetate | 58.2 | 57.5 | 1.01 | 0.63 |
Propionate | 22.0 | 23.3 | 1.12 | 0.45 |
Butyrate | 13.6 | 13.0 | 0.33 | 0.26 |
Isobutyrate | 1.21 | 1.20 | 0.051 | 0.87 |
Valerate | 2.18 | 2.11 | 0.055 | 0.47 |
Isovalerate | 2.80 | 2.90 | 0.341 | 0.85 |
Acetate:propionate ratio | 2.69 | 2.53 | 0.139 | 0.45 |
Lactic acid, mg/100 mL | 29.8 | 39.7 | 1.74 | 0.02 |
Nitrogen fractions, mg/100 mL 2 | ||||
NH3-N | 8.71 | 6.12 | 1.139 | 0.18 |
Amino Acid-N | 7.23 | 13.03 | 1.589 | 0.06 |
Peptide-N | 20.88 | 18.28 | 3.001 | 0.57 |
Treatment 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|
CON | CEC | SEM | Trt | Week | T × W | |
CH4 production, L/d | 636 | 551 | 29.5 | 0.09 | 0.17 | 0.54 |
CH4 intensity, L/kg of Milk | 17.1 | 14.7 | 0.79 | 0.08 | 0.12 | 0.45 |
CH4 yield, L/kg of DMI | 25.6 | 21.4 | 1.22 | 0.02 | 0.13 | 0.49 |
Treatment 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|
CON | CEC | SEM | Trt | Week | T × W | |
DMI, kg/d | 24.8 | 25.7 | 0.12 | <0.01 | 0.87 | 0.57 |
Eating rate, g /min | 115 | 121 | 1.1 | <0.01 | 0.99 | 0.95 |
BW, kg | 769 | 769 | 17.4 | 0.99 | <0.01 | <0.01 |
Milk yield, kg/d | 38.7 | 38.6 | 1.04 | 0.96 | <0.01 | 0.93 |
Milk fat, % | 3.58 | 3.61 | 0.02 | 0.47 | <0.01 | 0.96 |
Milk fat, kg/d | 1.39 | 1.39 | 0.04 | 0.92 | <0.01 | 0.89 |
Milk protein, % | 3.21 | 3.23 | 0.02 | 0.57 | <0.01 | 0.39 |
Milk protein, kg/d | 1.24 | 1.25 | 0.03 | 0.94 | <0.01 | 0.89 |
Milk lactose, % 3 | 4.89 | 4.99 | 0.04 | 0.26 | 0.06 | 0.33 |
Milk solids nonfat, % 3 | 8.85 | 8.99 | 0.05 | 0.19 | <0.01 | 0.75 |
Milk SCC, × 103/mL 3 | 4.86 | 5.38 | 0.20 | 0.20 | 0.40 | 0.69 |
ECM, kg/d 4 | 39.5 | 39.6 | 1.02 | 0.96 | <0.01 | 0.90 |
Feed efficiency, % 5 | 1.61 | 1.55 | 0.02 | 0.05 | 0.64 | 0.99 |
Ingredients, % DM | Forage | Concentrate |
---|---|---|
Alfalfa hay | 50.0 | |
Barley grain | 29.5 | |
Corn grain | 10.0 | |
Sunflower cake | 10.0 | |
Urea | 0.5 | |
Nutrients | ||
Dry matter, % | 91.6 | 89.4 |
Crude protein, % | 7.1 | 17.7 |
NDF, % | 59.8 | 31.4 |
ADF,% | 34.8 | 10.4 |
Ether extract, % | 1.4 | 2.5 |
Target | Forward Primer | Reverse Primer | Reference |
---|---|---|---|
16S rRNA | GTG-STGCAYGGYTGTCGTCA | ACGT-CRTCCMCACCTTCCTC | [44] |
18S rRNA | GCTTTCGWTGGTAGTGTATT | CTTGCCCTCYAATCGTWCT | [45] |
mcrA | TTCGGTGGATCDCARAGRGC | GBARGTCGWAWCCGTAGAATCC | [46] |
Item | Ingredient |
---|---|
Ingredients, % DM | |
Alfalfa hay | 7.57 |
Fescue hay | 14.42 |
Rye grass hay | 18.03 |
Straw | 0.77 |
Soybean meal 1 | 11.68 |
Barley grain | 1.51 |
Corn grain | 21.09 |
Wheat grain | 10.75 |
Soybean hulls | 10.31 |
Palm oil | 2.05 |
Calcium carbonate | 0.82 |
Magnesium oxide | 0.29 |
Salt | 0.33 |
Mineral vitamin premix 2 | 0.37 |
Nutrients | |
Crude protein, % | 16.1 |
NDF, % | 34.5 |
ADF,% | 23.8 |
Ash, % | 7.5 |
Net energy, Mcal/kg 3 | 1.68 |
Ether extract, % | 4.03 |
Non-fiber carbohydrate, % | 37.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelil-Arfa, H.; Tondini, S.M.; Belanche, A.; Palma-Hidalgo, J.M.; Blanchard, A.; Yáñez-Ruiz, D.; Elcoso, G.; Bach, A. Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows. Methane 2025, 4, 13. https://doi.org/10.3390/methane4020013
Khelil-Arfa H, Tondini SM, Belanche A, Palma-Hidalgo JM, Blanchard A, Yáñez-Ruiz D, Elcoso G, Bach A. Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows. Methane. 2025; 4(2):13. https://doi.org/10.3390/methane4020013
Chicago/Turabian StyleKhelil-Arfa, Hajer, Sara Maria Tondini, Alejandro Belanche, Juan Manuel Palma-Hidalgo, Alexandra Blanchard, David Yáñez-Ruiz, Guillermo Elcoso, and Alex Bach. 2025. "Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows" Methane 4, no. 2: 13. https://doi.org/10.3390/methane4020013
APA StyleKhelil-Arfa, H., Tondini, S. M., Belanche, A., Palma-Hidalgo, J. M., Blanchard, A., Yáñez-Ruiz, D., Elcoso, G., & Bach, A. (2025). Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows. Methane, 4(2), 13. https://doi.org/10.3390/methane4020013