Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = oil disperse systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 207
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

19 pages, 3772 KiB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 384
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

22 pages, 6390 KiB  
Article
Exploring the Tribological Potential of Y2BaCuO5 Precursor Powders as a Novel Lubricant Additive
by Shuo Cheng, Longgui He and Jimin Xu
Lubricants 2025, 13(7), 315; https://doi.org/10.3390/lubricants13070315 - 19 Jul 2025
Viewed by 308
Abstract
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 [...] Read more.
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 lubricant (CD) was formulated using ultrasonic dispersion. Tribological performance was evaluated using a custom end-face tribometer (steel-on-iron) under varying loads (100–500 N) and speeds (300–500 rpm), comparing CD to neat PAO6. The results indicate that the Y211 additive consistently reduced the coefficient of friction (COF) relative to neat PAO6, maintaining a stable value around ~0.1. However, its effectiveness was strongly load-dependent: a significant friction reduction was observed at 100 N, while the benefit diminished at higher loads (>200 N), with the COF peaking around 200 N. Rotational speed exerted minimal influence. Compared with neat PAO6, the inclusion of 0.3 wt.% Y211 resulted in a reduction in the coefficient of friction by approximately 50% under low-load conditions (100 N), with COF values decreasing from 0.1 to 0.045. Wear depth measurements also revealed a reduction of over 30%, supporting the additive’s anti-wear efficacy. Y211 demonstrates potential as a friction-reducing additive, particularly under low loads, but its high-load performance limitations warrant further optimization and mechanistic studies. This highlights a novel tribological application for Y211. The objective of this study is to evaluate the tribological effectiveness of Y2BaCuO5 (Y211) as a lubricant additive, investigate its load-dependent friction behavior, and explore its feasibility as a multifunctional additive leveraging its superconductive precursor structure. Full article
(This article belongs to the Special Issue Novel Lubricant Additives in 2025)
Show Figures

Figure 1

20 pages, 9096 KiB  
Article
Microscopic Mechanism Study on Gas–Crude-Oil Interactions During the CO2 Flooding Process in Water-Bearing Reservoirs
by Wei Xia, Yu-Bo Wang, Jiang-Tao Wu, Tao Zhang, Liang Gong and Chuan-Yong Zhu
Int. J. Mol. Sci. 2025, 26(13), 6402; https://doi.org/10.3390/ijms26136402 - 3 Jul 2025
Viewed by 234
Abstract
The impact of water on CO2 sequestration and enhanced oil recovery processes is significant. In this study, a CO2–water-film–crude-oil–rock molecular system was established. Then, the influence of water-film thickness on the dissolution and dispersion of CO2 and crude oil [...] Read more.
The impact of water on CO2 sequestration and enhanced oil recovery processes is significant. In this study, a CO2–water-film–crude-oil–rock molecular system was established. Then, the influence of water-film thickness on the dissolution and dispersion of CO2 and crude oil under different temperature and pressure scenarios was examined through molecular dynamics simulations. The results indicate that water films hinder CO2 diffusion into the oil, reducing its ability to lower oil density. When the thickness of the water film increases from 0 nm to 3 nm, the oil density increases by 86.9%, and the average diffusion coefficient of oil decreases by 72.30%. Increasing the temperature enhances CO2–oil interactions, promoting CO2 and water diffusion into oil, thereby reducing oil density. Under conditions of a 2 nm water film and 10 MPa pressure, increasing the temperature from 100 °C to 300 °C results in a decrease of approximately 32.1% in the oil density. Pressure also promotes oil and water-film density reduction, but its effect is less significant compared to temperature. These results elucidate the function of the water film in CO2-EOR processes and its impact on CO2 dissolution and diffusion in water-bearing reservoirs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 4351 KiB  
Article
Preparation and Enhanced Oil Recovery Mechanisms of Janus-SiO2-Reinforced Polymer Gel Microspheres
by Fei Gao, Baolei Liu, Yuelong Liu, Lei Xing and Yan Zhang
Gels 2025, 11(7), 506; https://doi.org/10.3390/gels11070506 - 30 Jun 2025
Cited by 1 | Viewed by 385
Abstract
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared [...] Read more.
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) characterization confirmed the successful grafting of amino and styrene chains, with the particle size increasing from 23.8 nm to 32.9 nm while maintaining good dispersion stability. The Janus nanoparticles exhibited high interfacial activity, reducing the oil–water interfacial tension to 0.095 mN/m and converting the rock surface wettability from oil-wet (15.4°) to strongly water-wet (120.6°), thereby significantly enhancing the oil stripping efficiency. Then, polymer gel microspheres were prepared by reversed-phase emulsion polymerization using Janus-SiO2 nanoparticles as emulsifiers. When the concentration range of nanoparticles was 0.1–0.5 wt%, the particle size range of polymer gel microspheres was 316.4–562.7 nm. Polymer gel microspheres prepared with a high concentration of Janus-SiO2 nanoparticles can ensure the moderate swelling capacity of the particles under high-temperature and high-salinity conditions. At the same time, it can also improve the mechanical strength and shear resistance of the microspheres. Core displacement experiments confirmed the dual synergistic effect of this system. Polymer gel microspheres can effectively plug high-permeability zones and improve sweep volume, while Janus-SiO2 nanoparticles enhance oil displacement efficiency. Ultimately, this system achieved an incremental oil recovery of 19.72%, exceeding that of conventional polymer microsphere systems by more than 5.96%. The proposed method provides a promising strategy for improving oil recovery in low-permeability heterogeneous reservoir development. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Graphical abstract

16 pages, 3000 KiB  
Article
A Simple Vortex-Based Method for the Generation of High-Throughput Spherical Micro- and Nanohydrogels
by Moussa Boujemaa, Remi Peters, Jiabin Luan, Yieuw Hin Mok, Shauni Keller and Daniela A. Wilson
Int. J. Mol. Sci. 2025, 26(13), 6300; https://doi.org/10.3390/ijms26136300 - 30 Jun 2025
Viewed by 418
Abstract
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol [...] Read more.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

20 pages, 2974 KiB  
Article
The Application of a New Microbial Biosurfactant to Remove Residual Oil from Electric Power Plant and to Inhibit Metal Corrosion in a Salty Environment
by Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Attilio Converti, Alessandro Alberto Casazza, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Energies 2025, 18(13), 3359; https://doi.org/10.3390/en18133359 - 26 Jun 2025
Viewed by 439
Abstract
Human development has led to increased production of oil and gas, mainly as energy sources, which, however, are responsible for contamination and metal corrosion in industrial, marine, and terrestrial environments. Lubricating oil, in particular, is widely used in generators and industrial machines in [...] Read more.
Human development has led to increased production of oil and gas, mainly as energy sources, which, however, are responsible for contamination and metal corrosion in industrial, marine, and terrestrial environments. Lubricating oil, in particular, is widely used in generators and industrial machines in the electric sector and is responsible for contamination not only in industrial environments but also in many terrestrial and aquatic ecosystems. In this context, this study aimed to apply the Starmerella bombicola ATCC 222214 biosurfactant to inhibit metal corrosion in seawater and in an Accelerated Corrosion Chamber (ACC). For this purpose, its toxicity against the microcrustacean Artemia salina, its dispersion capacity, and its ability to promote oil biodegradation in a saline environment were investigated. The biosurfactant, when applied at twice its Critical Micellar Concentration (CMC), caused low mortality (30.0%) of microcrustaceans in a saline environment, and, in its crude form, the biosurfactant ensured the dispersion of no less than 77.56% of residual engine oil in seawater. Oil biodegradation by autochthonous microorganisms reached 94.39% in the presence of the biosurfactant in seawater. Furthermore, the biosurfactant, when used at twice its CMC, acted satisfactorily as a corrosion inhibitor by reducing the mass loss of galvanized iron specimens (plates) in seawater in a static system to only 0.36%. On the other hand, when the biosurfactant was added at the CMC as an atmospheric corrosion inhibitor, the reduction in mass loss of carbon steel plates treated in the ACC was 17.38% compared to the control containing only a biodegradable matrix based on vegetable resin. When the biosurfactant was incorporated into different paints applied to galvanized iron plates placed in contact with the salt spray produced in the ACC, the best result was obtained using the biomolecule at a concentration of 3% in the satin paint, ensuring a plate mass loss (29.236 g/m2) that was almost half that obtained without surfactant (52.967 g/m2). The study indicated the use of yeast biosurfactant as a sustainable alternative in combating the contamination of marine environments and metal corrosion, with the aim of preserving the environment and improving the quality of life in aquatic and terrestrial ecosystems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 13043 KiB  
Article
Lubrication Performance Promotion of GTL Base Oil by BN Nanosheets via Cascade Centrifugation-Assisted Liquid-Phase Exfoliation
by Jiashun Liu, Shuo Xiang, Xiaoyu Zhou, Shigang Lin, Kehong Dong, Yiwei Liu, Donghai He, Yunhong Fan, Yuehao Liu, Bingxue Xiong, Kai Ma, Kaiyang Xiao, Genmao Luo, Qinhui Zhang and Xin Yang
Lubricants 2025, 13(7), 281; https://doi.org/10.3390/lubricants13070281 - 23 Jun 2025
Viewed by 376
Abstract
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare [...] Read more.
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare BNNSs from hexagonal boron nitride (h-BN) efficiently and scalably. Subsequently, they were ultrasonically dispersed into gas-to-liquid (GTL) base oil, and their lubrication performance promotion was evaluated by a four-ball tribotester. Tribological tests demonstrated that BNNS possesses excellent friction-reducing and anti-wear properties in GTL. Furthermore, the findings indicate that at a BNNS content of 0.8 wt.%, the system displayed the lowest COF and WSD. Particularly, with an addition of 0.8 wt.% BNNS into GTL, the AFC and WSD are reduced significantly by 40.1% and 35.4% compared to pure base oil, respectively, and the surface roughness, wear depth, and wear volume were effectively reduced by 91.0%, 68.5%, and 76.8% compared to GTL base oil, respectively. Raman, SEM-EDS, and XPS results proved that the outstanding friction-reducing and anti-wear properties of BNNS can mainly be ascribed to the presence of physical adsorption film and tribo-chemical film, which were composed of FeOOH, FeO, Fe3O4, and B2O3. Full article
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 436
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

21 pages, 3035 KiB  
Article
Study on the Unblocking Fluid System for Complex Blockages in Weiyuan Shale Gas Wellbores
by Yadong Yang, Yixuan Wang, Longqing Zou, Jianfeng Xiao, Qiyue He, Teng Zhang, Bangkun Qiu and Jingyi Zhu
Processes 2025, 13(6), 1684; https://doi.org/10.3390/pr13061684 - 27 May 2025
Cited by 1 | Viewed by 370
Abstract
During the early stages of drilling and completion in the Weiyuan shale gas wells, a large number of downhole materials were introduced, some of which inevitably remained in the wellbore or migrated into the reservoir. Over time, these residual materials underwent physicochemical reactions [...] Read more.
During the early stages of drilling and completion in the Weiyuan shale gas wells, a large number of downhole materials were introduced, some of which inevitably remained in the wellbore or migrated into the reservoir. Over time, these residual materials underwent physicochemical reactions with reservoir minerals and fluids, gradually forming dense composite blockages that severely restricted the production efficiency of shale gas wells. The effectiveness of single-component unblocking agents in removing such blockages is limited. This study systematically analyzed the physicochemical properties of wellbore blockages in Weiyuan shale gas wells using refined chemical techniques. The results revealed that the main inorganic components of the blockages were Fe3O4 and SiO2, while the organic components were primarily related to polymer materials from drilling and fracturing fluids. Based on the physicochemical characteristics of the blockages, a novel “organic dispersion and inorganic decomposition” unblocking strategy was proposed. Furthermore, an innovative approach that combined molecular simulation with laboratory experiments was employed to develop three unblocking fluid systems tailored to different blockage conditions: neutral, acidic, and composite. Performance evaluation showed that the composite unblocking fluid exhibited the best efficacy in treating these dense composite blockages, achieving a scale dissolution and dispersion efficiency of over 90%. Compared to the other two systems, the composite fluid demonstrated the longest penetration distance in simulated composite blockages, improving penetration by over 30%. In field applications, unblocking strategies were optimized based on whether the oil and casing were interconnected. For blocked wells without connectivity, a circulating wash method was used, while for interconnected wells, a dragging wash method was employed, ensuring efficient blockage removal. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 1896 KiB  
Article
GIS and Spatial Analysis in the Utilization of Residual Biomass for Biofuel Production
by Sotiris Lycourghiotis
J 2025, 8(2), 17; https://doi.org/10.3390/j8020017 - 16 May 2025
Viewed by 851
Abstract
The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect [...] Read more.
The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect them. The methodology of Geographic Information Systems (GIS) as well as spatial analysis (SA) techniques were used to investigate the Greek case for this. The data recorded in the geographic database were quantities of waste cooking and household oils as well as quantities of lignocellulosic biomass. The most common global and local indices of spatial autocorrelation were used. Concerning the biomass derived from used cooking oils, it was found that their quantities were important (163.17 million L/year), and these can be used to produce green diesel in the context of the circular economy. Although the dispersion of the used cooking oils was wide, there is no doubt that their concentration in large cities and tourist areas is higher. This finding suggests a collection process that could be carried out mainly in these areas through the development of small autonomous collection units in each neighborhood and central processing plants in small regional units. The investigation of the geographical–spatial distribution of residual lignocellulosic biomass showed the geographical fragmentation and heterogeneity of the distributions. The quantities recorded were significant (4.5 million tons/year) but widely dispersed, such that the cost of collecting and transporting the biomass to central processing plants could be prohibitive. The “geography” of the problem itself suggests solutions of small mobile collection units in every part of the country. The lignocellulosic biomass would be collected and converted in situ into bio-oil by rapid pyrolysis carried out in a tanker vehicle. This would transport the produced bio-oil to the nearest oil refineries for the conversion of bio-oil into biofuels through deoxygenation processes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

25 pages, 3964 KiB  
Article
Development of Liposome-Based Hydrogel Patches Incorporating Essential Oils of African Plants and Deep Eutectic Solvents
by Wanhang Jiang, Sara Toufouki, Subhan Mahmood, Ali Ahmad, Alula Yohannes, Yang Xiang and Shun Yao
Gels 2025, 11(5), 364; https://doi.org/10.3390/gels11050364 - 15 May 2025
Viewed by 714
Abstract
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel [...] Read more.
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel exhibited a swelling capacity of 100% and retained 51.7% of water after 7 h, ensuring prolonged hydration. Structural analysis confirmed a homogeneous dispersion of nanoliposomes, contributing to the gradual release of bioactive components. Additionally, the hydrogel demonstrated high mechanical strength (7.5 MPa), ensuring flexibility and durability. The polymeric network, formed by acrylamide, sodium alginate, and bentonite, provided a stable and elastic matrix, optimizing water retention and mechanical performance. The controlled diffusion mechanism of the nanoliposomes was validated through in vitro release studies, indicating Fickian-controlled release behavior. These findings highlight the potential of this polymeric hydrogel system as a functional material for skincare formulations, offering enhanced hydration and sustained bioactive delivery. Full article
Show Figures

Graphical abstract

22 pages, 8549 KiB  
Article
A Dissipative Particle Dynamics Study on the Formation of the Water-In-Petroleum Emulsion: The Contribution of the Oil
by Peng Shi, Murtaja Hamid Oudah Ogail, Xinxin Feng, Shenwen Fang, Ming Duan, Wanfen Pu and Rui Liu
Appl. Sci. 2025, 15(10), 5422; https://doi.org/10.3390/app15105422 - 13 May 2025
Viewed by 484
Abstract
High internal phase emulsions (HIPEs), in which the dispersed water phase exceeds 70%, play a critical role in enhancing oil recovery through in situ permeability modification. However, their stability remains a major challenge due to frequent phase inversion and coalescence. In this study, [...] Read more.
High internal phase emulsions (HIPEs), in which the dispersed water phase exceeds 70%, play a critical role in enhancing oil recovery through in situ permeability modification. However, their stability remains a major challenge due to frequent phase inversion and coalescence. In this study, the formation and stabilization mechanisms of water-in-oil HIPEs were investigated using a multiscale modeling approach that combines dissipative particle dynamics (DPD), molecular dynamics (MD), and density functional theory (DFT). Fourteen oil types and six polyaromatic emulsifiers with varying side-chain configurations and polar functional groups were modeled. Emulsifier performance was evaluated across 42 DPD-simulated systems with 70% and 80% water content. The results showed that emulsifiers with moderate dipole moments (~6 Debye) and spatially distributed heteroatoms achieved the most stable emulsion structures, forming continuous interfacial films or micelle-bridged networks. In contrast, emulsifiers with weak polarity (<1 Debye) or excessive stacking tendencies failed to prevent phase separation. The HOMO–LUMO energy gap and cohesive energy density (CED) were found to be poor predictors of emulsification performance. Four distinct stabilization mechanisms were identified, including interfacial film co-construction with oils and steric stabilization via side-chain architecture. The findings demonstrate that dipole moment is a reliable molecular descriptor for emulsifier design. This study provides a theoretical foundation for the rational development of high-performance emulsifiers in petroleum-based HIPE systems and highlights the potential of multiscale simulations in guiding formulation strategies. Full article
Show Figures

Figure 1

21 pages, 7194 KiB  
Article
Quality by Design (QbD)-Based Development of a Self-Nanoemulsifying Drug Delivery System for the Ocular Delivery of Flurbiprofen
by Ju-Hwan Jeong, Tae-Han Yoon, Si-Won Ryu, Min-Gyeong Kim, Gu-Hae Kim, Ye-Jin Oh, Su-Jeong Lee, Na-Woon Kwak, Kyu-Ho Bang and Kyeong-Soo Kim
Pharmaceutics 2025, 17(5), 629; https://doi.org/10.3390/pharmaceutics17050629 - 9 May 2025
Viewed by 724
Abstract
Objectives: In this study, Quality by Design (QbD) was used to develop an optimized self-nanoemulsifying drug delivery system (SNEDDS) as an ophthalmic formulation of flurbiprofen (FLU). Using a Box–Behnken design (BBD), an optimal SNEDDS composition was crafted, targeting enhanced corneal permeability and [...] Read more.
Objectives: In this study, Quality by Design (QbD) was used to develop an optimized self-nanoemulsifying drug delivery system (SNEDDS) as an ophthalmic formulation of flurbiprofen (FLU). Using a Box–Behnken design (BBD), an optimal SNEDDS composition was crafted, targeting enhanced corneal permeability and increased bioavailability of the drug. Methods: The levels of each factor(X) were established using a pseudo-ternary diagram, and the Box-Behnken design (BBD) was used to evaluate the components of oil (18.9 mg), surfactant (70.7 mg), and co-surfactant (10.0 mg) to optimize the SNEDDS formulation. The response(Y) considered were particle size, polydispersity index (PDI), transmittance, and stability. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to analyze the particle size and morphology. In vitro and ex vivo diffusion tests were conducted to assess drug flux and permeability. Result: Using a response optimization tool, the values of each X factor were optimized to achieve a small particle size (nm), a low polydispersity index (PDI), and high transmittance (%), resulting in a formulation prepared with 18.9 mg of oil, 70.7 mg of surfactant, and 10.0 mg of co-surfactant. The optimized SNEDDS exhibited a small particle size of 24.89 nm, a minimal PDI of 0.068, and a high transmittance of 74.85%. A transmission electron microscopy (TEM) analysis confirmed the presence of uniform spherical nanoemulsion droplets with an observed mean diameter of less than 25 nm, corroborating the dynamic light scattering (DLS) measurements. Furthermore, the SNEDDS demonstrated improved stability under the stress conditions of heating–cooling cycles, with no phase separation, creaming, or caking observed and no differences in its particle size, PDI, or transmittance. In vitro and ex vivo diffusion tests demonstrated that the flux of the optimized SNEDDS (2.723 ± 0.133 mg/cm2, 5.446 ± 0.390 μg/cm2) was about 2.5 and 4 times higher than that of the drug dispersion, and the initial diffusion was faster, which is suitable for the characteristics of eye drops. Conclusions: Therefore, the formulation of a flurbiprofen-loaded SNEDDS (FLU-SNE) was successfully optimized using the QbD approach. The optimized FLU-SNE exhibited excellent stability and enhanced permeability, suggesting its potential effectiveness in treating various ocular inflammations, including uveitis and cystoid macular edema. Full article
Show Figures

Figure 1

18 pages, 5552 KiB  
Article
Use of a Sorption Column with Polyurethane/Graphene Core Combined with an Electroflotation Reactor for Oily Wastewater Treatment
by Tiago Mari, Matheus V. G. Zimmermann, Bruna Rossi Fenner, Francisco Maciel Monticeli, Heitor Luiz Ornaghi Júnior, Camila Baldasso and Ademir J. Zattera
Polymers 2025, 17(8), 1127; https://doi.org/10.3390/polym17081127 - 21 Apr 2025
Viewed by 400
Abstract
Discharging oil-contaminated wastewater into the environment without adequate treatment can have a negative impact on water resources, public water and wastewater treatment systems, and even human health. In this sense, it is essential to develop compact, easily automated, low-cost, and highly efficient unitary [...] Read more.
Discharging oil-contaminated wastewater into the environment without adequate treatment can have a negative impact on water resources, public water and wastewater treatment systems, and even human health. In this sense, it is essential to develop compact, easily automated, low-cost, and highly efficient unitary treatment processes in order to comply with legal requirements regarding effluent emission standards for water bodies. Therefore, the present study consisted of the development of two treatment processes aimed at the separation of oil emulsions stabilised by anionic surfactants: a sorption column using polyurethane/graphene foam composites as sorbent material and a continuous flow AC electroflotation reactor. Initially, composites with 0.5% and 1% w/w graphene (based on polyol mass) were developed using a dispersing agent (1-methyl-2-pyrrolidone). The foams were characterised in terms of morphology and mechanical and sorption properties. In the fixed bed column, the foams retained up to 77.15% of the emulsified oil and 52.36% of the anionic surfactants. In the continuous flow electroflotation reactor, emulsified oil removal efficiencies above 90% were achieved at all electrical currents tested, and up to 88.6% of anionic surfactants were removed at an electrical current of 150 A. Given the advantages and disadvantages of the two oily effluent treatment processes, their combined use in the same system proved promising. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop