Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,116)

Search Parameters:
Keywords = oil blend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2626 KiB  
Article
Formulation, Optimization, and Comprehensive Characterization of Topical Essential Oil-Loaded Anti-Acne Microemulgels
by Adeola Tawakalitu Kola-Mustapha, Muhabat Adeola Raji, Yusra Abdulkarim Alzahrani, Noura Hatim Binsaeed, Doaa Rashed Adam, Ranim Abou Shameh, Noureldeen Mohammed Garaween and Ghada Garaween
Gels 2025, 11(8), 612; https://doi.org/10.3390/gels11080612 - 4 Aug 2025
Viewed by 48
Abstract
Cutibacterium acnes is linked to the prevalent inflammatory skin disorder known as Acne Vulgaris (AV). Some topical agents exhibit unfavorable side effects like dryness and skin inflammation, and antimicrobial resistance (AMR) poses an increasing risk to effective AV management. This study develops and [...] Read more.
Cutibacterium acnes is linked to the prevalent inflammatory skin disorder known as Acne Vulgaris (AV). Some topical agents exhibit unfavorable side effects like dryness and skin inflammation, and antimicrobial resistance (AMR) poses an increasing risk to effective AV management. This study develops and characterizes stable topical essential oil (EO)-loaded microemulgels with in vitro validated antimicrobial activities against C. acnes ATCC 6919, providing a solid scientific basis for their effectiveness. These microemulgels, with their potential to serve as an alternative to AMR-prone synthetic agents, could revolutionize the field of acne treatment. The MICs of the EOs (citronella, tea tree, and lemongrass) against C. acnes were determined. EO-loaded microemulgels were developed using a blend of microemulsion and carbopol/hyaluronic acid gel in a ratio of 1:1 and characterized, and their stability was observed over three months. The MICs of citronella, tea tree, and lemongrass EOs were 0.08, 0.16, and 0.62% v/v, respectively. The microemulgels were whitish and smooth, with characteristic EO odors. They demonstrated pH values ranging between 4.81 ± 0.20 and 5.00 ± 0.03, good homogeneity, a spreadability of 9.79 ± 0.6 and 12.76 ± 0.8 cm2, a viscosity of 29,500 and 31,130 cP, and retained stability at 4, 25, and 40 °C. EO-loaded microemulgels were developed with the potential of C. acnes management. The formulation shows adequate potential for further pharmaceutical development towards translational adoption in acne management. Full article
(This article belongs to the Special Issue Recent Advances in Microgels)
Show Figures

Figure 1

11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 - 1 Aug 2025
Viewed by 317
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 116
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 309
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

18 pages, 1800 KiB  
Article
Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna
by Marjeta Mencin, Milena Bučar-Miklavčič, Maja Podgornik and Nives Ogrinc
Foods 2025, 14(15), 2667; https://doi.org/10.3390/foods14152667 - 29 Jul 2025
Viewed by 251
Abstract
This study evaluated the authenticity of olive oil in canned tuna products from the Slovenian market using both official methods, including fatty acid (FA) profiling, determination of the equivalent carbon number difference (ΔECN42), and sterol analysis, and an advanced method: stable carbon isotope [...] Read more.
This study evaluated the authenticity of olive oil in canned tuna products from the Slovenian market using both official methods, including fatty acid (FA) profiling, determination of the equivalent carbon number difference (ΔECN42), and sterol analysis, and an advanced method: stable carbon isotope analysis (δ13C) of FAs obtained through compound-specific isotope analysis (CSIA). Results from both methods confirmed that all 10 samples were authentic, as per the limits set by EU Regulation 2022/2104 and supported by the scientific literature. Method performance was further evaluated by adulterating the olive oil from the canned tuna with 5–20% vegetable oil (VO) or hazelnut oil (HO). While FA analysis struggled to differentiate adulterants with similar FA profiles, CSIA of FAs significantly improved detection. However, distinguishing between VO and HO blended samples remained challenging. PLS-DA analysis further supported the potential of using δ13C values of FA for food authentication. Storage of adulterated samples also influenced FA composition, leading to significant changes in MUFA/PUFA ratios and δ13C values, which became less negative, likely due to oxidative degradation. In summary, the combination of official and advanced methods, supported by chemometric analysis, offers a robust approach to ensuring the authenticity of olive oil in canned tuna. Full article
Show Figures

Graphical abstract

14 pages, 1577 KiB  
Article
Determination of Acidity of Edible Oils for Renewable Fuels Using Experimental and Digitally Blended Mid-Infrared Spectra
by Collin G. White, Ayuba Fasasi, Chanda Swalley and Barry K. Lavine
J. Exp. Theor. Anal. 2025, 3(3), 20; https://doi.org/10.3390/jeta3030020 - 28 Jul 2025
Viewed by 183
Abstract
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages [...] Read more.
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages of renewables, specifically reduced emissions of greenhouse gases. An important property of the feedstock that is crucial for the conversion of edible oils to renewable fuels is the total acid number (TAN), as even a small increase in TAN for the feedstock can lead to corrosion of the catalyst in the refining process. Currently, the TAN is determined by potentiometric titration, which is time-consuming, expensive, and requires the preparation of reagents. As part of an effort to promote the use of renewable fuels, a partial least squares regression method with orthogonal signal correction to remove spectral information related to the sample background was developed to determine the TAN from the mid-infrared (IR) spectra of the feedstock. Digitally blended mid-IR spectral data were generated to fill in regions of the PLS calibration where there were very few samples. By combining experimental and digitally blended mid-IR spectral data to ensure adequate sample representation in all regions of the spectra–property calibration and better understand the spectra–property relationship through the identification of sample outliers in the original data that can be difficult to detect because of swamping, a PLS regression model for TAN (R2 = 0.992, cross-validated root mean square error = 0.468, and bias = 0.0036) has been developed from 118 experimental and digitally blended mid-IR spectra of commercial feedstock. Thus, feedstock whose TAN value is too high for refining can be flagged using the proposed mid-IR method, which is faster and easier to use than the current titrimetric method. Full article
Show Figures

Figure 1

28 pages, 13298 KiB  
Article
Performance and Environmental Assessment of Palm Oil–Coffee Husk Biodiesel Blends in a Dual-Fuel Diesel Engine Operating with Hydroxy
by Jovanny Rafael Duque, Fabio Bermejo-Altamar, Jorge Duarte-Forero and Brando Hernández-Comas
Energies 2025, 18(15), 3914; https://doi.org/10.3390/en18153914 - 23 Jul 2025
Viewed by 246
Abstract
This research analyzes the influence of hydroxy on pure diesel and blends of palm oil and coffee husk biodiesel with percentages of 15% and 20%. The experimental tests were carried out in a stationary diesel engine, where the torque and speed varied from [...] Read more.
This research analyzes the influence of hydroxy on pure diesel and blends of palm oil and coffee husk biodiesel with percentages of 15% and 20%. The experimental tests were carried out in a stationary diesel engine, where the torque and speed varied from 3–7 Nm and 3000–3600 rpm. Hydroxy was used as a secondary fuel with a volumetric flow injection of 4 and 8 lpm. The injection of hydroxy can reduce the BSFC and increase the BTE of the engine when running on pure diesel and biodiesel blends. The results show a maximum decrease of 11.66%, 11.28%, and 10.94% in BSFC when hydroxy is injected into D100, D85P10C5, and D80P10C10 fuels. In the case of BTE, maximum increases of 13.37%, 12.84%, and 12.34% were obtained for the above fuels. The fuels D100 + 8 lpm, D85P10C5 + 8 lpm, and D80P10C10 + 8 lpm achieved maximum energy efficiencies of 28.16%, 27.58%, and 27.32%, respectively. In the case of exergy efficiency, maximum values of 26.39%, 25.83%, and 25.58% were obtained. The environmental and social costs of CO, CO2, and HC emissions are significantly reduced with the addition of hydroxy in pure diesel and biodiesel blends from palm oil and coffee husk. The injection of a volumetric flow rate of 8 l/min results in reductions of 11.66%, 10.61%, and 10.94% in operational cost when the engine is fueled with D100, D85P10C5, and D80P10C10, respectively, complying with standards essential for safe engine operation. In general, the research conducted indicates that hydroxy injection is a viable alternative for reducing fuel consumption and improving engine efficiency when using biodiesel blends made from palm oil and coffee husk. Full article
Show Figures

Figure 1

22 pages, 848 KiB  
Article
Modeling Prediction of Physical Properties in Sustainable Biodiesel–Diesel–Alcohol Blends via Experimental Methods and Machine Learning
by Kaan Yeşilova, Özgün Yücel and Başak Temur Ergan
Processes 2025, 13(7), 2310; https://doi.org/10.3390/pr13072310 - 20 Jul 2025
Viewed by 446
Abstract
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range [...] Read more.
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range of 10 °C to 40 °C. Biodiesel was synthesized via alkali-catalyzed transesterification (6:1 methanol-to-oil molar ratio, 0.5 wt % NaOH of oil) and blended with diesel and alcohols (ethanol and propanol) in varying volume ratios. The experimental results revealed that blend density decreased from 0.8622 g/cm3 at 10 °C to 0.8522 g/cm3 at 40 °C for a blend containing ethanol. Similarly, the viscosity showed a significant reduction with temperature, e.g., the blend exhibited a viscosity decline from 8.5 mPa·s at 10 °C to 7.2 mPa·s at 40 °C. Increasing the alcohol or diesel content further reduced density and viscosity due to the lower intrinsic properties of these components. The machine learning models, Gaussian process regression (GPR), support vector regression (SVR), artificial neural networks (ANN), and decision tree regression (DTR), were applied to predict the properties of these blends. GPR demonstrated the best predictive performance for both density and viscosity. These findings confirm the strong potential of GPR for the accurate and reliable prediction of fuel blend properties, supporting the formulation of alternative fuels optimized for diesel engine performance. These aspects contribute new insights into modelling strategies for sustainable fuel formulations. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

15 pages, 1280 KiB  
Article
The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration Silages
by Isabele Paola de Oliveira Amaral, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Tatiane Fernandes, Yara América da Silva, Mariany Felex de Oliveira, Ana Carolina Amorim Orrico, Ronnie Coêlho de Andrade and Giuliano Reis Pereira Muglia
Fermentation 2025, 11(7), 415; https://doi.org/10.3390/fermentation11070415 - 18 Jul 2025
Viewed by 463
Abstract
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one [...] Read more.
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions. Full article
Show Figures

Figure 1

27 pages, 2101 KiB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 - 16 Jul 2025
Viewed by 452
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

20 pages, 3007 KiB  
Article
Hydrophobic Collagen/Polyvinyl Alcohol/V2CTx Composite Aerogel for Efficient Oil Adsorption
by Erhui Ren, Jiatong Yan, Fan Yang, Hongyan Xiao, Biyu Peng, Ronghui Guo and Mi Zhou
Polymers 2025, 17(14), 1949; https://doi.org/10.3390/polym17141949 - 16 Jul 2025
Viewed by 348
Abstract
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple [...] Read more.
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple method of blending, directional freezing, and drying. After modification with methyltriethoxysilane (MTMS) via chemical vapor deposition, the aerogel possessed an excellent hydrophobicity and its water contact angle reached 135°. The hydrophobic COL/PVA/V2CTx composite aerogel exhibits a porous structure with a specific surface area of 49 m2/g. It also possesses prominent mechanical properties with an 80.5 kPa compressive stress at 70% strain, a low density (about 28 mg/cm3), and outstanding thermal stability, demonstrating a 61.02% weight loss from 208 °C to 550 °C. Importantly, the hydrophobic COL/PVA/V2CTx aerogel exhibits a higher oil absorption capacity and stability, as well as a faster absorption rate, than the COL/PVA aerogel when tested with various oils. The hydrophobic COL/PVA/V2CTx aerogel has the capacity to adsorb 80 times its own weight of methylene chloride, with help from hydrophobic interactions, Van der Waals forces, intermolecular interactions, and capillary action. Compared with the pseudo first-order model, the pseudo second-order model is more suitable for oil adsorption kinetics. Therefore, the hydrophobic COL/PVA/V2CTx aerogel can be used as an environmentally friendly and efficient oil adsorbent. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1321
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

24 pages, 6684 KiB  
Article
Solvolysis and Mild Hydrogenolysis of Lignin Pyrolysis Bio-Oils for Bunker Fuel Blends
by Antigoni G. Margellou, Fanny Langschwager, Christina P. Pappa, Ana C. C. Araujo, Axel Funke and Konstantinos S. Triantafyllidis
Energies 2025, 18(14), 3683; https://doi.org/10.3390/en18143683 - 12 Jul 2025
Viewed by 431
Abstract
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into [...] Read more.
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into bunker fuel blending components. Within this study, solvolysis under critical ethanol conditions and mild catalytic hydrotreatment were applied to heavy fractions of lignin pyrolysis bio-oils with the aim of recovering bio-oils with improved properties, such as a lower viscosity, that would allow their use as bunker fuel blending components. The mild reaction conditions, i.e., low temperature (250 °C), short reaction time (1 h) and low hydrogen pressure (30–50 bar), led to up 65 wt.% recovery of upgraded bio-oil, which exhibited a high carbon content (63–73 wt.%), similar to that of the parent bio-oil (68.9 wt.%), but a lower oxygen content and viscosity, which decreased from ~298,000 cP in the parent lignin pyrolysis oil to 526 cP in the hydrotreated oil, with a 10%Ni/Beta catalyst in methanol, and which was also sulfur-free. These properties permit the potential utilization of the oils as blending components in conventional bunker fuels. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

10 pages, 559 KiB  
Article
Mitigating Bovine Mastitis and Raw Milk Pathogen Risks: Inhibition of Staphylococcus xylosus by Mediterranean Plants’ Essential Oil
by Rosario De Fazio, Giacomo Di Giacinto, Paola Roncada, Domenico Britti, Rosangela Odore, Paola Badino and Cristian Piras
Vet. Sci. 2025, 12(7), 659; https://doi.org/10.3390/vetsci12070659 - 11 Jul 2025
Viewed by 644
Abstract
Milk is frequently susceptible to contamination by potential pathogens, posing risks to both food safety and public health. Cheesemaking often relies on raw milk, where microbial communities—including Staphylococcus xylosus—can play a dual role: (i) contributing to fermentation and (ii) acting as opportunistic [...] Read more.
Milk is frequently susceptible to contamination by potential pathogens, posing risks to both food safety and public health. Cheesemaking often relies on raw milk, where microbial communities—including Staphylococcus xylosus—can play a dual role: (i) contributing to fermentation and (ii) acting as opportunistic pathogens that can be often present in subclinical mastitis and be subjected to carry over in dairy products. In this study, Staphylococcus xylosus was isolated from raw bovine milk (preclinical mastitis) and identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Biotyper scores: 1.87–2.19). Its susceptibility to erythromycin and to an essential oil blend composed of Myrtus communis, Salvia officinalis, and Cistus ladanifer was evaluated. The essential oil blend produced inhibition zones ranging from 9 mm to 13.3 mm, indicating moderate antibacterial activity. Further Minimum Inhibitory Concentration analysis revealed that Myrtus communis, Salvia officinalis, and the essential oil blend inhibited Staphylococcus xylosus growth at concentrations between 0.5 and 0.25 percent, while Cistus ladanifer required higher levels (1 to 0.5 percent). These findings suggest that selected essential oils—especially in combination—hold promise as complementary antimicrobial agents in food safety and antimicrobial resistance mitigation efforts. Full article
Show Figures

Figure 1

27 pages, 7546 KiB  
Article
Upcycling Luffa cylindrica (Luffa Sponge) Seed Press Cake as a Functional Ingredient for Meat Substitute Formulations
by Génica Lawrence, Thaïna Josy, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Remigiusz Olędzki, Katarzyna Górska, Adam Zając, Guylène Aurore and Joanna Harasym
Appl. Sci. 2025, 15(14), 7753; https://doi.org/10.3390/app15147753 - 10 Jul 2025
Viewed by 281
Abstract
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized [...] Read more.
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized the functional and bioactive properties of L. cylindrica seed press cake powder (LP) and its blends with tapioca flour (TF) at ratios of 30–70%. Techno-functional analyses included: hydration properties (water holding capacity, water absorption capacity, water absorption index, water solubility index, swelling power, oil absorption capacity); rheological characteristics; bioactive profiling through antioxidant assays (DPPH, ABTS, FRAP); and reducing sugar content determination. Meat substitute formulations were developed using an LP30/TF70 blend combined with coral lentils, red beet powder, and water, followed by a sensory evaluation and storage stability assessment. Pure L. cylindrica powder exhibited the highest water holding capacity (3.62 g H2O/g) and reducing sugar content (8.05 mg GE/g), while tapioca flour showed superior swelling properties. The blends demonstrated complementary functional characteristics, with the LP30/TF70 formulation selected for meat substitute development based on optimal textural properties. The sensory evaluation revealed significant gender differences in acceptance, with women rating the product substantially higher than men across all attributes. The study successfully demonstrated the feasibility of transforming agricultural waste into a valuable functional ingredient, contributing to sustainable food production and representing the first comprehensive evaluation of L. cylindrica seed press cake for food applications. However, the study revealed limitations, including significant antioxidant loss during thermal processing (80–85% reduction); a preliminary sensory evaluation with limited participants showing gender-dependent acceptance; and a reliance on locally available tapioca flour, which may limit global applicability. Future research should focus on processing optimization to preserve bioactive compounds, comprehensive sensory studies with diverse populations, and an investigation of alternative starch sources to enhance the worldwide implementation of this valorization approach. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

Back to TopTop