Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (721)

Search Parameters:
Keywords = oil binding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3517 KB  
Article
Extra-Virgin Olive Oil as a Natural Photosensitizer in Photodynamic Therapy Against MDR Candida spp.: In Vitro Study
by Cinzia Casu, Antonia Sinesi, Andrea Butera, Sara Fais, Alessandro Chiesa, Andrea Scribante and Germano Orrù
Optics 2026, 7(1), 10; https://doi.org/10.3390/opt7010010 - 26 Jan 2026
Viewed by 35
Abstract
The growing prevalence of multidrug-resistant (MDR) Candida spp. necessitates the development of new antifungal strategies. Photodynamic therapy (PDT), already widely used in the treatment of various oral infections, is based on the synergistic interaction of three key elements: a photosensitizer capable of selectively [...] Read more.
The growing prevalence of multidrug-resistant (MDR) Candida spp. necessitates the development of new antifungal strategies. Photodynamic therapy (PDT), already widely used in the treatment of various oral infections, is based on the synergistic interaction of three key elements: a photosensitizer capable of selectively binding to microbial cells, a light source with the appropriate wavelength, and the presence of molecular oxygen. This interaction results in the production of singlet oxygen and reactive oxygen species, responsible for the selective destruction of microorganisms. In recent years, numerous natural compounds have been explored as potential photosensitizers. Olive oil, a cornerstone of the Mediterranean diet, was recently recognized by the U.S. Food and Drug Administration as a medicinal substance thanks to its soothing, immunomodulatory, and antimicrobial properties, which have also been documented in regard to oral administration. Materials and Methods: The aim of this in vitro study was to evaluate the efficacy of activated olive oil as a novel photosensitizer in PDT against Candida species. Oral MDR clinical isolates of C. albicans, C. krusei, and C. glabrata were analyzed using the Kirby–Bauer method according to EUCAST protocols. Six different experimental conditions were considered for each strain: (i) 100 μL of extra-virgin olive oil (EVOO); (ii) 100 μL of EVOO pre-activated with 3% H2O2 (EVOO-H); (iii) 100 μL of EVOO irradiated for 5 min with polarized light (480–3400 nm, 25 W); (iv) 100 μL of EVOO-H subjected to the same polarized light; (v) 100 μL of EVOO irradiated for 5 min with a 660 nm diode laser (100 mW); and (vi) 100 μL of EVOO-H irradiated with the same laser. All plates were incubated at 37 °C for 48 h. Results: The results showed a variable response among the different Candida species. C. glabrata showed sensitivity to all experimental conditions, with a 50% increase in the diameter of the inhibition zone in the presence of polarized light. C. krusei showed no sensitivity under any of the conditions tested. C. albicans showed antifungal activity exclusively when EVOO-H was activated by light. In particular, activation of EVOO and EVOO-H with polarized light resulted in the largest inhibition zones. Conclusions: In conclusion, olive oil, both alone and pre-activated with hydrogen peroxide, can be considered an effective photosensitizer against drug-resistant Candida spp., especially when combined with polarized light. Full article
Show Figures

Figure 1

17 pages, 2175 KB  
Article
Efficient Degradation of Monoacylglycerols by an Engineered Aspergillus oryzae Lipase: Synergistic Effects of sfGFP Fusion and Rational Design
by Yuqing Wang, Fang Liu, Yuxi Tian, Jiazhen Sun, Dawei Liu, Fei Li, Yaping Wang and Ben Rao
Molecules 2026, 31(3), 398; https://doi.org/10.3390/molecules31030398 - 23 Jan 2026
Viewed by 211
Abstract
Monoacylglycerols (MAGs) are significant intermediate byproducts in the hydrolysis of oils and fats. The accumulation of MAGs not only reduces the quality and purity of the final products in biodiesel production and edible oil refining but also poses challenges for downstream separation processes. [...] Read more.
Monoacylglycerols (MAGs) are significant intermediate byproducts in the hydrolysis of oils and fats. The accumulation of MAGs not only reduces the quality and purity of the final products in biodiesel production and edible oil refining but also poses challenges for downstream separation processes. Therefore, the development of efficient biocatalysts for the specific MAG conversion is of great industrial importance. The lipase from Aspergillus oryzae (AOL) has shown potential for lipid modification; however, the wild-type enzyme (WT) suffers from poor solubility, tendency to aggregate, and low specific activity towards MAGs in aqueous systems, which severely restricts its practical application. In this study, a combinatorial protein engineering strategy was employed to overcome these limitations. We integrated fusion protein technology with rational design to enhance both the functional expression and catalytic efficiency of AOL. Firstly, the superfolder green fluorescent protein (sfGFP) was fused to the N-terminus of AOL. The results indicated that the sfGFP fusion tag significantly improved the solubility and stability of the enzyme, preventing the formation of inclusion bodies. The fusion protein sfGFP-AOL exhibited a MAG conversion rate of approximately 65%, confirming the positive impact of the fusion tag on enzyme developability. To further boost catalytic performance, site-directed mutagenesis was performed based on structural analysis. Among the variants, the mutant sfGFP-Y92Q emerged as the most potent candidate. In the MAG conversion, sfGFP-Y92Q achieved a conversion rate of 98%, which was not only significantly higher than that of sfGFP-AOL but also outperformed the widely used commercial immobilized lipase, Novozym 435 (~54%). Structural modeling and docking analysis revealed that the Y92Q mutation optimized the geometry of the active site. The substitution of Tyrosine with Glutamine at position 92 likely enlarged the substrate-binding pocket and altered the local electrostatic environment, thereby relieving steric hindrance and facilitating the access of the bulky MAG substrate to the catalytic center. In conclusion, this work demonstrates that the synergistic application of sfGFP fusion and rational point mutation (Y92Q) can dramatically transform the catalytic properties of AOL. The engineered sfGFP-Y92Q variant serves as a robust and highly efficient biocatalyst for MAG degradation. Its superior performance compared to commercial standards suggests immense potential for cost-effective applications in the bio-manufacturing of high-purity fatty acids and biodiesel, offering a greener alternative to traditional chemical processes. Full article
Show Figures

Figure 1

25 pages, 4725 KB  
Article
Valorization of the Invasive Fish Atherina boyeri (Risso, 1810) as a Source of Protein Hydrolysates with Functional and Bioactive Properties
by Irem Ceren Kizilkoy, Sefik Tekle, Fatih Bozkurt, Hamza Goktas, Fahriye Seyma Ozcan, Mahmut Yilmaz and Osman Sagdic
Foods 2026, 15(2), 330; https://doi.org/10.3390/foods15020330 - 16 Jan 2026
Viewed by 140
Abstract
The invasive fish Atherina boyeri constitutes an ecologically disruptive yet underexploited biomass with strong potential for transformation into value-added biofunctional ingredients. This study investigates the functional, antioxidant, and antimicrobial properties of protein hydrolysates that were produced from fish collected in the Hirfanlı and [...] Read more.
The invasive fish Atherina boyeri constitutes an ecologically disruptive yet underexploited biomass with strong potential for transformation into value-added biofunctional ingredients. This study investigates the functional, antioxidant, and antimicrobial properties of protein hydrolysates that were produced from fish collected in the Hirfanlı and Yamula reservoirs using three commercial proteases (alcalase, bromelain, and flavourzyme). Bromelain produced the highest degree of hydrolysis, yielding higher proportions of low-molecular-weight peptides and greater radical-scavenging activity. Flavourzyme hydrolysates exhibited the most favorable emulsifying properties, Alcalase hydrolysates produced the highest foaming capacity and stability. All hydrolysates showed high absolute zeta-potential values across pH 3–9, demonstrating strong colloidal stability. Protein solubility remained above 80% across most pH levels, indicating extensive peptide release and improved compatibility with aqueous media. The Oil-binding capacity (2.78–3.75 mL/g) was consistent with reported values for marine hydrolysates. Antioxidant and antimicrobial evaluations revealed clear enzyme-dependent patterns, with Bromelain exhibiting the strongest DPPH activity and Alcalase and Flavourzyme showing the most pronounced inhibition of major foodborne pathogens. Additionally, all hydrolysates exhibited measurable ACE-inhibitory activity, with flavourzyme-derived peptides showing the highest inhibitory activity, underscoring their potential relevance for antihypertensive applications. These findings highlight the strategic valorization of A. boyeri through enzymatic hydrolysis, demonstrating its potential as a sustainable, clean-label functional ingredient source. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Catalytic Tunnel Dynamics Explain Functional Divergence of FAD2 Homologs Underlying the Oleic-to-Linoleic Ratio in Cornus wilsoniana
by Wenyan Yuan, Wei Wu, Shushan Jia, Yunzhu Chen, Peiwang Li, Yan Yang, Lijuan Jiang, Qiang Liu, Li Li, Wenbin Zeng, Xiao Zhou and Jingzhen Chen
Biology 2026, 15(2), 145; https://doi.org/10.3390/biology15020145 - 14 Jan 2026
Viewed by 158
Abstract
The oleic-to-linoleic acid ratio (O/L) is a key determinant of oil quality, yet its molecular basis in Cornus wilsoniana remains unclear. Here, we combined fatty-acid profiling with molecular dynamics (MD) simulations and catalytic tunnel analysis to compare four annotated FAD2 homologs. Sequence alignment [...] Read more.
The oleic-to-linoleic acid ratio (O/L) is a key determinant of oil quality, yet its molecular basis in Cornus wilsoniana remains unclear. Here, we combined fatty-acid profiling with molecular dynamics (MD) simulations and catalytic tunnel analysis to compare four annotated FAD2 homologs. Sequence alignment revealed a major variable segment at residues 160–185, including a small deletion in CW09G04700 and an extensive deletion in CW04G07690. Docking against oleic acid supported excluding CW04G07690 due to weak binding. Eighty-nanosecond MD simulations showed that CW02G01750 and CW09G27260 rapidly converged to stable conformational ensembles with lower core flexibility, whereas CW09G04700 exhibited higher internal mobility around residues 180–220. CAVER analysis further indicated increasingly accessible catalytic tunnels for CW02G01750 and CW09G27260 during simulation, while CW09G04700 displayed transient tunnel narrowing accompanied by ligand conformational readjustments. These results nominate CW02G01750 as a leading structural candidate among C. wilsoniana FAD2 homologs and highlight access-pathway dynamics as a mechanistic feature potentially contributing to O/L formation. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

17 pages, 4033 KB  
Article
Functional and Structural Insights into Lipases Associated with Fruit Lipid Accumulation in Swida wilsoniana
by Wei Wu, Yunzhu Chen, Changzhu Li, Peiwang Li, Yan Yang, Lijuan Jiang, Wenyan Yuan, Qiang Liu, Li Li, Wenbin Zeng, Xiao Zhou and Jingzhen Chen
Biomolecules 2026, 16(1), 92; https://doi.org/10.3390/biom16010092 - 6 Jan 2026
Viewed by 159
Abstract
Swida wilsoniana is an important oil-producing tree species whose fruits are rich in unsaturated fatty acids with high nutritional and medicinal value. Lipases are involved not only in lipid mobilization but also potentially in the regulation of fatty acid composition and oil accumulation [...] Read more.
Swida wilsoniana is an important oil-producing tree species whose fruits are rich in unsaturated fatty acids with high nutritional and medicinal value. Lipases are involved not only in lipid mobilization but also potentially in the regulation of fatty acid composition and oil accumulation in plants. In this study, the fatty acid composition of S. wilsoniana fruits was analyzed using gas chromatography–flame ionization detection (GC-FID), and the three most abundant fatty acids were selected as molecular docking ligands. Based on overall multi-ligand docking performance (including mean affinity across the three ligands), three key lipases—SwL5, SwL8, and SwL12—were identified as having the strongest interactions with these fatty acids. Phylogenetic analysis revealed that SwL5 and SwL12 belong to lipase family II, while SwL8 is classified into family VI. Molecular dynamics simulations were further performed to evaluate the binding stability and to characterize the structural basis of substrate recognition, including key interacting residues. This study provides theoretical insights into the molecular regulation of fatty acid composition in S. wilsoniana, and offers potential gene targets for the genetic improvement of oil quality traits. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

27 pages, 4078 KB  
Article
Role of the osaA Transcription Factor Gene in Development, Secondary Metabolism and Virulence in the Mycotoxigenic Fungus Aspergillus flavus
by Farzana Ehetasum Hossain, Apoorva Dabholkar, Jessica M. Lohmar, Matthew D. Lebar, Brian M. Mack and Ana M. Calvo
Toxins 2026, 18(1), 23; https://doi.org/10.3390/toxins18010023 - 30 Dec 2025
Viewed by 400
Abstract
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus [...] Read more.
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus. Our results revealed that osaA regulates conidiation and sclerotial formation. Importantly, deletion of osaA reduces aflatoxin B1 production, while, unexpectedly, transcriptome analysis indicated upregulation of aflatoxin biosynthetic genes, suggesting post-transcriptional or cofactor-mediated regulation. Cyclopiazonic acid production also decreased in the absence of osaA. In addition, the osaA mutant exhibited upregulation of genes in the imizoquin and aspirochlorine clusters. Moreover, osaA is indispensable for normal seed colonization; deletion of osaA significantly reduced fungal burden in corn kernels. Aflatoxin content in seeds also decreased in the absence of osaA. Furthermore, deletion of osaA caused a reduction in cell-wall chitin content, as well as alterations in oxidative stress sensitivity, which could in part contribute to the observed reduction in pathogenicity. Additionally, promoter analysis of osaA-dependent genes indicated potential interactions with stress-responsive regulators, indicated by an enrichment in Sko1 and Cst6 binding motifs. Understanding the osaA regulatory scope provides insight into fungal biology and identifies potential targets for controlling aflatoxin contamination and pathogenicity. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 1676 KB  
Article
Dual Action of Ivy and Strawberry Essential Oils: Induction of MdPR10 Gene Expression and Antimicrobial Effects in Apple Fruits
by Lucia Urbanová, Jana Žiarovská, Stefania Garzoli, Soham Bhattacharya, Miroslava Kačániová and Maciej Ireneusz Kluz
Int. J. Mol. Sci. 2026, 27(1), 311; https://doi.org/10.3390/ijms27010311 - 27 Dec 2025
Viewed by 210
Abstract
One significant trend in the research of plant treatment methods is that regarding the use of natural-based methods in plant protection. In this study, antimicrobial activity and changes in MdPR10 gene expression were tested for a total of five plant pathogens in a [...] Read more.
One significant trend in the research of plant treatment methods is that regarding the use of natural-based methods in plant protection. In this study, antimicrobial activity and changes in MdPR10 gene expression were tested for a total of five plant pathogens in a model of apple fruits, where strawberry and ivy EOs were used. The vapor-phase chemical composition of both EOs was profiled using HS-GC-MS. qRT-PCR was applied for a bacterial response analysis, together with disk diffusion assays, and minimum inhibitory concentrations were determined. To elucidate the molecular basis of the antibacterial potential of essential oils (EOs), docking analyses were performed. For Xanthomonas arboricola and Pectobacterium carotovorum, the presence of EOs resulted in the downregulation of MdPR10. Strawberry EO was more effective against weakly virulent strains of bacteria; ivy EO had greater inhibitory effects. HS-GC-MS detected 13 volatiles in strawberry EO—dominated by ethyl butyrate, ethyl 2-methylbutanoate, ethyl hexanoate, and ethyl 3-methylbutanoate—and 16 in ivy EO, characterized by monoterpenes and monoterpenoids with 1,8-cineole as the principal component. P-cymene showed the most potent binding activity against D-alanine–D-alanine ligase. Ivy EO has the potential to be effective as a natural preservative alternative mainly in postharvest technology. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

18 pages, 3675 KB  
Article
Highly Sensitive Biosensor for the Detection of Cardiac Troponin I in Serum via Surface Plasmon Resonance on Polymeric Optical Fiber Functionalized with Castor Oil-Derived Molecularly Imprinted Nanoparticles
by Alice Marinangeli, Pinar Cakir Hatir, Mustafa Baris Yagci and Alessandra Maria Bossi
Biosensors 2026, 16(1), 12; https://doi.org/10.3390/bios16010012 - 23 Dec 2025
Viewed by 517
Abstract
In this work, we report the development of a highly sensitive optical sensor for the detection of cardiac troponin I (cTnI), a key biomarker for early-stage myocardial infarction diagnosis. The sensor combines castor oil-derived biomimetic receptors, called GreenNanoMIPs and prepared via the molecular [...] Read more.
In this work, we report the development of a highly sensitive optical sensor for the detection of cardiac troponin I (cTnI), a key biomarker for early-stage myocardial infarction diagnosis. The sensor combines castor oil-derived biomimetic receptors, called GreenNanoMIPs and prepared via the molecular imprinting technology using as a template an epitope of cTnI (i.e., the NR10 peptide), with a portable multimode plastic optical fiber surface plasmon resonance (POF-SPR) transducer. For sensing, gold SPR chips were functionalized with GreenNanoMIPs as proven by refractive index changes and confirmed by means of XPS. Binding experiments demonstrated the cTnI_nanoMIP-SPR sensor’s ability to detect both the NR10 peptide epitope and the full-length cTnI protein within minutes (t = 10 min), with high sensitivity and selectivity in buffer and serum matrices. The cTnI_nanoMIP-SPR showed an LOD of 3.53 × 10−15 M, with a linearity range of 1 pM–100 pM, outperforming previously reported sensor platforms and making it a promising tool for early-stage myocardial infarction detection. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Graphical abstract

17 pages, 2276 KB  
Article
Mesquite-Derived Galactomannan Esters as Novel Oleogelators: Emulsion Characteristics and Their Emulsion-Templated Oleogels
by Gabriel H. Gómez-Rodríguez, Osiris Álvarez-Bajo, Waldo M. Argüelles-Monal, Jaime Lizardi-Mendoza, Tomás J. Madera-Santana, Francisco Vásquez-Lara and Yolanda L. López-Franco
Polysaccharides 2026, 7(1), 1; https://doi.org/10.3390/polysaccharides7010001 - 19 Dec 2025
Viewed by 303
Abstract
This study investigates the emulsifying capacity (EC), emulsion stability (ES), and oleogel-forming potential of galactomannan (GM) esters modified with decanoic (GD) and palmitic (GP) fatty acids at low (L) and high (H) degrees of esterification (DE) (GDL, DE 0.37; GDH, DE 0.71; GPL, [...] Read more.
This study investigates the emulsifying capacity (EC), emulsion stability (ES), and oleogel-forming potential of galactomannan (GM) esters modified with decanoic (GD) and palmitic (GP) fatty acids at low (L) and high (H) degrees of esterification (DE) (GDL, DE 0.37; GDH, DE 0.71; GPL, DE 0.47; GPH, DE 0.57). Oil-in-water (O/W) emulsions (6, 8, and 10% w/v) of native GM and GM esters were prepared and characterized for droplet size, ζ-potential, and rheological behavior. Esterified GMs demonstrated improved EC compared to native GM, especially at higher concentrations and lower DE. All emulsions exhibited non-Newtonian and pseudoplastic behavior, with the GDH and GPL samples showing gel-like viscoelastic profiles (G′ > G″). Emulsions were freeze-dried to form oleogels, which were then analyzed for oil-binding capacity (OBC), hardness, chemical interactions (FTIR-ATR), and microstructure (SEM). The GDH and GPL oleogels exhibited higher OBC (59–73%) and lower hardness, which can be attributed to denser polymer–oil networks and enhanced hydrophobic interactions. SEM analysis further confirmed that esterification improved the microstructural integrity of emulsion-templated oleogels. These findings support the potential of mesquite GM esters as amphiphilic oleogelators for the formulation of structured lipid systems, offering valuable applications in food and pharmaceutical industries seeking solid fat alternatives. Full article
Show Figures

Figure 1

16 pages, 2075 KB  
Article
Comparative Transcriptomics Reveals the Molecular Basis for Inducer-Dependent Efficiency in Gastrodin Propionylation by Aspergillus oryzae Whole-Cell Biocatalyst
by Desheng Wu, Maohua Ma, Xiaohan Liu, Xiaofeng Li and Guanglei Zhao
Biomolecules 2025, 15(12), 1695; https://doi.org/10.3390/biom15121695 - 4 Dec 2025
Viewed by 391
Abstract
Propionylated derivatives of gastrodin are valuable due to their enhanced lipophilicity and bioavailability. This study investigated the molecular basis for the differential catalytic efficiency of Aspergillus oryzae whole cells in gastrodin propionylation. A high conversion rate of 96.84% was achieved with soybean oil [...] Read more.
Propionylated derivatives of gastrodin are valuable due to their enhanced lipophilicity and bioavailability. This study investigated the molecular basis for the differential catalytic efficiency of Aspergillus oryzae whole cells in gastrodin propionylation. A high conversion rate of 96.84% was achieved with soybean oil induction, compared to only 8.23% under glucose induction. Comparative transcriptomic analysis identified 20,342 differentially expressed genes (DEGs), which were significantly enriched in lipid metabolism and signal transduction pathways. From 26 upregulated lipase-related DEGs, a candidate triacylglycerol lipase gene (CL24.Contig40_All) was prioritized. Homology modeling and molecular docking supported its potential role by demonstrating that the encoded enzyme possesses a typical α/β hydrolase fold with a catalytic triad and favorable binding with both gastrodin and vinyl propionate. These findings indicate that soybean oil may enhance lipase expression by activating lipid metabolic and phosphatidylinositol signaling pathways, providing crucial transcriptional-level insights and genetic targets for the rational design of efficient whole-cell biocatalysts. Full article
(This article belongs to the Special Issue Industrial Microorganisms and Enzyme Technologies)
Show Figures

Figure 1

17 pages, 2402 KB  
Article
Microbial Biotransformation of the Sesquiterpene Carotol: Generation of Hydroxylated Metabolites with Potential Cytotoxic and Target-Specific Binding Activities
by Hanan G. Sary, Mohammed A. Khedr, Mohamed M. Radwan, Mickey Vinodh and Khaled Y. Orabi
Biomolecules 2025, 15(12), 1651; https://doi.org/10.3390/biom15121651 - 26 Nov 2025
Viewed by 564
Abstract
Carotol, the major sesquiterpene alcohol in carrot essential oil, possesses notable cytotoxic activity against various cancer cell lines, yet its metabolic fate remains poorly understood. This study explored microbial biotransformation as a tool for generating novel carotol derivatives with potential pharmacological value. Seventeen [...] Read more.
Carotol, the major sesquiterpene alcohol in carrot essential oil, possesses notable cytotoxic activity against various cancer cell lines, yet its metabolic fate remains poorly understood. This study explored microbial biotransformation as a tool for generating novel carotol derivatives with potential pharmacological value. Seventeen microbial strains were screened, with Absidia coerulea ATCC 6647 identified as the most effective biocatalyst. Preparative-scale fermentation with this strain afforded three new metabolites, CM1, CM2, and CM3, in yields of 30%, 9.96%, and 3.28%, respectively, which were structurally characterized by 1D and 2D NMR, HRMS, and single-crystal X-ray diffraction. These were identified as 9α-hydroxydaucol (CM1), 9α,13-dihydroxydaucol (CM2), and a diol derivative of daucol (CM3). Cytotoxicity evaluation against human carcinoma cell lines (HepG-2, HCT-116, MCF-7, A-549) and normal lung fibroblasts (MRC-5) revealed that carotol exhibited notable activity with IC50 values of 25.68 and 28.65 µM against HCT-116 and A-549 cell lines, respectively. Among the metabolites, CM2 showed selective cytotoxicity with IC50 values of 180.64 (HCT-116) and 138.21 µM (A-549), indicating that microbial transformation modulates the cytotoxic profile of carotol and yields metabolites with distinct bioactivity patterns. Molecular docking studies further revealed that carotol and CM2 demonstrated higher binding affinities and more stable interactions with human NADPH oxidase, suggesting that inhibition of this enzyme may underlie their cytotoxic effects. This work provides the first detailed microbial biotransformation pathway of carotol, highlighting A. coerulea as a promising source of new hydroxylated metabolites. The results underscore the potential of carotol derivatives in anticancer drug development and warrant further pharmacokinetic studies. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

24 pages, 6719 KB  
Article
6,7-Dihydroxy-4-methylcoumarin Suppresses Adipogenesis via AMPK and MAPK Signaling with In Silico Analysis of Adipogenic Proteins
by Ye-Jin Lee, Yang Xu and Chang-Gu Hyun
Pharmaceuticals 2025, 18(12), 1780; https://doi.org/10.3390/ph18121780 - 23 Nov 2025
Viewed by 420
Abstract
Background/Objectives: Coumarin-based compounds exhibit diverse pharmacological properties, and 4-methylcoumarin (4MC) has emerged as a promising scaffold for drug development. However, its anti-obesity mechanisms remain insufficiently understood. This study aimed to evaluate the anti-adipogenic potential of 4MC derivatives in 3T3-L1 preadipocytes and to [...] Read more.
Background/Objectives: Coumarin-based compounds exhibit diverse pharmacological properties, and 4-methylcoumarin (4MC) has emerged as a promising scaffold for drug development. However, its anti-obesity mechanisms remain insufficiently understood. This study aimed to evaluate the anti-adipogenic potential of 4MC derivatives in 3T3-L1 preadipocytes and to elucidate their underlying molecular mechanisms. Methods: 3T3-L1 preadipocytes were treated with structurally diverse 4MC derivatives. Lipid accumulation was analyzed using Oil Red O staining, cell viability by MTT assay, and the expression of adipogenic proteins by Western blotting. Molecular docking and molecular dynamics simulations were performed to predict the interactions between lead compounds and key adipogenic regulators. Results: Among the tested derivatives, 6,7-dihydroxy-4-methylcoumarin (6,7DH-4MC) markedly inhibited lipid accumulation in a dose-dependent manner without cytotoxicity. It suppressed the expression of major adipogenic transcription factors (PPAR-γ, C/EBPα, SREBP-1c) and FABP4. Additionally, 6,7DH-4MC inhibited ERK1/2 and p38 MAPK phosphorylation while activating AMPK. It also reduced CREB phosphorylation, indicating suppression of early adipogenesis. Computational analyses revealed stable binding of 6,7DH-4MC within the active sites of multiple adipogenic regulators, supporting its pleiotropic mode of action. Conclusions: 6,7DH-4MC exerts potent anti-adipogenic effects by modulating key adipogenic signaling pathways and transcriptional networks. These findings highlight 6,7DH-4MC as a promising lead compound for anti-obesity drug development, warranting further in vivo studies. Full article
Show Figures

Graphical abstract

21 pages, 4181 KB  
Article
Thuja sutchuenensis Franch. Essential Oil Ameliorates Atopic Dermatitis Symptoms in Mice by Modulating Skin Microbiota Composition and Reducing Inflammation
by Nana Long, Youwei Zuo, Jian Li, Renxiu Yao, Quan Yang and Hongping Deng
Microorganisms 2025, 13(12), 2653; https://doi.org/10.3390/microorganisms13122653 - 22 Nov 2025
Cited by 1 | Viewed by 745
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by dysregulated immunity, skin barrier dysfunction, and cutaneous microbiome dysbiosis. While current therapies face limitations, Thuja sutchuenensis essential oil (TEO) shows promise due to its multi-target potential. We sought to explore the beneficial [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by dysregulated immunity, skin barrier dysfunction, and cutaneous microbiome dysbiosis. While current therapies face limitations, Thuja sutchuenensis essential oil (TEO) shows promise due to its multi-target potential. We sought to explore the beneficial effects of TEO and delve into its mechanistic actions in a mouse model of AD. We combined network pharmacology with in vivo validation to evaluate the therapeutic efficacy and mechanisms of TEO in an AD model, and confirmed network-predicted targets in an in vitro inflammatory cell model. In AD mice, TEO alleviated pruritus and epidermal hyperplasia, suppressed systemic IL-4/TNF-α and IgE, and partially normalized serum ALB, LDL-C, and HDL-C. Microbial diversity increased after treatment, although potentially pathogenic taxa (Arthrobacter sp. and Corynebacterium mastitidis) remained enriched. Machine-learning analysis indicated the highest predicted metabolic activity in CK controls, whereas the AD and TEO groups showed elevated pathogenic phenotype scores. Network pharmacology prioritized active compounds [(E)-ligustilide, senkyunolide A, 3-butylisobenzofuran-1(3H)-one, butylated hydroxytoluene, Z-buthlidenephthalide, and β-Myrcene] and core targets (TNF, PTPRC, CCR5, JAK1), implicating T-cell receptor signaling, Staphylococcus aureus infection, and STAT3 pathways. Docking and molecular dynamics supported strong, stable binding of major constituents to JAK1, and Western blotting confirmed TEO-mediated inhibition of the JAK1/STAT3 axis. TEO effectively alleviates atopic dermatitis symptoms by modulating immune responses and enhancing microbial diversity. It targets key signaling pathways, such as JAK1/STAT3, highlighting its potential as a therapeutic option for AD. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

17 pages, 3168 KB  
Article
Bisphenol A Alters the Expression of Genes Involved in Lipogenesis, Inflammation, and Oxidative Stress in the Liver of Adult Zebrafish
by Eronides Anathan de Heberle Salau, Daniela Diglio, Giuliano Rizzotto Guimarães, Orlando Vieira Furtado-Filho and Marilene Porawski
Pharmaceuticals 2025, 18(11), 1765; https://doi.org/10.3390/ph18111765 - 20 Nov 2025
Viewed by 2476
Abstract
Background: Bisphenol A (BPA) is a widespread environmental endocrine disruptor associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, its short-term effects at low, environmentally relevant concentrations are still poorly understood. Methods: Adult zebrafish were exposed to 5, 20, or 100 µg/L BPA [...] Read more.
Background: Bisphenol A (BPA) is a widespread environmental endocrine disruptor associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, its short-term effects at low, environmentally relevant concentrations are still poorly understood. Methods: Adult zebrafish were exposed to 5, 20, or 100 µg/L BPA for 48 h, 7, or 14 days in a pilot test. The lowest effective condition (20 µg/L for 7 days) was selected for a complete experiment. Fish were divided into two groups: control and BPA-exposed (n = 50/group). After exposure, livers were collected for histological (HE, Oil Red O, Nile Red) and molecular (RT-qPCR) analyses. Results: Exposure to 20 µg/L BPA for 7 days induced moderate to severe hepatic steatosis, characterized by vacuolization, hepatocyte ballooning, and lipid accumulation. Gene expression analysis showed upregulation of fasn (fatty acid synthase), acc1 (acetyl-CoA carboxylase 1), srebp-1c (sterol regulatory element-binding protein 1c), nfkb (nuclear factor kappa B), il-6 (interleukin-6), gpx1 (glutathione peroxidase 1), sod (superoxide dismutase), cyp1a (cytochrome P450 1A), and cyp2ad2 (cytochrome P450 2AD2), while adipor2 (adiponectin receptor 2) and gpx4 (glutathione peroxidase 4) were downregulated (decreased activity). Conclusions: Short-term exposure to a low, environmentally relevant concentration of BPA was sufficient to trigger hepatic steatosis in zebrafish. These effects were associated with enhanced lipogenesis, inflammation, oxidative imbalance, and altered xenobiotic metabolism, suggesting that even brief, low-dose BPA exposure may contribute to early events in MASLD pathogenesis. Full article
(This article belongs to the Special Issue Application of Zebrafish Model in Pharmacology and Toxicology)
Show Figures

Graphical abstract

27 pages, 5073 KB  
Article
Activity of Serpins in Context to Hydrophobic Interaction
by Irena Roterman, Katarzyna Stapor, Grzegorz Zemanek, Dawid Dulak and Leszek Konieczny
Biomolecules 2025, 15(11), 1615; https://doi.org/10.3390/biom15111615 - 18 Nov 2025
Viewed by 505
Abstract
The activity of serpins uses a specific mechanism or process. This process comprises several steps and is related to significant structural changes that involve significant displacement of chain fragments and whole molecules of protease. An important role is played by a segment of [...] Read more.
The activity of serpins uses a specific mechanism or process. This process comprises several steps and is related to significant structural changes that involve significant displacement of chain fragments and whole molecules of protease. An important role is played by a segment of the serpin chain called the Reactive Central Loop (RCL), which interacts with the protease by inhibiting its activity. For the covalent binding of the protease to serpin, the movement of the protease molecule is an effect of splicing the RCL segment into beta-sheet A of serpin. There are structural forms—native, latent, Michaelis complex (non-covalent enzyme-inhibitor complex prior to RCL cleavage), covalent serpin–protease complex, and cleaved—associated with serpin activity. In this work, all these structural forms are discussed using the fuzzy oil drop (FOD-M) model, where the assessment criterion of structuring is based on identifying the type of hydrophobicity distribution. The analysis reveals the specificity of the inhibition mechanism, including the specific action of the RCL. The structural changes involved in this process have been shown to preserve the distribution of hydrophobicity in the form preferred by the aqueous environment in which serpins are active. The disorder (according to FOD-M model) in two complexes (Michaelis and covalent) is hypothetically treated as code for degradation factors. The applied model assesses the function-related structures using the hydrophobicity distribution as the criterion in contrast to many publications based on energetic aspects of serpin activity. Structural changes appear appropriate for water environments—the environment of serpin activity. Full article
(This article belongs to the Special Issue Protein Biophysics)
Show Figures

Figure 1

Back to TopTop