Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = offset free control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4407 KB  
Article
Timekeeping Method with Dual Iterative Algorithm for GNSS Disciplined OCXO
by Linghe Zhang, Longwei Xu, Xiaobin Wang, Zhongwang Wu, Jiangfeng Lai and Wenqian Yu
Electronics 2025, 14(14), 2870; https://doi.org/10.3390/electronics14142870 - 18 Jul 2025
Viewed by 609
Abstract
After the interruption of the timing service, the increase in clock offset is a critical issue for the global navigation satellite system (GNSS)-disciplined oven-controlled crystal oscillator (OCXO). Current timekeeping methods for GNSS-disciplined OCXO have some drawbacks, such as high computational complexity, inadequate consideration [...] Read more.
After the interruption of the timing service, the increase in clock offset is a critical issue for the global navigation satellite system (GNSS)-disciplined oven-controlled crystal oscillator (OCXO). Current timekeeping methods for GNSS-disciplined OCXO have some drawbacks, such as high computational complexity, inadequate consideration of temperature effects, and insufficient separation of the impacts of temperature and aging. To address this issue, this study proposes a timekeeping method using a dual iterative algorithm. First, the external iteration separates the clock offset caused by temperature and aging. Then, the internal Gauss–Seidel iterative algorithm estimates the temperature and aging coefficients. During the timing service interruption phase, the model estimates and compensates for the frequency offset in real time using the coefficients. The proposed method demonstrates improved performance compared with OCXO in the free state and compensated by a second-order polynomial model, with better accuracy, drift rate, and long-term stability. The time offset is better than 4 μs over 24 h, representing an improvement of over 95% compared with the OCXO in the free state. Full article
Show Figures

Figure 1

30 pages, 25636 KB  
Article
Cluster-Based Flight Path Construction for Drone-Assisted Pear Pollination Using RGB-D Image Processing
by Arata Kuwahara, Tomotaka Kimura, Sota Okubo, Rion Yoshioka, Keita Endo, Hiroyuki Shimizu, Tomohito Shimada, Chisa Suzuki, Yoshihiro Takemura and Takefumi Hiraguri
Drones 2025, 9(7), 475; https://doi.org/10.3390/drones9070475 - 4 Jul 2025
Cited by 1 | Viewed by 1186
Abstract
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed [...] Read more.
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed using a YOLO (You Only Look Once)-based object detection algorithm, and three-dimensional flower positions are estimated by integrating depth information with the drone’s positional and orientation data in the east-north-up coordinate system. To enhance pollination efficiency, the method applies the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm to group detected flowers based on spatial proximity that correspond to branch-level distributions. The cluster centroids then construct a collision-free flight path, with offset vectors ensuring safe navigation and appropriate nozzle orientation for effective pollen spraying. Field experiments conducted using RTK-GNSS-based flight control confirmed the accuracy and stability of generated flight trajectories. The drone hovered in front of each flower cluster and performed uniform spraying along the planned path. The method achieved a fruit set rate of 62.1%, exceeding natural pollination at 53.6% and compared to the 61.9% of manual pollination. These results demonstrate the effectiveness and practicability of the method for real-world deployment in pear orchards. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture: 2nd Edition)
Show Figures

Figure 1

18 pages, 4314 KB  
Article
MMI Couplers and the Talbot Effect, Symmetries and Golden Ratio
by Gazi Mahamud Hasan, Mehedi Hasan, Karin Hinzer and Trevor Hall
Photonics 2025, 12(3), 229; https://doi.org/10.3390/photonics12030229 - 3 Mar 2025
Viewed by 1423
Abstract
The Talbot effect concerns the periodic self-imaging along an optical axis of a free-space optical field that is periodic in an initial transverse plane. It may be modeled by a shift-invariant linear system, fully characterized by the convolution of its impulse response. Self-imaging [...] Read more.
The Talbot effect concerns the periodic self-imaging along an optical axis of a free-space optical field that is periodic in an initial transverse plane. It may be modeled by a shift-invariant linear system, fully characterized by the convolution of its impulse response. Self-imaging at integer and fractional Talbot distances of point sources on a regular grid in free space may then be represented by a transmission matrix that is circulant, symmetric, and persymmetric. The free-space Talbot effect may be mapped to the Talbot effect in a multimode waveguide by imposing the anti-symmetry of the mirror-like sidewalls created by the tight confinement of light within a high-index contrast multimode waveguide. The position of the anti-symmetry axis controls the distribution of discrete lattice points in a unit cell. For different distributions, interesting features such as conditional flexibility in the placement of access ports without altering amplitude and phase relationships, omitting ports without power penalty, closed form uneven splitting ratios, and offset access ports can be derived from the MMI coupler. As a specific example, a simple 2×2 MMI coupler is shown to provide a power-splitting ratio related to the golden ratio φ. The structure is amenable to planar photonic integration on any high-index contrast platform. The predictions of the theory are confirmed by simulation and verified by experimental measurements on a golden ratio MMI coupler fabricated using an SOI process. Full article
Show Figures

Figure 1

10 pages, 3762 KB  
Article
All-Optical Single-Longitudinal-Mode Forward Brillouin Microwave Oscillator with an Unbalanced Fiber Mach–Zehnder Interferometer
by Xinyue Fang, Wenjun He, Wen Wang, Yi Liu, Yajun You, Qing Yan, Yafei Hou, Zepeng Wu, Lei Yu, Songquan Yan, Mingxing Li, Jian He and Xiujian Chou
Micromachines 2025, 16(2), 209; https://doi.org/10.3390/mi16020209 - 12 Feb 2025
Viewed by 988
Abstract
An all-optical single-longitudinal-mode (SLM) forward Brillouin microwave oscillator (FB-MO) with an unbalanced Fiber Mach–Zehnder interferometer (UF-MZI) for microwave photonics (MWP) generation is proposed and experimentally investigated. UF-MZI consists of an optical coupler (OC), a polarization controller (PC), and two asymmetric length arms with [...] Read more.
An all-optical single-longitudinal-mode (SLM) forward Brillouin microwave oscillator (FB-MO) with an unbalanced Fiber Mach–Zehnder interferometer (UF-MZI) for microwave photonics (MWP) generation is proposed and experimentally investigated. UF-MZI consists of an optical coupler (OC), a polarization controller (PC), and two asymmetric length arms with 5 km and 500 m single-mode fibers (SMFs), which implements two unbalanced length feedback rings that are connected to one another. One long-length ring with a forward Brillouin gain cooperates with the other short-length ring to maintain a spectral Vernier effect and improve the effective free spectral range (FSR). By contrast with traditional optoelectronic oscillators (OEOs), this design does not require any photoelectric conversion devices and additional modulation, avoids external electromagnetic interference, and side-mode suppression and linewidth are favorable. Experimental results reveal that the 3-dB linewidth of the all-optical SLM FB-MO with UF-MZI is about 140 Hz. The acoustic-mode and side-mode suppression ratios are 26 dB and 31 dB. Within 60 min of the stability experiment, the power and frequency stability fluctuation were ±1 dB and ±100 Hz. Thanks to its long main ring cavity length, our all-optical SLM FB-MO with UF-MZI maintains good phase-noise performance. The measurement shows that a phase noise as low as −120 dBc/Hz at an offset frequency of 100 kHz is achieved. This SLM MWP generation technology holds great potential for applications in radar monitoring and wireless communication systems. Full article
(This article belongs to the Special Issue Fiber-Optic Technologies for Communication and Sensing)
Show Figures

Figure 1

20 pages, 2185 KB  
Article
Experimental Validation of Offset-Free Model-Based Predictive Control in Voltage Source Inverters for Grid Connected and Microgrids Applications
by Reinier López Ahuar, Dave Figueroa, Juan C. Agüero and César A. Silva
Appl. Sci. 2025, 15(3), 1567; https://doi.org/10.3390/app15031567 - 4 Feb 2025
Viewed by 1432
Abstract
This article presents the experimental validation of a model-based predictive control (MPC) strategy for the safe interconnection of voltage source inverters (VSI) with output LC filters for the grid connection of DC energy resources. The MPC is formulated as a quadratic programming (QP) [...] Read more.
This article presents the experimental validation of a model-based predictive control (MPC) strategy for the safe interconnection of voltage source inverters (VSI) with output LC filters for the grid connection of DC energy resources. The MPC is formulated as a quadratic programming (QP) problem and solved using the operator splitting quadratic programs (OSQP). The proposed approach incorporates integral action to achieve precise voltage magnitude reference tracking while accounting for modulated voltage limits and nominal current constraints within the control design. The effectiveness of the proposed strategy is validated through simulations conducted in MATLAB, demonstrating superior dynamic performance compared to the traditional hierarchical PI control. The implementation of the proposed MPC is experimentally verified on a VSI setup using the dSPACE MicroLabBox. The results confirm that the computational requirements are satisfied, establishing this approach as a practical alternative for modern power electronic systems. The proposed MPC for VSIs offers an effective approach to enforcing operational constraints, improving dynamic performance, and facilitating the robust integration of renewable energy sources in microgrids. Full article
Show Figures

Figure 1

11 pages, 8232 KB  
Article
High-Precision Tracking of Free-Space Optical Communication System on Mobile Platforms
by Ning Sun, Yuehui Wang, Yuanda Wu and Jianguo Liu
Photonics 2024, 11(10), 900; https://doi.org/10.3390/photonics11100900 - 25 Sep 2024
Cited by 3 | Viewed by 3668
Abstract
We propose a new free-space optical (FSO) communication system for moving platform tracking, which can achieve high precision aiming and tracking. Our prototype system consists of three parts. As a coarse sighting structure, the electro-optical pod module is used for target searching and [...] Read more.
We propose a new free-space optical (FSO) communication system for moving platform tracking, which can achieve high precision aiming and tracking. Our prototype system consists of three parts. As a coarse sighting structure, the electro-optical pod module is used for target searching and coarse sighting in the initial stage. As a precise aiming structure, the precise targeting loads module located inside the electro-optical pod module uses miniaturized tubular folding optical path technology for high-precision alignment and tracking. The bottom module of the system is used for communication. In the tracking process, the control unit uses spot offset collected by CCD to perform decoupling calculation and then compensates the offset by swinging tracking and aiming structure. We did track experiments on a mobile platform. The experiment successfully tracked a moving target at 100 m distance, and the tracking error was less than 1 mrad. The proposed system can provide stable communication links between the mobile platforms. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Wireless Optical Communication)
Show Figures

Figure 1

12 pages, 1881 KB  
Article
A Non-Linear Offset-Free Model Predictive Control Design Approach
by Haoran Zhang and Emmanuel Prempain
Actuators 2024, 13(8), 322; https://doi.org/10.3390/act13080322 - 22 Aug 2024
Cited by 2 | Viewed by 2158
Abstract
This paper presents a non-linear model predictive control approach for offset-free tracking and the rejection of piece-wise constant disturbances. The approach involves augmenting the system’s state vector with the integral of the tracking error, enabling the design of a non-linear model predictive controller [...] Read more.
This paper presents a non-linear model predictive control approach for offset-free tracking and the rejection of piece-wise constant disturbances. The approach involves augmenting the system’s state vector with the integral of the tracking error, enabling the design of a non-linear model predictive controller for this augmented system. Nominal closed-loop stability is enforced thanks to a terminal equality constraint and proven by a Lyapunov argument. Compared to the existing offset-free approaches in the literature, our method offers greater simplicity, as it does not rely on linear approximations of the system to control. Furthermore, it eliminates the need to estimate disturbances, a task that is especially challenging with non-linear systems. Comprehensive simulations and experimental tests are conducted according to a non-linear, coupled, two-tank laboratory experiment, demonstrating the robustness and effectiveness of the proposed approach. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 11712 KB  
Article
Ultra-Fast Nonlinear Model Predictive Control for Motion Control of Autonomous Light Motor Vehicles
by Vaishali Patne, Pramod Ubare, Shreya Maggo, Manish Sahu, G. Srinivasa Rao, Deepak Ingole and Dayaram Sonawane
World Electr. Veh. J. 2024, 15(7), 299; https://doi.org/10.3390/wevj15070299 - 4 Jul 2024
Cited by 1 | Viewed by 2440
Abstract
Advanced Driver Assistance System (ADAS) is the latest buzzword in the automotive industry aimed at reducing human errors and enhancing safety. In ADAS systems, the choice of control strategy is not straightforward due to the highly complex nonlinear dynamics, control objectives, and safety [...] Read more.
Advanced Driver Assistance System (ADAS) is the latest buzzword in the automotive industry aimed at reducing human errors and enhancing safety. In ADAS systems, the choice of control strategy is not straightforward due to the highly complex nonlinear dynamics, control objectives, and safety critical constraints. Nonlinear Model Predictive Control (NMPC) has evolved as a favorite option for optimal control due to its ability to handle such constrained, Multi-Input Multi-Output (MIMO) systems efficiently. However, NMPC suffers from a bottleneck of high computational complexity, making it unsuitable for fast real-time applications. This paper presents a generic framework using Successive Online Linearization-based NMPC (SOL-NMPC) for for the control in ADAS. The nonlinear system is linearized and solved using Linear Model Predictive Control every iteration. Furthermore, offset-free MPC is developed with the Extended Kalman Filter for reducing model mismatch. The developed SOL-NMPC is validated using the 14-Degrees-of-Freedom (DoF) model of a D-class light motor vehicle. The performance is simulated in matlab/Simulink and validated using the CarSim® software (Version 2016). The real-time implementation of the proposed strategy is tested in the Hardware-In-the-Loop (HIL) co-simulation using the STM32-Nucleo-144 development board. The detailed performance analysis is presented along with time profiling. It can be seen that the loss of accuracy can be counteracted by the fast response of the proposed framework. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

14 pages, 3831 KB  
Article
A Practical Approach to Alignment and Error Feedback Control for Long-Span Arch Bridges
by Xinyu Yao, Chuanxi Li, Longlin Wang, Mengsheng Yu, Xiaoli Zhuo, Tianzhi Hao and Xirui Wang
Buildings 2024, 14(7), 1995; https://doi.org/10.3390/buildings14071995 - 1 Jul 2024
Cited by 2 | Viewed by 1450
Abstract
The accurate installation of long-span arch bridges’ arch ribs remains a challenge due to the complex calculations required for cable forces and arch rib displacements, as well as the significant influence of environmental and construction loads. In this study, we propose a practical [...] Read more.
The accurate installation of long-span arch bridges’ arch ribs remains a challenge due to the complex calculations required for cable forces and arch rib displacements, as well as the significant influence of environmental and construction loads. In this study, we propose a practical approach to alignment and error feedback control for long-span arch bridges. Cable forces were optimized using multiple control objectives based on influence matrix principles. The impact of temperature on the next segment to be installed was analyzed using the metastatic GM(1, 1) model and fitting results. Several tunable parameters were employed to account for parameter errors and environmental interference. These parameters were adjusted based on the deviations between practical and theoretical alignments for different arch rib segments, achieving a model output of an offset-free-tracking arch rib structure. This technology was applied to monitor the construction of the Tian’e Longtan Grand Bridge. Compared to conventional alignment control approaches, the proposed method achieved excellent arch ring alignment after the closure of the high-accuracy arch rib and cable release, as well as effective control of cable force uniformity and tower deviation. Field measurement data indicate that the closing deviation of the arch ring is only 3 mm. This study provides a valuable reference for the construction control of long-span arch bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2625 KB  
Article
A Novel Single-Phase Five-Level Current-Source Inverter Topology
by Mayas Fakher Aldin and Kfir Jack Dagan
Electronics 2024, 13(7), 1213; https://doi.org/10.3390/electronics13071213 - 26 Mar 2024
Cited by 2 | Viewed by 2806
Abstract
Recent technological advances have renewed the research interest in current-source inverters (CSIs). Nonetheless, CSI research still falls behind its voltage-source counterpart with regards to topologies, modulation, and control. Acknowledging the above, this paper presents a novel single-phase five-level CSI topology. The proposed circuit [...] Read more.
Recent technological advances have renewed the research interest in current-source inverters (CSIs). Nonetheless, CSI research still falls behind its voltage-source counterpart with regards to topologies, modulation, and control. Acknowledging the above, this paper presents a novel single-phase five-level CSI topology. The proposed circuit utilises eight switches and two inductors for the generation of five distinct output levels while maintaining low output voltage THD and dv/dt. Furthermore, by offsetting the inductor currents from a binary 1:2 to a trinary 1:3 ratio, the proposed inverter can generate seven current levels at its output. The inverter offers built-in short-circuit protection and can boost a low input DC voltage to a higher peak AC output voltage. These merits, alongside an electrolytic-capacitor-free design, simple current balancing mechanism, and fault-tolerant characteristics, make it a promising candidate for PV module-integrated inverter (MII) systems. The current topology utilises two inductors but is fully functional with single-inductor operation. The paper provides a functional analysis of the inverter topology alongside the inverter switching states and corresponding conduction paths. A detailed analysis of the inductor current dynamics as well as a current-balancing algorithm for dual- and single-inductor operations are given. The theoretical analysis of the proposed circuit and its functional operation are verified using simulations and experimental results carried out on a laboratory prototype. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

20 pages, 2156 KB  
Article
Silicon Induces Heat and Salinity Tolerance in Wheat by Increasing Antioxidant Activities, Photosynthetic Activity, Nutrient Homeostasis, and Osmo-Protectant Synthesis
by Ansa Aouz, Imran Khan, Muhammad Bilal Chattha, Shahbaz Ahmad, Muqarrab Ali, Iftikhar Ali, Abid Ali, Fatmah M. Alqahtani, Mohamed Hashem, Tasahil S. Albishi, Sameer H. Qari, Muhammad Umer Chatta and Muhammad Umair Hassan
Plants 2023, 12(14), 2606; https://doi.org/10.3390/plants12142606 - 10 Jul 2023
Cited by 25 | Viewed by 3059
Abstract
Modern agriculture is facing the challenges of salinity and heat stresses, which pose a serious threat to crop productivity and global food security. Thus, it is necessary to develop the appropriate measures to minimize the impacts of these serious stresses on field crops. [...] Read more.
Modern agriculture is facing the challenges of salinity and heat stresses, which pose a serious threat to crop productivity and global food security. Thus, it is necessary to develop the appropriate measures to minimize the impacts of these serious stresses on field crops. Silicon (Si) is the second most abundant element on earth and has been recognized as an important substance to mitigate the adverse effects of abiotic stresses. Thus, the present study determined the role of Si in mitigating adverse impacts of salinity stress (SS) and heat stress (HS) on wheat crop. This study examined response of different wheat genotypes, namely Akbar-2019, Subhani-2021, and Faisalabad-2008, under different treatments: control, SS (8 dSm−1), HS, SS + HS, control + Si, SS + Si, HS+ Si, and SS + HS+ Si. This study’s findings reveal that HS and SS caused a significant decrease in the growth and yield of wheat by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) production; sodium (Na+) and chloride (Cl) accumulation; and decreasing relative water content (RWC), chlorophyll and carotenoid content, total soluble proteins (TSP), and free amino acids (FAA), as well as nutrient uptake (potassium, K; calcium, Ca; and magnesium, Mg). However, Si application offsets the negative effects of both salinity and HS and improved the growth and yield of wheat by increasing chlorophyll and carotenoid contents, RWC, antioxidant activity, TSP, FAA accumulation, and nutrient uptake (Ca, K, and Mg); decreasing EL, electrolyte leakage, MDA, and H2O2; and restricting the uptake of Na+ and Cl. Thus, the application of Si could be an important approach to improve wheat growth and yield under normal and combined saline and HS conditions by improving plant physiological functioning, antioxidant activities, nutrient homeostasis, and osmolyte accumulation. Full article
(This article belongs to the Special Issue Eustressors to Enhance Plant Performance)
Show Figures

Figure 1

13 pages, 2825 KB  
Article
Benefits and Limitations of Winch-Assist Technology for Skidding Operations
by Rien M. Visser and Raffaele Spinelli
Forests 2023, 14(2), 296; https://doi.org/10.3390/f14020296 - 3 Feb 2023
Cited by 11 | Viewed by 3427
Abstract
Skidders are very cost-effective extraction machines, and winch-assist systems may extend their operating range to increasingly steep terrain. The use of winch-assist skidder systems is relatively new, and little information is available about their operational efficiency and potential soil impact. A productivity and [...] Read more.
Skidders are very cost-effective extraction machines, and winch-assist systems may extend their operating range to increasingly steep terrain. The use of winch-assist skidder systems is relatively new, and little information is available about their operational efficiency and potential soil impact. A productivity and soil disturbance study was carried out in Southland (New Zealand) to gauge the benefits of winch assistance by comparing the performance of the same two-axle skidder with and without winch assistance on increasingly steep trails (30 and 40% gradients). The delay-free productivity approached 100 m3 solid volume over bark per productive machine hour (PMH) under the best conditions and declined with the extraction distance, reducing to approximately 40 m3 PMH−1 at 300 m. On the 30% slope trail, winch assistance allowed an 8% productivity gain through a significant increase in the payload size. However, on the 40% slope trail, the increased payload size allowed by winch assistance was unable to offset the much lower empty speed and, therefore, the control treatment (no winch assistance) performed better. A preliminary soil disturbance assessment was carried out over the whole harvest site using a line transect method. The assessment was conducted at the end of the harvest and reflected the impact of all the operational activities, including mechanised felling and skid trail construction, not just skidding. Soil disturbance appeared to be low, as ruts deeper than 15 cm covered only 2% of the inspected surface. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

16 pages, 5973 KB  
Article
Model Predictive Control of DC–DC Boost Converter Based on Generalized Proportional Integral Observer
by Rongchao Niu, Hongyu Zhang and Jian Song
Energies 2023, 16(3), 1245; https://doi.org/10.3390/en16031245 - 23 Jan 2023
Cited by 7 | Viewed by 5051
Abstract
Due to the nonminimum phase characteristics and nonlinearity of boost converters, the control design is always a challenging issue. A novel model predictive control strategy is proposed for the boost converter in this work. First, the Super-Twisting algorithm is applied to current control, [...] Read more.
Due to the nonminimum phase characteristics and nonlinearity of boost converters, the control design is always a challenging issue. A novel model predictive control strategy is proposed for the boost converter in this work. First, the Super-Twisting algorithm is applied to current control, and the input–output plant for voltage control is derived based on the linearization technique. All the model uncertainties are defined as lumped disturbances, and a generalized proportional integral observer is designed to estimate the lumped disturbance. Second, a composite predictive approach is developed on the basis of the predictive model and disturbance estimations. By solving the cost function directly, the optimal control law is derived explicitly. Lastly, the effectiveness of the proposed control strategy is verified by both simulation and experimental results. Full article
(This article belongs to the Special Issue Power Electronic Converter and Its Control)
Show Figures

Figure 1

13 pages, 1582 KB  
Article
Influence of Parental and Offspring Dietary Behaviors on the Association of Overweight and Obesity between Two Generations: Results from a Cross-Sectional Analysis of Parent-Offspring Trios in China
by Qi Ma, Ting Chen, Jieyu Liu, Manman Chen, Di Gao, Yanhui Li, Tao Ma, Xinxin Wang, Li Chen, Ying Ma, Yi Zhang, Yanhui Dong, Yi Xing and Jun Ma
Nutrients 2022, 14(21), 4625; https://doi.org/10.3390/nu14214625 - 2 Nov 2022
Cited by 5 | Viewed by 2367
Abstract
Limited evidence exists on the influence of dietary behaviors on the association of overweight/obesity between parents and offspring. This study aimed to investigate the influence of dietary behaviors on the association of overweight/obesity between two generations, and puts forward strategies for preventing childhood [...] Read more.
Limited evidence exists on the influence of dietary behaviors on the association of overweight/obesity between parents and offspring. This study aimed to investigate the influence of dietary behaviors on the association of overweight/obesity between two generations, and puts forward strategies for preventing childhood obesity. Data were obtained from a cross-sectional survey conducted in China; a total of 40,197 parent-offspring pairs were included. Overweight/obesity was defined based on the body mass index and waist circumstance; the association of overweight/obesity between two generations was evaluated by multivariate and binary logistic regression and stratified analyses. Compared with the offspring who were free of parental overweight/obesity, the ORs of offspring with both parental overweight/obesity reached 2.66, 1.72 and 4.04 for general, simple abdominal and compound obesity. The offset effect of dietary behaviors was observed on the association between parental obesity and the offspring’s general or simple abdominal obesity, with non-significant ORs when parents or/and offspring had healthy dietary behaviors. It was difficult for a healthy diet alone to offset the high heritability and intergenerational transmission of childhood obesity caused by parental obesity. Multifaceted improvement of lifestyle behaviors, and a combination of individual and family engagement, could be targeted measures to control childhood obesity. Full article
Show Figures

Figure 1

21 pages, 557 KB  
Article
Slack Resources, Corporate Performance, and COVID-19 Pandemic: Evidence from China
by Ling Jin, Jun Hyeok Choi, Saerona Kim and Kwanghee Cho
Int. J. Environ. Res. Public Health 2022, 19(21), 14354; https://doi.org/10.3390/ijerph192114354 - 2 Nov 2022
Cited by 9 | Viewed by 2813
Abstract
COVID-19 has caused tremendous damage to global economies, and similar health crises are expected to happen again. This study tests whether slack resources would enable companies to prepare for such uncertainties. Specifically, we explored the influence of the COVID-19 patient occurrence on corporate [...] Read more.
COVID-19 has caused tremendous damage to global economies, and similar health crises are expected to happen again. This study tests whether slack resources would enable companies to prepare for such uncertainties. Specifically, we explored the influence of the COVID-19 patient occurrence on corporate financial performance and the buffering effect of financial slacks using Chinese listed companies’ data during 2021. We also examined whether this effect differs across firms’ financial health and industry. Test results are as follows. First, consistent with the recent studies on pandemics, the degree of COVID-19 prevalence had a negative impact on the Chinese company’s financial performance, and slack resources offset this adverse effect. Second, slack’s buffering effects appeared mostly in financially constrained companies. Third, such effects mostly appeared in industries vulnerable to the COVID-19 shock. In the business environment of 2021, adapted to COVID-19, our main test result seems to mainly come from companies with a greater need for slack. Our tests imply that, despite differences in the degree of accessibility to resources, excess resources help companies overcome the COVID-19 crisis, which means that firms can more efficiently respond to economic shocks such as COVID-19 if they reserve past profits as free resources. This study contributes to the literature in that there is limited research on the slack resources’ buffering effect on the COVID-19 shock and that this study works as a robustness test as it uses data from one of the East Asian regions at a time when the control of COVID-19 was relatively consistent and successful, which can limit the effect of COVID-19 and slacks. Full article
Show Figures

Figure 1

Back to TopTop