Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = ocean noise mitigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3361 KiB  
Technical Note
Noise Mitigation of the SMOS L1C Multi-Angle Brightness Temperature Based on the Lookup Table
by Ke Chen, Ruile Wang, Qian Yang, Jiaming Chen and Jun Gong
Remote Sens. 2025, 17(15), 2585; https://doi.org/10.3390/rs17152585 - 24 Jul 2025
Viewed by 208
Abstract
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the [...] Read more.
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the SMOS L1C multi-angle TB product. The proposed method develops a multi-angle sea surface TB relationship lookup table, enabling the mapping of SMOS L1C multi-angle TB data to any single-angle TB, thereby averaging to the measurements to reduce noise. Validation experiments demonstrate that the processed SMOS TB data achieve noise levels comparable to those of the Soil Moisture Active Passive (SMAP) satellite. Additionally, the salinity retrieval experiments indicate that the noise mitigation technique has a clear positive effect on SMOS salinity retrieval. Full article
(This article belongs to the Special Issue Recent Advances in Microwave and Millimeter-Wave Imaging Sensing)
Show Figures

Graphical abstract

19 pages, 3619 KiB  
Article
An Adaptive Underwater Image Enhancement Framework Combining Structural Detail Enhancement and Unsupervised Deep Fusion
by Semih Kahveci and Erdinç Avaroğlu
Appl. Sci. 2025, 15(14), 7883; https://doi.org/10.3390/app15147883 - 15 Jul 2025
Viewed by 315
Abstract
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To [...] Read more.
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To address these issues, this study proposes a detail-oriented hybrid framework for underwater image enhancement that synergizes the strengths of traditional image processing with the powerful feature extraction capabilities of unsupervised deep learning. Our framework introduces a novel multi-scale detail enhancement unit to accentuate structural information, followed by a Latent Low-Rank Representation (LatLRR)-based simplification step. This unique combination effectively suppresses common artifacts like oversharpening, spurious edges, and noise by decomposing the image into meaningful subspaces. The principal structural features are then optimally combined with a gamma-corrected luminance channel using an unsupervised MU-Fusion network, achieving a balanced optimization of both global contrast and local details. The experimental results on the challenging Test-C60 and OceanDark datasets demonstrate that our method consistently outperforms state-of-the-art fusion-based approaches, achieving average improvements of 7.5% in UIQM, 6% in IL-NIQE, and 3% in AG. Wilcoxon signed-rank tests confirm that these performance gains are statistically significant (p < 0.01). Consequently, the proposed method significantly mitigates prevalent issues such as color aberration, detail loss, and artificial haze, which are frequently encountered in existing techniques. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

46 pages, 5911 KiB  
Article
Leveraging Prior Knowledge in Semi-Supervised Learning for Precise Target Recognition
by Guohao Xie, Zhe Chen, Yaan Li, Mingsong Chen, Feng Chen, Yuxin Zhang, Hongyan Jiang and Hongbing Qiu
Remote Sens. 2025, 17(14), 2338; https://doi.org/10.3390/rs17142338 - 8 Jul 2025
Viewed by 387
Abstract
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, [...] Read more.
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, enhanced by domain-specific prior knowledge. The architecture employs a Convolutional Block Attention Module (CBAM) for localized feature refinement, a lightweight New Transformer Encoder for global context modeling, and a novel TriFusion Block to synergize spectral–temporal–spatial features through parallel multi-branch fusion, addressing the limitations of single-modality extraction. Leveraging the mean teacher framework, DART-MT optimizes consistency regularization to exploit unlabeled data, effectively mitigating class imbalance and annotation scarcity. Evaluations on the DeepShip and ShipsEar datasets demonstrate state-of-the-art accuracy: with 10% labeled data, DART-MT achieves 96.20% (DeepShip) and 94.86% (ShipsEar), surpassing baseline models by 7.2–9.8% in low-data regimes, while reaching 98.80% (DeepShip) and 98.85% (ShipsEar) with 90% labeled data. Under varying noise conditions (−20 dB to 20 dB), the model maintained a robust performance (F1-score: 92.4–97.1%) with 40% lower variance than its competitors, and ablation studies validated each module’s contribution (TriFusion Block alone improved accuracy by 6.9%). This research advances UATR by (1) resolving multi-scale feature fusion bottlenecks, (2) demonstrating the efficacy of semi-supervised learning in marine acoustics, and (3) providing an open-source implementation for reproducibility. In future work, we will extend cross-domain adaptation to diverse oceanic environments. Full article
Show Figures

Figure 1

21 pages, 2435 KiB  
Article
DC-WUnet: An Underwater Ranging Signal Enhancement Network Optimized with Depthwise Separable Convolution and Conformer
by Xiaosen Liu, Juan Li, Jingyao Zhang, Yajie Bai and Zhaowei Cui
J. Mar. Sci. Eng. 2025, 13(5), 956; https://doi.org/10.3390/jmse13050956 - 14 May 2025
Viewed by 463
Abstract
Marine ship-radiated noise and multipath Doppler effect reduce the positioning accuracy of linear frequency modulation (LFM) signals in ocean waveguide environments. However, the assumption of Gaussian noise underlying most time–frequency domain algorithms limits their effectiveness in mitigating non-Gaussian interference. To address this issue, [...] Read more.
Marine ship-radiated noise and multipath Doppler effect reduce the positioning accuracy of linear frequency modulation (LFM) signals in ocean waveguide environments. However, the assumption of Gaussian noise underlying most time–frequency domain algorithms limits their effectiveness in mitigating non-Gaussian interference. To address this issue, we propose a Deep-separable Conformer Wave-Unet (DC-WUnet)-based underwater acoustic signal enhancement network designed to reconstruct signals from interference and noise. The encoder incorporates the Conformer module and skip connections to enhance the network’s multiscale feature extraction capability. Meanwhile, the network introduces depthwise separable convolution to reduce the number of parameters and improve computational efficiency. The decoder applies a slope-based linear interpolation method for upsampling to avoid introducing high-frequency noise during decoding. Additionally, the loss function employs joint time–frequency domain constraints to prevent signal loss and compression, particularly under low Signal-to-Noise Ratio (SNR) conditions. Experimental evaluations under an SNR of −10 dB indicate that the proposed method achieves at least a 32% improvement in delay estimation accuracy and a 2.3 dB enhancement in output SNR relative to state-of-the-art baseline algorithms. Consistent performance advantages are also observed under varying SNR conditions, thereby validating the effectiveness of the proposed approach in shipborne noisy environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 6633 KiB  
Article
Investigating Catching Hotspots of Fishing Boats: A Framework Using BeiDou Big Data and Deep Learning Algorithms
by Fen Wang, Xingyu Liu, Tanxue Chen, Hongxiang Feng and Qin Lin
J. Mar. Sci. Eng. 2025, 13(5), 905; https://doi.org/10.3390/jmse13050905 - 1 May 2025
Viewed by 463
Abstract
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from [...] Read more.
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from 2805 fishing vessels in the East China Sea and Yellow Sea, integrated with a deep learning framework for spatiotemporal analysis. A preprocessing protocol addressing multidimensional noise in raw VMS datasets was developed, incorporating velocity normalization and gap filling to ensure data reliability. The CNN-BiLSTM hybrid model emerged as optimal for fishing behavior classification, achieving 89.98% accuracy and an 87.72% F1 score through synergistic spatiotemporal feature extraction. Spatial analysis revealed significant policy-driven reductions in fishing intensity during the moratorium (May–August), with hotspot areas suppressed to sporadic coastal distributions. However, concentrated vessel activity in Zhejiang’s nearshore waters suggested potential illegal fishing. Post-moratorium, fishing hotspots expanded explosively, peaking in October and clustering in Yushan, Zhoushan, and Yangtze River estuary fishing grounds. Quarterly patterns identified autumn–winter 2021 as peak fishing seasons, with hotspots covering >80% of East China Sea grounds. The framework enables real-time fishing state detection and adaptive spatial management via dynamic closure policies. The findings underscore the need for strengthened surveillance during moratoriums and post-ban catch regulation to mitigate overfishing risks. Full article
(This article belongs to the Special Issue Resilience and Capacity of Waterway Transportation)
Show Figures

Figure 1

18 pages, 12576 KiB  
Article
Global Methane Retrieval, Monitoring, and Quantification in Hotspot Regions Based on AHSI/ZY-1 Satellite
by Tong Lu, Zhengqiang Li, Cheng Fan, Zhuo He, Xinran Jiang, Ying Zhang, Yuanyuan Gao, Yundong Xuan and Gerrit de Leeuw
Atmosphere 2025, 16(5), 510; https://doi.org/10.3390/atmos16050510 - 28 Apr 2025
Viewed by 765
Abstract
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT [...] Read more.
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT have been successfully employed to detect and quantify methane point source leaks. In this study, a matched filter (MF) algorithm is improved using data from the EMIT instrument and applied to data from the Advanced Hyperspectral Imager (AHSI) onboard the Ziyuan-1 (ZY-1) satellite. Validation by comparison with EMIT′s L2 XCH4 products shows the good performance of the improved MF algorithm, in spite of the lower spectral resolution of AHSI/ZY-1 in comparison with other point source imagers. The improved MF algorithm applied to AHSI/ZY-1 data was used to detect and quantify methane super-emitters in global methane hotspot regions. The results show that the improved MF algorithm effectively suppresses noise in retrieval results over both land and ocean surfaces, enhancing algorithm robustness. Sixteen methane plumes were detected in global hotspot regions, originating from coal mines, oil and gas fields, and landfills, with emission rates ranging from 0.57 to 78.85 t/h. The largest plume was located at an offshore oil and gas field in the Gulf of Mexico, with instantaneous emissions nearly equal to the combined total of the other 15 plumes. The findings demonstrate that AHSI, despite its lower spectral resolution, can detect sources with emission rates as small as 571 kg/h and achieve faster retrieval speeds, showing significant potential for global methane monitoring. Additionally, this study highlights the need to focus on methane emissions from marine sources, alongside terrestrial sources, to efficiently implement reduction strategies. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 13401 KiB  
Article
Enhanced U-Net for Underwater Laser Range-Gated Image Restoration: Boosting Underwater Target Recognition
by Peng Liu, Shuaibao Chen, Wei He, Jue Wang, Liangpei Chen, Yuguang Tan, Dong Luo, Wei Chen and Guohua Jiao
J. Mar. Sci. Eng. 2025, 13(4), 803; https://doi.org/10.3390/jmse13040803 - 17 Apr 2025
Viewed by 710
Abstract
Underwater optical imaging plays a crucial role in maritime safety, enabling reliable navigation, efficient search and rescue operations, precise target recognition, and robust military reconnaissance. However, conventional underwater imaging methods often suffer from severe backscattering noise, limited detection range, and reduced image clarity—challenges [...] Read more.
Underwater optical imaging plays a crucial role in maritime safety, enabling reliable navigation, efficient search and rescue operations, precise target recognition, and robust military reconnaissance. However, conventional underwater imaging methods often suffer from severe backscattering noise, limited detection range, and reduced image clarity—challenges that are exacerbated in turbid waters. To address these issues, Underwater Laser Range-Gated Imaging has emerged as a promising solution. By selectively capturing photons within a controlled temporal gate, this technique effectively suppresses backscattering noise-enhancing image clarity, contrast, and detection range. Nevertheless, residual noise within the imaging slice can still degrade image quality, particularly in challenging underwater conditions. In this study, we propose an enhanced U-Net neural network designed to mitigate noise interference in underwater laser range-gated images, improving target recognition performance. Built upon the U-Net architecture with added residual connections, our network combines a VGG16-based perceptual loss with Mean Squared Error (MSE) as the loss function, effectively capturing high-level semantic features while preserving critical target details during reconstruction. Trained on a semi-synthetic grayscale dataset containing synthetically degraded images paired with their reference counterparts, the proposed approach demonstrates improved performance compared to several existing underwater image restoration methods in our experimental evaluations. Through comprehensive qualitative and quantitative evaluations, underwater target detection experiments, and real-world oceanic validations, our method demonstrates significant potential for advancing maritime safety and related applications. Full article
Show Figures

Figure 1

8 pages, 1010 KiB  
Proceeding Paper
Transfer Reinforcement Learning-Based Power Control for Anti-Jamming in Underwater Acoustic Communication Networks
by Liejun Yang, Yi Chen and Hui Wang
Eng. Proc. 2025, 91(1), 7; https://doi.org/10.3390/engproc2025091007 - 9 Apr 2025
Viewed by 301
Abstract
Underwater acoustic communication networks (UACNs) play a critical role in ocean environmental monitoring, maritime rescue, and military applications. However, they are highly susceptible to performance degradation due to narrow bandwidths, long propagation delays, and severe multipath effects, especially adversarial jamming attacks. Traditional anti-jamming [...] Read more.
Underwater acoustic communication networks (UACNs) play a critical role in ocean environmental monitoring, maritime rescue, and military applications. However, they are highly susceptible to performance degradation due to narrow bandwidths, long propagation delays, and severe multipath effects, especially adversarial jamming attacks. Traditional anti-jamming techniques struggle to adapt to the dynamic nature of underwater acoustic channels effectively. To address this issue, an anti-jamming power control and relay optimization method was developed based on transfer reinforcement learning. By introducing relay nodes, the reliability of jammed communication links is enhanced. Transfer learning was used to initialize Q-values and strategy distributions and accelerate the convergence of reinforcement learning in the underwater communication environment, thereby mitigating the inefficiency of random exploration in the early stages. The proposed method optimizes the transmission power and relay selection to improve the signal-to-interference-plus-noise ratio (SINR) and reduce the bit error rate (BER). Simulation results demonstrated that the proposed method significantly enhanced the anti-jamming performance and communication efficiency of underwater acoustic communication even in complex interference scenarios. Full article
Show Figures

Figure 1

18 pages, 3381 KiB  
Article
Improved Variational Mode Decomposition in Pipeline Leakage Detection at the Oil Gas Chemical Terminals Based on Distributed Optical Fiber Acoustic Sensing System
by Hongxuan Xu, Jiancun Zuo and Teng Wang
J. Mar. Sci. Eng. 2025, 13(3), 531; https://doi.org/10.3390/jmse13030531 - 10 Mar 2025
Viewed by 889
Abstract
Leakage in oil and gas transportation pipelines is a critical issue that often leads to severe hazardous accidents at oil and gas chemical terminals, resulting in devastating consequences such as ocean environmental pollution, significant property damage, and personal injuries. To mitigate these risks, [...] Read more.
Leakage in oil and gas transportation pipelines is a critical issue that often leads to severe hazardous accidents at oil and gas chemical terminals, resulting in devastating consequences such as ocean environmental pollution, significant property damage, and personal injuries. To mitigate these risks, timely detection and precise localization of pipeline leaks are of paramount importance. This paper employs a distributed fiber optic sensing system to collect pipeline leakage signals and processes these signals using the traditional variational mode decomposition (VMD) algorithm. While traditional VMD methods require manual parameter setting, which can lead to suboptimal decomposition results if parameters are incorrectly chosen, our proposed method introduces an improved particle swarm optimization algorithm to automatically determine the optimal parameters. Furthermore, we integrate VMD with fuzzy dispersion entropy to effectively select and reconstruct intrinsic mode functions, significantly enhancing the denoising performance. Our results demonstrate that this approach can achieve a signal-to-noise ratio of up to 24.15 dB and reduce the mean square error to as low as 0.0027, showcasing its superior capability in noise reduction. Additionally, this paper proposes a novel threshold setting technique that addresses the limitations of traditional methods, which often rely on instantaneous values and are prone to false alarms. This innovative approach significantly reduces the false alarm rate in gas pipeline leakage detection, ensuring higher detection accuracy and reliability. The proposed method not only advances the technical capabilities of pipeline leakage monitoring but also offers strong practical applicability, making it a valuable tool for enhancing the safety and efficiency of oil and gas transportation systems. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 3926 KiB  
Article
S4Det: Breadth and Accurate Sine Single-Stage Ship Detection for Remote Sense SAR Imagery
by Mingjin Zhang, Yingfeng Zhu, Longyi Li, Jie Guo, Zhengkun Liu and Yunsong Li
Remote Sens. 2025, 17(5), 900; https://doi.org/10.3390/rs17050900 - 4 Mar 2025
Viewed by 776
Abstract
Synthetic Aperture Radar (SAR) is a remote sensing technology that can realize all-weather and all-day monitoring, and it is widely used in ocean ship monitoring tasks. Recently, many oriented detectors were used for ship detection in SAR images. However, these methods often found [...] Read more.
Synthetic Aperture Radar (SAR) is a remote sensing technology that can realize all-weather and all-day monitoring, and it is widely used in ocean ship monitoring tasks. Recently, many oriented detectors were used for ship detection in SAR images. However, these methods often found it difficult to balance the detection accuracy and speed, and the noise around the target in the inshore scene of SAR images led to a poor detection network performance. In addition, the rotation representation still has the problem of boundary discontinuity. To address these issues, we propose S4Det, a Sinusoidal Single-Stage SAR image detection method that enables real-time oriented ship target detection. Two key mechanisms were designed to address inshore scene processing and angle regression challenges. Specifically, a Breadth Search Compensation Module (BSCM) resolved the limited detection capability issue observed within inshore scenarios. Neural Discrete Codebook Learning was strategically integrated with Multi-scale Large Kernel Attention, capturing context information around the target and mitigating the information loss inherent in dilated convolutions. To tackle boundary discontinuity arising from the periodic nature of the target regression angle, we developed a Sine Fourier Transform Coding (SFTC) technique. The angle is represented using diverse sine components, and the discrete Fourier transform is applied to convert these periodic components to the frequency domain for processing. Finally, the experimental results of our S4Det on the RSSDD dataset achieved 92.2% mAP and 31+ FPS on an RTXA5000 GPU, which outperformed the prevalent mainstream of the oriented detection network. The robustness of the proposed S4Det was also verified on another public RSDD dataset. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

22 pages, 8813 KiB  
Article
Monitoring of Ionospheric Anomalies Using GNSS Observations to Detect Earthquake Precursors
by Nicola Perfetti, Yuri Taddia and Alberto Pellegrinelli
Remote Sens. 2025, 17(2), 338; https://doi.org/10.3390/rs17020338 - 19 Jan 2025
Cited by 2 | Viewed by 2089
Abstract
The study of the Earth’s ionosphere is a topic that has increased in relevance over the past few decades. The ability to predict the ionosphere’s behavior, as well as to mitigate the effects of its rapid changes, is a matter of primary importance [...] Read more.
The study of the Earth’s ionosphere is a topic that has increased in relevance over the past few decades. The ability to predict the ionosphere’s behavior, as well as to mitigate the effects of its rapid changes, is a matter of primary importance in satellite communications, positioning, and navigation applications at present. Ionosphere perturbations can be produced by geomagnetic storms correlated with the solar activity or by earthquakes, volcanic activities, and so on. The monitoring of space weather is achieved through analyzing the Vertical Total Electron Content (VTEC) and its anomalies by means of time series, maps, and other derived parameters. In this study, we outline a strategy to estimate the VTEC in real-time, its rate of change, and the corresponding Signal-to-Noise Ratio (SNR) based on dual-frequency GNSS Doppler observations. We describe how to compute these parameters from GNSS data for a regional network using Adjusted Spherical Harmonic Analysis (ASHA) applied to a local model. The proposed method was tested to study ionospheric anomalies for two seismic events: the 2015 Nepal and 2023 Turkey earthquakes. In both cases, anomalies were detected in the maps of the differential VTEC (DTEC), differential VTEC rate, and SNR of the VTEC produced close to the earthquake zone. The robustness of the results is strongly related to the availability of a dense Ionosphere Pierce Point (IPP) cloud on the ionospheric layer and surrounding the studied area. At present, the distribution of Continuously Operating Reference Stations (CORSs) around the world is insufficiently dense and homogeneous in certain regions (e.g., the oceans). Robustness can be improved by increasing the number of CORSs and developing new models involving measurements over ocean surfaces. Full article
Show Figures

Figure 1

18 pages, 2461 KiB  
Article
Trends of Ocean Underwater Acoustic Levels Recorded Before, During, and After the 2020 COVID Crisis
by Rocío Prieto González, Alice Affatati, Mike van der Schaar and Michel André
Environments 2024, 11(12), 266; https://doi.org/10.3390/environments11120266 - 22 Nov 2024
Viewed by 1152
Abstract
Since the Industrial Revolution, underwater soundscapes have become more complex and contaminated due to increased cumulative human activities. Anthropogenic underwater sources have been growing in number, and shipping noise has become the primary source of chronic acoustic exposure. However, global data on current [...] Read more.
Since the Industrial Revolution, underwater soundscapes have become more complex and contaminated due to increased cumulative human activities. Anthropogenic underwater sources have been growing in number, and shipping noise has become the primary source of chronic acoustic exposure. However, global data on current and historic noise levels is lacking. Here, using the Listening to the Deep-Ocean Environment network, we investigated the baseline shipping noise levels in thirteen observatories (eight stations from ONC Canada, four from the JAMSTEC network, and OBSEA in the Mediterranean Sea) and, in five of them, animal presence. Our main results show yearly noise variability in the studied locations that is not dominated by marine traffic but by natural and biological patterns. The halt in transportation due to COVID was insignificant when the data were recorded far from shipping routes. In order to better design a legislative framework for mitigating noise impacts, we highlight the importance of using tools that allow for long-term acoustic monitoring, automated detection of sounds, and big data handling and management. Full article
(This article belongs to the Special Issue New Solutions Mitigating Environmental Noise Pollution III)
Show Figures

Figure 1

25 pages, 4075 KiB  
Article
A Robust Sparse Sensor Placement Strategy Based on Indicators of Noise for Ocean Monitoring
by Qiannan Zhang, Huafeng Wu, Li’nian Liang, Xiaojun Mei, Jiangfeng Xian and Yuanyuan Zhang
J. Mar. Sci. Eng. 2024, 12(7), 1220; https://doi.org/10.3390/jmse12071220 - 19 Jul 2024
Cited by 2 | Viewed by 1238
Abstract
A well-performing data-driven sparse sensor deployment strategy is critical for marine monitoring systems, as it enables the optimal reconstruction of marine physical quantities with fewer sensors. However, ocean data typically contain substantial amounts of noise, including outliers (incomplete data) and inherent measurement noise, [...] Read more.
A well-performing data-driven sparse sensor deployment strategy is critical for marine monitoring systems, as it enables the optimal reconstruction of marine physical quantities with fewer sensors. However, ocean data typically contain substantial amounts of noise, including outliers (incomplete data) and inherent measurement noise, which heightens the complexity of sensor deployment. Therefore, this study optimizes the sparse sensor placement model by establishing noise indicators, including small noise weight and large noise weight, which are measured by entropy to minimize the prediction bias. Building on this, a robust sparse sensor placement algorithm is proposed, which utilizes the block coordinate update (BCU) iteration method to solve the function. During the iterative updating process, the proposed algorithm simultaneously updates the selection matrix, reconstruction matrix, and noise matrix. This allows for effective identification and mitigation of noise in the data through evaluation. Consequently, the deployed sensors achieve superior reconstruction performance compared to other deployment methods that do not incorporate noise evaluation. Experiments are also conducted on datasets of sea surface temperature (SST) and global ocean salinity, which demonstrate that our strategy significantly outperforms several other considered methods in terms of reconstruction accuracy while enabling autonomous sensor deployment under noisy conditions. Full article
Show Figures

Figure 1

15 pages, 14962 KiB  
Article
Multiscale Bayes Adaptive Threshold Wavelet Transform Geomagnetic Basemap Denoising Taking Residual Constraints into Account
by Pan Xiong, Gang Bian, Qiang Liu, Shaohua Jin and Xiaodong Yin
Sensors 2024, 24(12), 3847; https://doi.org/10.3390/s24123847 - 14 Jun 2024
Cited by 2 | Viewed by 1158
Abstract
To achieve high-precision geomagnetic matching navigation, a reliable geomagnetic anomaly basemap is essential. However, the accuracy of the geomagnetic anomaly basemap is often compromised by noise data that are inherent in the process of data acquisition and integration of multiple data sources. In [...] Read more.
To achieve high-precision geomagnetic matching navigation, a reliable geomagnetic anomaly basemap is essential. However, the accuracy of the geomagnetic anomaly basemap is often compromised by noise data that are inherent in the process of data acquisition and integration of multiple data sources. In order to address this challenge, a denoising approach utilizing an improved multiscale wavelet transform is proposed. The denoising process involves the iterative multiscale wavelet transform, which leverages the structural characteristics of the geomagnetic anomaly basemap to extract statistical information on model residuals. This information serves as the a priori knowledge for determining the Bayes estimation threshold necessary for obtaining an optimal wavelet threshold. Additionally, the entropy method is employed to integrate three commonly used evaluation indexes—the signal-to-noise ratio, root mean square (RMS), and smoothing degree. A fusion model of soft and hard threshold functions is devised to mitigate the inherent drawbacks of a single threshold function. During denoising, the Elastic Net regular term is introduced to enhance the accuracy and stability of the denoising results. To validate the proposed method, denoising experiments are conducted using simulation data from a sphere magnetic anomaly model and measured data from a Pacific Ocean sea area. The denoising performance of the proposed method is compared with Gaussian filter, mean filter, and soft and hard threshold wavelet transform algorithms. The experimental results, both for the simulated and measured data, demonstrate that the proposed method excels in denoising effectiveness; maintaining high accuracy; preserving image details while effectively removing noise; and optimizing the signal-to-noise ratio, structural similarity, root mean square error, and smoothing degree of the denoised image. Full article
Show Figures

Figure 1

23 pages, 22447 KiB  
Article
Assessment of the Added Value of the GOCE GPS Data on the GRACE Monthly Gravity Field Solutions
by Xiang Guo, Yidu Lian, Yu Sun, Hao Zhou and Zhicai Luo
Remote Sens. 2024, 16(9), 1586; https://doi.org/10.3390/rs16091586 - 29 Apr 2024
Cited by 1 | Viewed by 1465
Abstract
The time-varying gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission suffer from pronounced longitudinal stripe errors in the spatial domain. A potential way to mitigate such errors is to combine GRACE data with observations from other sources. [...] Read more.
The time-varying gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission suffer from pronounced longitudinal stripe errors in the spatial domain. A potential way to mitigate such errors is to combine GRACE data with observations from other sources. In this study, we investigate the impacts on GRACE monthly gravity field solutions of incorporating the GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. To that end, we produce GRACE/GOCE combined monthly gravity field solutions through combination on the normal equation level and compare them with the GRACE-only solutions, for which we have considered the state-of-the-art ITSG-Grace2018 solutions. Analysis in the spectral domain reveals that the combined solutions have a notably lower noise level beyond degree 30, with cumulative errors up to degree 96 being reduced by 31%. A comparison of the formal errors reveals that the addition of GOCE GPS data mainly improves (near-) sectorial coefficients and resonant orders, which cannot be well determined by GRACE alone. In the spatial domain, we also observe a significant reduction by at least 30% in the noise of recovered mass changes after incorporating the GOCE GPS data. Furthermore, the signal-to-noise ratios of mass changes over 180 large river basins were improved by 8–20% (dependent on the applied Gaussian filter radius). These results demonstrate that the GOCE GPS data can augment the GRACE monthly gravity field solutions and support a future GOCE-type mission for tracking more accurate time-varying gravity fields. Full article
(This article belongs to the Special Issue Geophysical Applications of GOCE and GRACE Measurements)
Show Figures

Figure 1

Back to TopTop