Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = ocean anoxia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7229 KiB  
Review
The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic
by Ed Landing
J. Mar. Sci. Eng. 2025, 13(5), 895; https://doi.org/10.3390/jmse13050895 - 30 Apr 2025
Viewed by 625
Abstract
Many organic-rich marine mudstones, which are key hydrocarbon sources, were deposited on continent margins in mid-water oxygen-minimum zones (OMZs) that expanded and intensified during oceanic anoxic events (OAEs). Other marine hydrocarbon sources include platform and forearc black shales that record trans-continental, long-erm anoxic/dysoxic [...] Read more.
Many organic-rich marine mudstones, which are key hydrocarbon sources, were deposited on continent margins in mid-water oxygen-minimum zones (OMZs) that expanded and intensified during oceanic anoxic events (OAEs). Other marine hydrocarbon sources include platform and forearc black shales that record trans-continental, long-erm anoxic/dysoxic environments with no modern analog. Their explanation as recording deep-water, Black Sea-type basins or low-oxygen upwelling is not satisfactory for occurrences on shelves that lack significant epeirogenic activity, while modern studies show that upwellings do not cross the shelf break. The alternative is the Bakken model, which concludes that regionally extensive shelves and forearc organic-rich mudstones are shallow-water facies. These Bakken facies reflect hyper-warming conditions with high sea-levels, high water temperatures with increased insolation and low oxygen solubility, turbid water due to algal blooms and mud eroded from orogenic highlands, and possible LIP activity. Early Paleozoic black shales indicate that increased nutrients presumed to accompany the Devonian appearance of forests with deep roots that enhanced weathering simply cannot explain older Cambrian–Ordovician shelf anoxia/dysoxia. Shallow-marine deposition by the Bakken model is mandated by black shales deposited on subaerial unconformities that show high-energy facies (wave cross beds, HCS) and common bioturbation. The Bakken model explains shallow anoxia/dysoxia with high Paleozoic sea levels and tropical distribution of large continents. It is based on the Upper Devonian–lower Mississippian Bakken Formation (western U.S. and adjacent Canada). Rising temperatures, diminished oxygen solubility, and eustatic rise with deglaciation accompany modern climate change and mean that near-future platform seas will feature the reappearance of low-oxygen Bakken facies and environments. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Growth of Oxygen Minimum Zones May Indicate Approach of Global Anoxia
by Yazeed Alhassan and Sergei Petrovskii
Mathematics 2025, 13(5), 806; https://doi.org/10.3390/math13050806 - 28 Feb 2025
Viewed by 483
Abstract
The dynamics of large-scale components of the Earth climate system (tipping elements), particularly the identification of their possible critical transitions and the proximity to the corresponding tipping points, has been attracting considerable attention recently. In this paper, we focus on one specific tipping [...] Read more.
The dynamics of large-scale components of the Earth climate system (tipping elements), particularly the identification of their possible critical transitions and the proximity to the corresponding tipping points, has been attracting considerable attention recently. In this paper, we focus on one specific tipping element, namely ocean anoxia. It has been shown previously that a sufficiently large, ‘over-critical’ increase in the average water temperature can disrupt oxygen production by phytoplankton photosynthesis, hence crossing the tipping point, which would lead to global anoxia. Here, using a conceptual mathematical model of the plankton–oxygen dynamics, we show that this tipping point of global oxygen depletion is going to be preceded by an additional, second tipping point when the Oxygen Minimum Zones (OMZs) start growing. The OMZ growth can, therefore, be regarded as a spatially explicit early warning signal of the global oxygen catastrophe. Interestingly, there is growing empirical evidence that the OMZs have indeed been growing in different parts of the ocean over the last few decades. Thus, this observed OMZ growth may indicate that the second tipping point has already been crossed, and hence, the first tipping point of global ocean anoxia may now be very close. Full article
(This article belongs to the Section E3: Mathematical Biology)
Show Figures

Figure 1

22 pages, 12234 KiB  
Article
Enhanced Continental Weathering and Intense Upwelling Drove the Deposition of Organic-Rich Shales in the Late Permian Dalong Formation, South China
by Yin Gong, Yiming Li, Peng Yang, Meng Xiang, Zhou Zhou, Zhongquan Zhang, Xing Niu and Xiangrong Yang
J. Mar. Sci. Eng. 2025, 13(2), 357; https://doi.org/10.3390/jmse13020357 - 15 Feb 2025
Cited by 2 | Viewed by 905
Abstract
Marine black shales are important to geologists, because they are not only potential sources and reservoir rocks for shale gas/oil, but also, their deposition could influence the climatic and oceanic environments. Here, a detailed study of the shales in the Dalong Formation in [...] Read more.
Marine black shales are important to geologists, because they are not only potential sources and reservoir rocks for shale gas/oil, but also, their deposition could influence the climatic and oceanic environments. Here, a detailed study of the shales in the Dalong Formation in South China was conducted to understand the changes in continental weathering and upwelling and their influences on organic matter accumulation in the late Permian. The results revealed that the deposition of the Dalong and Daye Formations could be divided into five stages, with the highest TOC values (>2%) being observed in stages 2 and 4, intermediate TOCs (~1% to 2%) being observed in stages 1 and 3, and the lowest TOC values (<1%) being observed in stage 5. This study attributed the enhanced organic matter accumulation in stages 2 and 4 to enhanced continental weathering (high CIA values and δ26Mg values) and intense upwelling (high Mo/TOC ratios and low δ13Corg and CoEF × MnEF values), both of which contributed to high primary productivity and increased anoxia of the bottom waters, further leading to the accumulation of organic matter. Overall, both enhanced continental weathering and upwelling contributed to the development of anoxia, even euxinia, of the seawater and further triggered an end-Permian mass extinction (EPME). Full article
Show Figures

Graphical abstract

17 pages, 4445 KiB  
Article
Paleoredox Conditions, Paleoproductivity, and Terrigenous Sediment Influx of the Lower-Middle Cenomanian Strata in the Abu Gharadig Basin, Northern Egypt
by Ahmed Mansour, Michael Wagreich, Sameh S. Tahoun, Mohamed S. Ahmed and Thomas Gentzis
Minerals 2024, 14(6), 632; https://doi.org/10.3390/min14060632 - 20 Jun 2024
Cited by 2 | Viewed by 1639
Abstract
During the Late Cretaceous (Cenomanian), significant disruptions in the carbon cycle, global warming, and episodes of oceanic anoxia occurred, leading to the deposition of organic carbon-rich sediments. In well BED2-3, located in the BED2 gas field within the Abu Gharadig Basin (north Western [...] Read more.
During the Late Cretaceous (Cenomanian), significant disruptions in the carbon cycle, global warming, and episodes of oceanic anoxia occurred, leading to the deposition of organic carbon-rich sediments. In well BED2-3, located in the BED2 gas field within the Abu Gharadig Basin (north Western Desert, Egypt), the lower-to-middle Cenomanian Bahariya Formation displays thick alternating layers of sandstones, siltstones, and shales. Detailed geochemical analyses were conducted on thirty-three cutting samples from the Bahariya Formation, focusing on total organic carbon (TOC), whole-rock elemental geochemistry, and carbonate content. These geochemical measurements provided valuable information regarding paleoredox conditions, marine biological productivity, terrigenous sediment influx, weathering and paleoclimate conditions, and mechanisms influencing organic matter accumulation. The enrichment factors (EF) of redox-sensitive trace elements were utilized to infer oxygenation conditions and marine biological productivity during the deposition of the Bahariya Formation. The stratigraphic distribution of redox-sensitive elements allowed for the Bahariya Formation to be categorized into lower and middle-upper intervals. The results revealed that the lower interval exhibited strong-to-enriched EF values of redox-sensitive elements and fair-to-rich TOC content, indicating a prevalent anoxic setting during deposition. In contrast, the middle-upper interval displayed weakly-to-slightly enriched EF values with poor-to-fair TOC content, suggesting deposition under oxic-suboxic redox conditions. By examining Al-normalized redox-sensitive ratios and their correlations with TOC content, significant relationships were observed in the lower interval, indicating a coupling between the enrichment of redox-sensitive elements and organic matter. This suggests enhanced biological productivity during deposition of the lower interval compared to the relatively low productivity during deposition of the middle-upper interval of the formation. These conditions controlled the production and preservation of organic matter in the lower interval, while the middle-upper interval suffered from organic matter dilution and destruction due to an increased influx of terrigenous material and lower biological productivity. Geochemical proxies related to detrital materials provided evidence of alternating terrigenous sediment flux, consistent with shifts between coarse- and fine-grained fractions and related facies of sandstones, siltstones, and shales. These findings align with active continental weathering in the source terrane and deposition under enhanced warm-humid climatic conditions, with intermittent arid-to-semi-arid phases. These conclusions are further supported by the palynomorph assemblages and clay mineralogy within the Bahariya Formation. Full article
Show Figures

Figure 1

23 pages, 6309 KiB  
Article
Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach
by Ahmed Mansour, Thomas Gentzis, Ibrahim M. Ied, Mohamed S. Ahmed and Michael Wagreich
Minerals 2022, 12(10), 1213; https://doi.org/10.3390/min12101213 - 26 Sep 2022
Cited by 8 | Viewed by 2724
Abstract
The Jurassic–Early Cretaceous was a time of variable organic carbon burial associated with fluctuations of marine primary productivity, weathering intensity, and redox conditions in the pore and bottom water at paleo-shelf areas in north Egypt. This time interval characterized the deposition of, from [...] Read more.
The Jurassic–Early Cretaceous was a time of variable organic carbon burial associated with fluctuations of marine primary productivity, weathering intensity, and redox conditions in the pore and bottom water at paleo-shelf areas in north Egypt. This time interval characterized the deposition of, from old to young, the Bahrein, Khatatba, Masajid, and Alam El Bueib Formations in the north Western Desert. Although several studies have been devoted to the excellent source rock units, such as the Khatatba and Alam El Bueib Formations, studies on paleoenvironmental changes in redox conditions, paleoproductivity, and continental weathering and their impact on organic carbon exports and their preservation for this interval are lacking. This study presents organic and inorganic geochemical data for the Jurassic–Lower Cretaceous sediments from the Almaz-1 well in the Shushan Basin, north Western Desert. A total of 32 cuttings samples were analyzed for their major and trace elements, carbonates, and total organic carbon (TOC) contents. Data allowed the reconstruction of paleoenvironmental conditions in the southern Tethys Ocean and assessment of the changes in paleo-redox, paleo-weathering, and marine primary productivity, and the role of sediment supply. Additionally, factors that governed the accumulation of organic matter in the sediment were interpreted. Results showed that the Khatatba Formation was deposited during a phase of enhanced marine primary productivity under prevalent anoxia, which triggered enhanced organic matter production and preservation. During the deposition of the Khatatba Formation, significant terrigenous sediment supply and continental weathering were followed by a limited contribution of coarse clastic sediment fluxes due to weak continental weathering and enhanced carbonate production. The Bahrein, Masajid, and Alam El Bueib Formations were deposited during low marine primary productivity and prevalent oxygenation conditions that led to poor organic matter production and preservation, respectively. A strong terrigenous sediment supply and continental weathering predominated during the deposition of the Bahrein Formation and the lower part of the Alam El Bueib Formation compared to the limited coarse clastic supply and continental weathering during the deposition of the carbonate Masajid Formation and the upper part of the Alam El Bueib Formation. Such conditions resulted in the enhanced dilution and decomposition of labile organic matter, and, thus, organic carbon-lean accumulation in these sediments. Full article
Show Figures

Figure 1

24 pages, 4685 KiB  
Article
U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions
by Erik L. Gulbranson, E. Troy Rasbury, Greg A. Ludvigson, Andreas Möller, Gregory A. Henkes, Marina B. Suarez, Paul Northrup, Ryan V. Tappero, Julie A. Maxson, Russell S. Shapiro and Kathleen M. Wooton
Geosciences 2022, 12(9), 346; https://doi.org/10.3390/geosciences12090346 - 17 Sep 2022
Cited by 5 | Viewed by 3590
Abstract
The terrestrial Lower Cretaceous Cedar Mountain Formation, Utah, is a critical archive of paleoclimate, tectonics, and vertebrate ecology and evolution. Early Cretaceous carbon cycle perturbations associated with ocean anoxia have been interpreted from this succession, as expressed in stable carbon isotopes. However, refining [...] Read more.
The terrestrial Lower Cretaceous Cedar Mountain Formation, Utah, is a critical archive of paleoclimate, tectonics, and vertebrate ecology and evolution. Early Cretaceous carbon cycle perturbations associated with ocean anoxia have been interpreted from this succession, as expressed in stable carbon isotopes. However, refining the timing of the observed stable isotope excursions remains a key challenge in understanding how marine anoxia affects the Earth system, and is ultimately recorded in the terrestrial realm. The geochronology and geochemistry of a terrestrial carbonate near the base of this succession, which potentially records the Ap7 global carbon isotope excursion, is studied here. Petrographic and geochemical analyses are used to test plausible mechanisms for U incorporation into the calcite lattice in this sample. Using these methods, the hypothesis that the incorporation of U was at or close to the timing of carbonate precipitation is evaluated. U–Pb geochronology of calcite indicates a plausible Early Cretaceous age. However, comparison of the new U–Pb ages of calcite with detrital zircon maximum depositional ages immediately beneath the studied sample indicates a disparity in the apparent sedimentation rates if both types of geochronologic information are interpreted as reflecting the timing of sediment deposition. The totality of data supports an early, and high-temperature, diagenetic timing of U incorporation, with potential for minor leaching of U in subsequent fluid–rock interaction. The most likely mechanism for U transport and immobilization in these samples is hydrothermal fluid–rock interaction. Therefore, the radiometric ages, and corresponding stable isotope composition of U-bearing carbonate domains in this sample, indicate early subsurface fluid–rock interactions and not a record of atmosphere–soil geochemical reactions. Full article
Show Figures

Figure 1

12 pages, 983 KiB  
Article
Bryozoan Diversity Dynamics at the Devonian–Carboniferous Transition: Evidence from Transcaucasia
by Zoya A. Tolokonnikova and Dmitry A. Ruban
J. Mar. Sci. Eng. 2022, 10(7), 959; https://doi.org/10.3390/jmse10070959 - 13 Jul 2022
Cited by 5 | Viewed by 2183
Abstract
The Devonian–Carboniferous transition was marked by a series of perturbations in the geological and biological evolution. The palaeontological data from Transcaucasia allowed the bryozoan diversity dynamics on the northern Gondwanan margin (southern periphery of the Palaeo-Tethys Ocean) to be documented at this transition. [...] Read more.
The Devonian–Carboniferous transition was marked by a series of perturbations in the geological and biological evolution. The palaeontological data from Transcaucasia allowed the bryozoan diversity dynamics on the northern Gondwanan margin (southern periphery of the Palaeo-Tethys Ocean) to be documented at this transition. Taxonomic ranges of 43 species, 26 genera, 19 families, and 4 orders were analysed to reveal changes in the total diversity, the number of appearances, the number of disappearances, and the turnover rates per substages. It is established that the bryozoan diversity was rather high in the beginning and the end of the Famennian, as well as in the Late Tournaisian. It declined significantly in the Middle–Late Famennian and the Early Tournaisian due to the combination of the high number of disappearances and the low number of appearances. The turnovers remained strong, and they peaked in the mid-Famennian. These regionally documented diversity changes match the patterns recorded globally and in Southern Siberia. Hypothetically, the Middle–Late Famennian and Early Tournaisian crises established in Transcaucasia were related to the global events (anoxia and mass extinctions), a series of which weakened the bryozoans’ resistivity to negative external influences. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography)
Show Figures

Figure 1

28 pages, 4994 KiB  
Article
Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening
by Isabelle Moretti, Emyrose Brouilly, Keanu Loiseau, Alain Prinzhofer and Eric Deville
Geosciences 2021, 11(3), 145; https://doi.org/10.3390/geosciences11030145 - 22 Mar 2021
Cited by 57 | Viewed by 11245
Abstract
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, [...] Read more.
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, small depressions and vegetation gaps are observed. These depressions, called fairy circles, have similarities with the pockmark and vent structures recognized for long time in the sea floor when natural gas escapes but also differences. In this paper we present a statistic approach of the density, size, and shape of the fairy circles in various basins. New data from Brazil and Australia are compared to the existing database already gathered in Russia, USA, and again Brazil. The comparison suggests that Australia could be one of the most promising areas for H2 exploration, de facto a couple of wells already found H2, whereas they were drilled to look for hydrocarbons. The sum of areas from where H2 is seeping overpasses 45 km2 in Kangaroo Island as in the Yorke Peninsula. The size of the emitting structures, expressed in average diameter, varies from few meters to kilometers and the footprint expressed in % of the ground within the structures varies from 1 to 17%. However, globally the sets of fairy circles in the various basins are rather similar and one may consider that their characteristics are homogeneous and may help to characterize these H2 emitting zones. Two kinds of size repartitions are observed, one with two maxima (25 m and between 220 m ± 25%) one with a simple Gaussian shape with a single maximum around 175 m ± 20%. Various geomorphological characteristics allow us to differentiate depressions of the ground due to gas emissions from karstic dolines. The more relevant ones are their slope and the ratio diameter vs. depth. At the opposite of the pockmark structures observed on the seafloor for which exclusion zones have been described, the H2 emitting structures may intersect and they often growth by coalescence. These H2 emitting structures are always observed, up to now, above Archean or Neoproterozoic cratons; it suggests that anoxia at the time the sedimentation and iron content play a key role in the H2 sourcing. Full article
Show Figures

Figure 1

14 pages, 19191 KiB  
Article
Pattern Formation in a Model Oxygen-Plankton System
by Yadigar Sekerci and Sergei Petrovskii
Computation 2018, 6(4), 59; https://doi.org/10.3390/computation6040059 - 14 Nov 2018
Cited by 9 | Viewed by 4755
Abstract
Decreasing level of dissolved oxygen has recently been reported as a growing ecological problem in seas and oceans around the world. Concentration of oxygen is an important indicator of the marine ecosystem’s health as lack of oxygen (anoxia) can lead to mass mortality [...] Read more.
Decreasing level of dissolved oxygen has recently been reported as a growing ecological problem in seas and oceans around the world. Concentration of oxygen is an important indicator of the marine ecosystem’s health as lack of oxygen (anoxia) can lead to mass mortality of marine fauna. The oxygen decrease is thought to be a result of global warming as warmer water can contain less oxygen. Actual reasons for the observed oxygen decay remain controversial though. Recently, it has been shown that it may as well result from a disruption of phytoplankton photosynthesis. In this paper, we further explore this idea by considering the model of coupled plankton-oxygen dynamics in two spatial dimensions. By means of extensive numerical simulations performed for different initial conditions and in a broad range of parameter values, we show that the system’s dynamics normally lead to the formation of a rich variety of patterns. We reveal how these patterns evolve when the system approaches the tipping point, i.e., the boundary of the safe parameter range beyond which the depletion of oxygen is the only possibility. In particular, we show that close to the tipping point the spatial distribution of the dissolved oxygen tends to become more regular; arguably, this can be considered as an early warning of the approaching catastrophe. Full article
(This article belongs to the Special Issue Pattern Formation in Population Dynamics)
Show Figures

Figure 1

21 pages, 1121 KiB  
Article
Global Warming Can Lead to Depletion of Oxygen by Disrupting Phytoplankton Photosynthesis: A Mathematical Modelling Approach
by Yadigar Sekerci and Sergei Petrovskii
Geosciences 2018, 8(6), 201; https://doi.org/10.3390/geosciences8060201 - 3 Jun 2018
Cited by 35 | Viewed by 12974
Abstract
We consider the effect of global warming on the coupled plankton-oxygen dynamics in the ocean. The net oxygen production by phytoplankton is known to depend on the water temperature and hence can be disrupted by warming. We address this issue theoretically by considering [...] Read more.
We consider the effect of global warming on the coupled plankton-oxygen dynamics in the ocean. The net oxygen production by phytoplankton is known to depend on the water temperature and hence can be disrupted by warming. We address this issue theoretically by considering a mathematical model of the plankton-oxygen system. The model is generic and can account for a variety of biological factors. We first show that sustainable oxygen production by phytoplankton is only possible if the net production rate is above a certain critical value. This result appears to be robust to the details of model parametrization. We then show that, once the effect of zooplankton is taken into account (which consume oxygen and feed on phytoplankton), the plankton-oxygen system can only be stable if the net oxygen production rate is within a certain intermediate range (i.e., not too low and not too high). Correspondingly, we conclude that a sufficiently large increase in the water temperature is likely to push the system out of the safe range, which may result in ocean anoxia and even a global oxygen depletion. We then generalize the model by taking into account the effect of environmental stochasticity and show that, paradoxically, the probability of oxygen depletion may decrease with an increase in the rate of global warming. Full article
Show Figures

Figure 1

Back to TopTop