The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic
Abstract
:1. Introduction
2. Regionally Extensive Phanerozoic Organic-Rich Marine Mudstones
2.1. Succession of Phanerozoic Black Mudstones on Continents and in the Ocean
2.2. Bakken Model for Shallow-Marine Black Shale Deposition
2.3. Cold Water Upwelling and Deep-Water Organic-Rich Mudstones in Early Paleozoic Forearc Troughs
2.4. Pre-Latest Ordovician Cold-Water and Glaciations
2.5. Is Upwelling Plausible in Formation of Platform or Forearc Trough Black Shales?
2.6. Role of Global Temperatures in Black Mudstone Deposition
3. Black Shales and Bakken Facies Through the Early Paleozoic
3.1. Cambrian Black Shales and Bakken Facies
3.1.1. Lowest Cambrian
3.1.2. Browns Pond Dysaerobic/Anoxic Interval and Sinsk Event
3.1.3. Lower–Middle Cambrian Boundary Interval
3.1.4. Later Cambrian–Lowest Ordovician Boundary Interval Hatch Hill d/a and Alum Shale Intervals
3.2. Lower–Lower Middle Ordovician OMZ Black Shales and Coeval Bakken Facies
3.2.1. Schaghticoke d/a Interval
3.2.2. Rte. 299 d/a Interval
3.2.3. Levis d/a Interval
3.2.4. Laignet Point d/a Interval
3.2.5. Raceville d/a Interval
3.3. Upper Ordovician Black Shales
3.3.1. Glenmont d/a Interval
3.3.2. Mohawkian d/a Interval
4. Upper Ordovician Black Mudstones—Not Deep Water
4.1. Sevier Belt
4.2. Upper Ordovician Utica Shale Black and Brown Mudstones and Sebree Trough
5. Review of Phanerozoic Black Mudstones
6. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duncan, D.C.; Swanson, V.E. Organic-rich shale of the United States and world land areas. U.S. Geol. Surv. Circ. 1966, 523, 30. [Google Scholar]
- Snedden, J.W.; Cunningham, R.C.; Virdell, J.W. The northern Gulf of Mexico offshore super basin: Reservoirs, source rocks, seals, traps, and successes. AAPG Bull. 2020, 104, 2603–2642. [Google Scholar] [CrossRef]
- Underhill, J.R.; Richardson, N. Geological controls on petroleum plays and future opportunities in the North Sea rift super basin. AAPG Bull. 2022, 106, 573–631. [Google Scholar] [CrossRef]
- Fairhurst, E.; Ewing, T.; Lindsay, B. West Texas (Permian) Super Basin, United States: Tectonics, structural development, sedimentation, petroleum systems, and hydrocarbon reserves. AAPG Bull. 2021, 105, 1099–1147. [Google Scholar] [CrossRef]
- Kendall, C.G.S.C.; Chiarenzelli, J.; Hassan, S. World source rock potential through geological time: A function of basin restriction, nutrient level, sedimentation rate, and sea-level rise. In Proceedings of the AAPG Annual Convention, Denver, CO, USA, 7–10 June 2009; 46p. [Google Scholar]
- Petty, D.M. Shallow-water versus deep-water: Stratigraphic geometries in the organic-rich shale/mudstone debate. GSA Today 2022, 32, 4–10. [Google Scholar] [CrossRef]
- Ryder, R.T. Assessment of Appalachian basin oil and gas resources; Utica-Lower Paleozoic Total Petroleum System, Chapter G.10. In Coal and Petroleum Resources in the Appalachian Basin; Distribution, Geologic Framework, and Geochemical Character; Ruppert, L.F., Ryder, R.T., Eds.; Chapter G.10 supersedes USGS Open-File Report 2008–1287; U.S. Geological Survey: Reston, VA, USA; p. 44.
- Ulmishk, G.F. Petroleum geology and reservoirs of the West Siberian Basin, Russia. In U.S. Geological Survey Bulletin 2201-G; U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Khafizov, S.; Syngaevsky, P.; Dolson, J.C. The West Siberian Super Basin: The largest and most prolific hydrocarbon basin in the world. AAPG Bull. 2022, 106, 517–572. [Google Scholar] [CrossRef]
- Landing, E.; Geyer, G.; Schmitz, M.D.; Wotte, T.; Kouchinsky, A. (Re)proposal of three Cambrian subsystems and their geochronology. Episodes 2021, 44, 273–283. [Google Scholar] [CrossRef]
- Negri, A.; Wagner, T.; Meyers, P.A. Introduction to “Causes and consequences of organic carbon burial through time”. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 235, 1–7. [Google Scholar] [CrossRef]
- Meyers, P.A. Why are the δ13Corg values in Phanerozoic black shales more negative than in modern marine organic matter? Geochem. Geophys. Geosyst. 2014, 15, 3085–3106. [Google Scholar] [CrossRef]
- Hallam, A. Phanerozoic Sea-Level Changes; Columbia University Press: New York, NY, USA, 1992; 266p. [Google Scholar]
- Hallam, A.; Bradshaw, M.J. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. J. Geol. Sci. 1979, 136, 157–164. [Google Scholar] [CrossRef]
- Sloss, L.L. Sequences in cratonic interior of America. GSA Bull. 1963, 74, 93–114. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sediment. Geol. 2001, 144, 335–356. [Google Scholar] [CrossRef]
- Słowakiewicz, M.; Tucker, M.E.; Perri, E.; Pancost, R.D. Nearshore euxinia in the photic zone of an ancient sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 242–259. [Google Scholar] [CrossRef]
- Landing, E. Time-specific black mudstones and global hyperwarming on the Cambrian–Ordovician slope and shelf of the Laurentia palaeocontinent. Palaeogeog. Palaeoclim. Palaeoecol. 2012, 367–368, 256–272. [Google Scholar] [CrossRef]
- Landing, E. Extended Abstract—The Great American Carbonate Bank in northeast Laurentia: Its births, deaths, and linkage to continental slope oxygenation (Early Cambrian–Late Ordovician). In The Great American Carbonate Bank, Essays in Honor of James Lee Wilson; Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., Sternbach, C.A., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; pp. 253a–260a. [Google Scholar]
- Landing, E. Great American Carbonate Bank in northeast Laurentia: Its births, deaths, and linkage to continental slope oxygenation (Early Cambrian–Late Ordovician). In The Great American Carbonate Bank, Essays in Honor of James Lee Wilson; Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., Sternbach, C.A., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; pp. 451–492. [Google Scholar]
- Landing, E.; Westrop, S.R.; Geyer, G. Trans-Avalonian green–black boundary (early Middle Cambrian): Transform fault-driven epeirogeny and onset of 26 m.y. of shallow-marine, black mudstone in Avalonia (Rhode Island–Belgium) and Baltica. Can. J. Earth Sci. 2022, 60, 133–171. [Google Scholar] [CrossRef]
- Landing, E.; Webster, M.; Bowser, S.S. Terminal Ediacaran–Late Ordovician of the NE Laurentia palaeocontinent: Rift–drift–onset of Taconic orogeny, sea-level change, and “Hawke Bay” onlap (not offlap). In Supercontinents, Orogenesis, and Magmatism; Nance, R.D., Strachan, R.A., Quesada, C., Lin, S., Eds.; The Geological Society of London: London, UK, 2023; p. 542. [Google Scholar] [CrossRef]
- Demaison, G.J.; Moore, G.T. Anoxic environments and oil source bed genesis. Amer. Assoc. Petrol. Geol. Bull. 1980, 64, 1179–1209. [Google Scholar] [CrossRef]
- Landing, E.; Keppie, J.D.; Keppie, F.D.; Geyer, G.; Westrop, S.R. Greater Avalonia—Latest Ediacaran–Ordovician “peribaltic” terrane bounded by continental margin prisms (“Ganderia,” Harlech Dome, Meguma): Review, tectonic implications, and paleogeography. Earth-Sci. Rev. 2022, 224, 103863. [Google Scholar] [CrossRef]
- Wignall, P.B. Model for transgressive black shales. Geology 1991, 19, 167–170. [Google Scholar] [CrossRef]
- Wignall, P.B. Black Shales; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Schlanger, S.O.; Jenkyns, H.C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnb. 1976, 55, 179–184. [Google Scholar]
- Finney, S.C.; Grubb, B.J.; Hatcher, R.D., Jr. Graphic correlation of Middle Ordovician graptolite shale, southern Appalachians: An approach for examining the subsidence and migration of a Taconic foreland basin. GSA Bull. 1996, 108, 355–371. [Google Scholar] [CrossRef]
- Ettensohn, F.R.; Hohman, J.C.; Kulp, M.A.; Rast, N. Evidence and implications of possible far-field responses to Taconian orogeny: Middle–Late Ordovician Lexington Platform and Sebree Trough, east-central United States. Southeast. Geol. 2002, 41, 1–36. [Google Scholar]
- Kolata, D.R.; Huff, W.D.; Bergström, S.M. The Ordovician Sebree Trough: An oceanic passage to the Midcontinent United States. GSA Bull. 2001, 113, 1067–1078. [Google Scholar] [CrossRef]
- Ettensohn, F.R.; Lierman, R.T. Large-scale tectonic controls on the origin of Paleozoic dark-shale source-rock basins: Examples from the Appalachian Foreland Basin, eastern United States. In Tectonics and Sedimentation: Implications for Petroleum Systems; Gao, D., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; pp. 95–124. [Google Scholar]
- Smith, L.B.; Schieber, J.; Wilson, R. Shallow-water onlap model for the deposition of Devonian black shales in New York, USA. Geology 2019, 47, 279–283. [Google Scholar] [CrossRef]
- English, A.M.; Landing, E.; Baird, G.C. Snake Hill—Reconstructing eastern Taconic foreland basin litho- and biofacies from a giant mélange block in eastern New York, USA. Palaeogeog. Palaeoclim. Palaeoecol. 2006, 242, 201–213. [Google Scholar] [CrossRef]
- Ettensohn, F.R. Origin of Late Ordovician (mid-Mohawkian) temperate-water conditions on southeastern Laurentia: Glacial or tectonic? In The Ordovician Earth System; Finney, S.C., Berry, W.B.N., Eds.; The Geological Society of America: Boulder, CO, USA, 2010; pp. 163–175. [Google Scholar]
- Kazmierczak, J.; Kremer, B.; Racki, G. Late Devonian marine anoxia challenged by benthic cyanobacterial mats. Geobiology 2012, 10, 371–383. [Google Scholar] [CrossRef]
- Hints, R.; Hade, S.; Soesoo, A.; Voolma, M. Depositional framework of the East Baltic Tremadocian black shale revisited. GFF 2014, 34, 464–482. [Google Scholar] [CrossRef]
- Leonowicz, P. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies 2016, 62, 16. [Google Scholar] [CrossRef]
- Pohl, A.; Donnadieu, Y.; Le Hir, G.; Ladant, J.-B.; Dumas, C.; Alvarez-Solas, J.; Vandenbroucke, T.R.A. Glacial onset predated Late Ordovician climate cooling. Paleoceanography 2016, 31, 800–821. [Google Scholar] [CrossRef]
- Turner, B.R.; Armstrong, H.A.; Wilson, C.R.; Makhlouf, I.M. High frequency eustatic sea-level changes during Middle and early Late Ordovician of southern Jordan: Indirect evidence for a Darriwilian ice age in Gondwana. Sediment. Geol. 2012, 251–252, 34–48. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Cocks, L.R.M. Earth History and Palaeogeography; Cambridge University Press: Cambridge, UK, 2016; 317p. [Google Scholar]
- Sames, B.M.; Wagreich, M.; Wendler, J.E.; Haq, B.U.; Conrad, C.P.; Melinte-Dobrinescu, M.C.; Hu, X.; Wendler, I.E.; Wolfgring, E.; Yilmaz, I.Ö.; et al. Short-term sea-level changes in a greenhouse world—A view from the Cretaceous. Palaeogeog. Palaeoclim. Palaeoecol. 2016, 441, 393–411. [Google Scholar] [CrossRef]
- Schieber, J. Mud re-distribution in epicontinental basins: Exploring likely processes. Mar. Pet. Geol. 2016, 71, 119–133. [Google Scholar] [CrossRef]
- Smith, L. Shallow transgressive onlap model for Ordovician and Devonian organic-rich shales, New York State. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar] [CrossRef]
- Landing, E.; Smith, L. Global hyperwarming and shallow marine deposition of hydrocarbon source rocks. Geol. Soc. Am. Abstr. Programs 2012, 44, 125. [Google Scholar]
- Landing, E.; Geyer, G. Comment: Carbonate production and reef building under ferruginous seawater conditions in the Cambrian rift branches of the Avalon Zone, Newfoundland by J.J. Álvaro and A. Mills. Sedimentology 2025, 71, 1245–1269. [Google Scholar]
- Pope, M.C.; Steffen, J.B. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: A proxy record of glaciation? Geology 2015, 31, 63–66. [Google Scholar] [CrossRef]
- Atkinson, L.P.; Yoder, J.A.; Lee, T.N. Review of upwelling off the southeastern United States and its effect on continental-shelf nutrient concentrations and primary productivity. Rapp. Procès-Verbaux Réunions 1984, 183, 70–78. [Google Scholar]
- Freely, R.A.; Sabine, C.L.; Hernandez-Ayon, J.M.; Ianson, D.; Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 2008, 320, 1490–1492. [Google Scholar] [CrossRef]
- Hill, R.B.; Johnson, J.A. A three-dimensional theory of coastal currents and upwelling over a continental shelf. Tellus 1975, 23, 249–258. [Google Scholar] [CrossRef]
- Mohrholz, V.; Eggert, A.; Junker, T.; Nausch, G.; Ohde, T.; Schmidt, M. Cross shelf hydrographic and hydrochemical conditions and their short term variability at the northern Benguela during a normal upwelling season. J. Mar. Syst. 2019, 140, 92–110. [Google Scholar] [CrossRef]
- Berner, R.A.; Kothavala, Z. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 2001, 304, 397–437. [Google Scholar] [CrossRef]
- Jackson Davis, W. The relationship between atmospheric carbon dioxide and global temperatures for the last 425 million years. Climate 2017, 5, 76. [Google Scholar] [CrossRef]
- Schaefer, K.E. Effects of increased ambient CO2 levels on human and animal health. Experentia 1982, 38, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Chabalier, M.; Maisonneive, E.; Dukan, S. CO2 exacerbates oxygen toxicity. EMBO Rep. 2011, 12, 321–326. [Google Scholar] [CrossRef]
- Rothman, D.H. Atmospheric carbon dioxide levels for the last 500 million years. Proc. Natl. Acad. Sci. USA 2002, 99, 4167–4171. [Google Scholar] [CrossRef] [PubMed]
- Judd, E.J.; Tierney, J.E.; Lunt, D.J.; Montañez, I.P.; Huber, B.T.; Wing, S.L.; Valdes, P.J. A 485-million-year history of Earth’s surface temperature. Science 2024, 385, eadk3705. [Google Scholar] [CrossRef] [PubMed]
- Arrhenius, S. On the influence of carbonic acid in the air upon the temperature on the ground. Philos. Mag. J. Sci. 1896, 41, 237–276. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11, Q03004. [Google Scholar] [CrossRef]
- Bergman, S.C.; Eldrett, J.S.; Minisin, D. Phanerozoic large igneous province, petroleum system, and source rock links. In Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes; Dickson, A.J., Bekker, A., Eds.; American Geophysical Union; Wiley: Washington, DC, USA, 2021; pp. 191–228. [Google Scholar] [CrossRef]
- Jiang, Q.; Jourdan, F.; Olierook, H.K.H.; Renaud, E.M. An appraisal of the ages of Phanerozoic large igneous provinces. Earth-Sci. Rev. 2023, 237, 104314. [Google Scholar] [CrossRef]
- Landing, S. Ediacaran–Ordovician of east Laurentia―geologic setting and controls on deposition along the New York Promontory. In Ediacaran–Ordovician of East Laurentia―S. W. Ford Memorial Volume; Landing, E., Ed.; New York State Museum: Albany, NY, USA, 2007; Volume 510, pp. 5–24. [Google Scholar]
- Yang, C.; Bowyer, F.T.; Condon, D.J.; Li, X.-H.; Zhu, M. New U-Pb age from the Shuijingtuo Formation (Yangtze Gorges area) and its implications for the Cambrian timescale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 616, 111477. [Google Scholar] [CrossRef]
- Geyer, G. A comprehensive Cambrian correlation chart. Epis. J. Int. Geosci. 2019, 42, 321–332. [Google Scholar] [CrossRef]
- Varlamov, A.I.; Rozanov, A.Y.; Khomentovsky, V.V.; Shabanov, Y.Y.; Abaimova, G.P.; Demidenko, Y.E.; Karlova, G.A.; Korovnikov, I.V.; Luchinina, V.A.; Malakhovskaya, Y.E.; et al. The Cambrian System of the Siberian Platform. Part 1: The Aldan-Lena region. In XIII Field Conference of the Cambrian Stage Subcommission Working Group; PIN Russian Academy of Science: Moscow, Russia, 2008; p. 300. [Google Scholar]
- Bowyer, F.T.; Zhuravlev, A.Y.; Wood, R.; Zhao, F.; Sukhov, S.S.; Alexander, R.D.; Poulton, S.W.; Zhu, M. Implications of an integrated late Ediacaran to early Cambrian stratigraphy of the Siberian Platform, Russia. GSA Bull. 2023, 135, 2428–2450. [Google Scholar] [CrossRef]
- Ivantsov, A.Y.; Zhuravlev, A.Y.; Leguta, A.V.; Krassilova, A.V.; Melnikova, L.M.; Ushatinskaya, G.T. Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 205, 69–88. [Google Scholar] [CrossRef]
- Landing, E.; Schmitz, M.D.; Westrop, S.R.; Geyer, G. U-Pb zircon dates from North American and British Avalonia bracket the Early–Middle Cambrian boundary interval, with evaluation of the Miaolingian Series as a global unit. Geol. Mag. 2023, 160, 1790–1816. [Google Scholar] [CrossRef]
- Myrow, P.M.; Goodge, J.W.; Glenn ABrock, G.A.; Betts, M.J.; Park, T.-Y.; Hughes, N.C.; Gaines, R.R. Tectonic trigger to the first major extinction of the Phanerozoic: The early Cambrian Sinsk event. Sci. Adv. 2024, 10, eadl3452. [Google Scholar] [PubMed]
- Singh, I.B.; Singla, G.; Bhargava, O.N.; Kaur, R.; Stopden, S. Miaolingian transgression and the Oryctocephalus indicus Biozone in the Sumna Valley (Spiti), Himalaya, India. Comptes Rendus. Géosci. 2020, 352, 157–168. [Google Scholar] [CrossRef]
- Landing, E.; Amati, L.; Franzi, D.A. Epeirogenic transgression near a triple junction: The oldest (latest Early–Middle Cambrian) marine onlap of cratonic New York and Quebec. Geol. Mag. 2009, 146, 552–566. [Google Scholar] [CrossRef]
- Shaw, A.B. Stratigraphy and structure of the St. Albans area, northwestern Vermont. Geol. Soc. Am. Bull. 1957, 69, 519–568. [Google Scholar]
- Landing, E. Highgate gorge: Upper Cambrian and Lower Ordovician continental slope deposition and biostratigraphy, northwestern Vermont. J. Paleontol. 1983, 57, 1149–1187. [Google Scholar]
- Landing, E. Avalon—Insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic; Nance, R.D., Thompson, M., Eds.; The Geological Society of America: Boulder, CO, USA, 1996; pp. 27–64. [Google Scholar] [CrossRef]
- Kohl, D.; Slingerland, R.L.; Arthur, M.A.; Bracht, R.; Engelder, T. Sequence stratigraphy and depositional environments of the Shamokin (Union Springs) Member, Marcellus Formation and associated strata in the middle Appalachian Basin. AAPG. Bull. 2014, 98, 483–513. [Google Scholar] [CrossRef]
- Egenhoff, S.O.; Fishman, N.S.; Ahlberg, P.; Maletz, J.; Jackson, A.; Kolte, K.; Lowers, H.; Mackie, J.; Newby, W.; Petrowsky, M. Sedimentology of SPICE (Steptoean positive carbon isotope excursion); a high-resolution trace fossil and microfabric analysis of the Middle to Late Cambrian Alum Shale Formation, southern Sweden. In Paying Attention to Mudrocks: Priceless; Larsen, D., Egenhoff, S.O., Fishman, N.S., Eds.; the Geological Society of America: Boulder, CO, USA, 2014; pp. 87–102. [Google Scholar]
- Dworatzek, M. Sedimentology and petrology of carbonate intercalations in the Upper Cambrian Olenid Shale facies of southern Sweden. Sver. Geol. Undersökning C 1987, 81, 73. [Google Scholar]
- Buchardt, B.; Nielsen, A.T.; Schovsbo, N.H. Alun Skiferen i Skandinavien. Geol. Tidskift 1997, 3, 1–30. [Google Scholar]
- Majchrzyk, A.; Kozłowski, W.; Żylińska, A. Authigenic calcium carbonate precipitation in the “bathtub ring” around the anoxic Alum Shale Basin during the Furongian SPICE event (Baltic Basin, northern Poland). GFF 2022, 144, 41–58. [Google Scholar] [CrossRef]
- Howell, B.F. The Faunas of the Cambrian Paradoxides Beds at Manuels, Newfoundland; Harris Company; Cornell University: Ithaca, NY, USA, 1925; Volume 11, 140p. [Google Scholar]
- Schovsbo, N.H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum Shale. GFF 2002, 124, 107–111. [Google Scholar] [CrossRef]
- Nielsen, A.T.; Schovsbo, N.H. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bull. Geol. Soc. Den. 2007, 53, 47–92. [Google Scholar] [CrossRef]
- Lehnert, O.; Caner, M.; Ahlberg, P.; Ebbestad, J.O.; Harper, D.A.T.; Meinhold, J. Palaeokarst formation in the early Palaeozoic of Baltoscandia—evidence for significant sea-level changes in a shallow epicontinental sea. In Proceedings of the e 3rd IGCP 591 Annual Meeting, Lund, Sweden, 9–19 June 2013. [Google Scholar]
- Landing, E.; Westrop, S.R. Late Cambrian (middle Furongian) shallow-marine dysoxic mudstone with calcrete and brachiopod-olenid-Lotagnostus faunas in Avalonian Cape Breton Island, Nova Scotia. Geol. Mag. 2015, 152, 973–992. [Google Scholar] [CrossRef]
- Landing, E. Depositional tectonics and biostratigraphy of the western portion of the Taconic allochthon, eastern New York State. In The Canadian Paleontology and Biostratigraphy Seminar, Proceedings; Landing, E., Ed.; New York State Museum: Albany, NY, USA, 1988; pp. 96–110. [Google Scholar]
- Macdonald, F.A.; Karabinos, P.M.; Crowley, J.L.; Hogbin, E.B.; Crockford, P.W.; Delano, J.W. Bridging the gap between the foreland and hinterland II: Geochronology and tectonic setting of Ordovician magmatism and basin formation on the Laurentian margin of New England and Newfoundland. Am. J. Sci. 2017, 317, 555–596. [Google Scholar] [CrossRef]
- Landing, E.; Benus, A.P. The Levis Formation: Passive margin slope processes and dynamic stratigraphy in the western area. In Field Trips Guidebook. Canadian Paleontology and Biostratigraphy Seminar, Ste. Foy, Quebec; Riva, J.F., Ed.; Université Laval Press: Québec, QC, Canada, 1985; pp. 1–11. [Google Scholar]
- Taylor, J.F.; Repetski, J.E.; Orndoff, R.C. The Stonehenge transgression: A rapid submergence of the central Appalachian platform in the Early Ordovician. In Global Perspectives on Ordovician Geology; Webby, B.D., Laurie, J.R., Eds.; CRC Press: Rotterdam, The Netherlands, 1992; pp. 409–418. [Google Scholar]
- Brezinski, D.K.; Repetski, J.E.; Taylor, J.F. Stratigraphic and paleontologic record of the Sauk III regression in the central Appalachians. In National Park Service Paleontological Research Volume 3; Santucci, V.L., McClelland, L., Eds.; Geological Resources Division Technical Report NPS/NRGDRD/GRDTR-99/o3; National Park Service: Washington, DC, USA, 1999; pp. 32–41. [Google Scholar]
- Nielsen, A.T. Ordovician sea level changes: A Baltoscandian perspective. In The Great Ordovician Biodiversification Event; Webby, B.D., Paris, F., Droser, M.L., Percival, I.G., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 189–201. [Google Scholar]
- Miller, J.F.; Evans, K.R.; Dattilo, B.F. The great American carbonate bank in the miogeocline of western central Utah: Tectonic influences on sedimentation. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia; Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., Steinbach, C.A., Eds.; AAPG Mem: Tulsa, OK, USA, 2012; pp. 769–854. [Google Scholar] [CrossRef]
- Berry, W.B.N. Stratigraphy, zonation, and age of Schaghticoke, Deepkill, and Normanskill shales, eastern New York. Geol. Soc. Am. Bull. 1962, 73, 695–718. [Google Scholar] [CrossRef]
- Ross, R.J.; Adler, F.J., Jr.; Amsden, T.W.; Bergstrom, D.; Bergström, S.M.; Carter, C.; Chrukin, M.; Cressman, E.A.; Derby, J.R.; Dutro, J.T.; et al. The Ordovician System in the United States. Correlation Chart and Explanatory Notes. Inter. Union Geol. Sci. 1982, 12, 73. [Google Scholar]
- Sattler, F.R. Lithologic Properties of the Upper Ordovician Utica Formation, Michigan Basin, USA: A Geological Characterization and Assessment of Carbon Dioxide Confinement Potential. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2015; 94p. Available online: https://scholarworks.wmich.edu/masters_theses/608 (accessed on 1 February 2024).
- Walker, K.R. A brief introduction to the ecostratigraphy of the Middle Ordovician of Tennessee (southern Appalachians, U.S.A.), In The Ecostratigraphy of the Middle Ordovician of the Southern Appalachians (Kentucky, Tennessee, and Virginia) U.S.A.; Ruppel, S.C., Walker, K.R., Eds.; Studies in Geology University of Tennessee: Tennessee, TN, USA, 1977; pp. 12–17. [Google Scholar]
- Shanmugam, G.; Walker, K.R. Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Sevier formations in east Tennessee. Am. J. Sci. 1978, 278, 551–578. [Google Scholar] [CrossRef]
- Shanmugam, G.; Walker, K.R. Sedimentation, subsidence, and evolution of a foredeep basin in the Middle Ordovician, southern Appalachians. Am. J. Sci. 1980, 280, 479–496. [Google Scholar] [CrossRef]
- Shanmugam, G.; Walker, K.R. Anatomy of the Middle Ordovician Sevier Shale basin, eastern Tennessee. Sediment. Geol. 1983, 34, 315–337. [Google Scholar] [CrossRef]
- Ogg, J.G.; Ogg, G.; Gradstein, F.M. The Concise Geologic Time Scale; Cambridge University Press: Cambridge, UK, 2008; 177p. [Google Scholar]
- Goldman, D.; Mitchell, C.E.; Bergstrom, S.M.; Delano, J.W.; Tice, S. K-Bentonite and graptolite biostratigaraphy in the Middle Ordovician of New York State and Quebec: A new chronstratigraphic model. Palaios 1994, 9, 124–143. [Google Scholar] [CrossRef]
- Bergstrom, S.M.; Goldman, D. Conodont biostratigraphy and biofacies of the Jacques Cartier River Ordovician section, Quebec. In Studies in Stratigraphy and Paleontology in Honor of Donald W. Fisher; Landing, E., Ed.; New York State Museum: Albany, NY, USA, 1994; Volume 481, pp. 1–4. [Google Scholar]
- Ver Straeten, C.; Brett, C.E.; Baird, G.; Boyer, D.; Lindemann, R.; Ivany, L.; Over, J.; Witzke, B. Forum Comment Shallow-water onlap model for the deposition of Devonian black shales in New York. Geology 2019, 47, e495. [Google Scholar] [CrossRef]
- Schieber, J.; Lazar, R.O. Devonian black shales of the eastern U.S.: New insights into sedimentology and stratigraphy from the subsurface and outcrops in the Illinois and Appalachian basins. In Field Guide for the 2004 Great Lakes Section SEPM Annual Field Conference; SEPM: Tulsa, OK, USA, 2004; 90p. [Google Scholar]
- Schieber, J.; Southard, J.; Thiesen, K. Accretion of mudstone beds from migrating floccule ripples. Science 2007, 318, 1760–1767. [Google Scholar] [CrossRef]
- Schieber, J. Evidence for high-energy events and shallow water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sediment. Geol. 2009, 93, 193–208. [Google Scholar] [CrossRef]
- Smith, L.B. Core description, petrography, sedimentology, stratigraphy, TOC and depositional environment. In A Geologic Play Book for Utica Shale; Patchen, D.G., Carter, K.M., Eds.; Final report of the Utica Shale Appalachian Basin Exploration Consortium; Darrin West: Houston, TX, USA, 2015; pp. 49–73. Available online: https://www.wvgs.wvnet.edu/utica (accessed on 28 April 2025).
- Rhoads, D.C.; Morse, J.W. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia 1971, 4, 413–438. [Google Scholar] [CrossRef]
- Popova, O. Utica Shale Play—Geology Review; U.S. Energy Information Administration: Washington, DC, USA, 2017; Volume 21.
- Over, J.D. Conodont biostratigraphy of the Chattanooga Shale, Middle and Upper Devonian, southern Appalachian Basin, eastern United States. J. Paleontol. 2007, 81, 1194–1217. [Google Scholar] [CrossRef]
- Algeo, T.J.; Berner, R.A.; Maynard, J.B.; Scheckler, S.E. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today 1995, 5, 64–67. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landing, E. The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic. J. Mar. Sci. Eng. 2025, 13, 895. https://doi.org/10.3390/jmse13050895
Landing E. The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic. Journal of Marine Science and Engineering. 2025; 13(5):895. https://doi.org/10.3390/jmse13050895
Chicago/Turabian StyleLanding, Ed. 2025. "The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic" Journal of Marine Science and Engineering 13, no. 5: 895. https://doi.org/10.3390/jmse13050895
APA StyleLanding, E. (2025). The Bakken Model: Deposition of Organic-Rich Mudstones and Petroleum Source Rocks as Shallow-Marine Facies Through the Phanerozoic. Journal of Marine Science and Engineering, 13(5), 895. https://doi.org/10.3390/jmse13050895