Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening
Abstract
:1. Introduction
1.1. Native Hydrogen: An Overview
- (C_1)
- extension zones (Mid Oceanic Ridge, Iceland, and African Rift);
- (C_2)
- compression zones involving ophiolitic nappes (Oman, Philippines, New Caledonia); and
- (C_3)
- stable intracratonic basins above Archean to Proterozoic basement.
- (O_1)
- H2 may come from water/rock interaction in the crust. Within this case, the origin of H2 is the water. The H2O reduction and the release of H2 could be caused by the oxidation of mineral rich rocks such as olivine, or by the radiolysis induced by the natural radioactivity of rocks such as granite.
- (O_2)
- H2 may be generated by bacterial/algae activity near the surface; and finally
- (O_3)
- H2 may come from a deep source and corresponds to the primordial H2 of the solar system.
1.2. Gas Escape vs. Deep Accumulation
1.3. Methods
- -
- The characterization of the fairy circles in known H2 rich zones largely based on the mapping of the emissive structures on satellite images.
- -
- A first application of this proxy of H2 presence within the soil in two areas where exploration has not yet started, located in the southwestern part of Australia.
2. Data Set of H2 Emitting Structures
2.1. Brazil
2.1.1. São Francisco Geological Setting
2.1.2. Statistics on Size Distributions of the Fairy Circles
2.2. Russia
2.2.1. Geological Setting of the Borisoglebsk Area
2.2.2. Statistics on H2 Emitting Structure Morphological Characteristic
2.3. Australia
2.3.1. Geological Setting
2.3.2. Wells with H2 Measurements
2.3.3. Mapped Structures near Adelaide
3. Fairy Circles vs. Dolines
4. Data Set on H2 Prospective Zone
4.1. Mapped Structures near Perth
4.2. Mapped Structures near Esperance
5. Discussion
5.1. Size and Density
5.2. Shape and Structural Location
5.3. Absence of Visible Leakage
5.4. Exploration Strategy from Space Image
- The slope: fairy circles related to know H2 leakage always present gentle slopes of a few %. At the opposite the dolines have very steep borders with a slope usually above 50%.
- The fairy circles are never very deep, less than 10 m in our current database which contains about 2000 samples. The presence of water may result in an underestimation of this threshold.
- The existence of a relationship between the depth and the size of the small structures (equiv diameter < 1km). The depth/diameter ratio is usually around 1%, often even smaller and never over 3%. For the karst depressions, the bases of dolines correspond usually to the bottom of the carbonated bed which has been dissolved and so the depth is not dependent on the size.
- As additional criteria to eliminate carbonate dissolution structures is the absence of soil. A void, a negative topography structure through consolidated outcropping rock cannot be related to gas escape. In this context, gas and more generally fluids migrate through faults and fractures, they do not spread out creating large structures.
6. Conclusions and Implications
6.1. Australian Natural H2 Potential
6.2. H2 Onshore Potential above Archean and Proterozoic Crusts
6.3. Hydrogen System vs. Petroleum System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prinzhofer, A.; Deville, É. L’hydrogène Naturel ou la Prochaine Révolution Energétique? Collection: Essais; Editions Belin: Paris, France, 2015; 199p, ISBN 978-2-7011-8384-8. [Google Scholar]
- Moretti, I. H2: Energy vector or source? Actual. Chim. 2019, 442, 15–16. [Google Scholar]
- Gaucher, E.C. New Perspectives in the Industrial Exploration for Native Hydrogen. Elements 2020, 16, 8–9. [Google Scholar] [CrossRef] [Green Version]
- Prinzhofer, A.; Cissé, C.S.T.; Diallo, A.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Smith, N.J.P.; Shepherd, T.J.; Styles, M.T.; Williams, G.M. Hydrogen exploration: A review of global hydrogen accu-mulations and implications for prospective areas in NW Europe. In Petrology Geology: North-West Europe and Global Perspec-tives—Proceedings of the 6th Petroleum Geology Conference; Doré, A.G., Vining, B.A., Eds.; Petroleum Geology Conference Series 6; Geological Society: London, UK, 2005; pp. 349–358. [Google Scholar]
- Sato, M.; Sutton, A.J.; McGee, K.A.; Russell-Robinson, S. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980–1984. J. Geophys. Res. Space Phys. 1986, 91, 12315–12326. [Google Scholar] [CrossRef]
- Etiope, G.; Lollar, B.S. Abiotic Methane on Earth. Rev. Geophys. 2013, 51, 276–299. [Google Scholar] [CrossRef]
- Larin, N.; Zgonnik, V.; Rodina, S.; Deville, E.; Prinzhofer, A.; Larin, V.N. Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Nat. Resour. Res. 2014, 24, 369–383. [Google Scholar] [CrossRef]
- Truche, L.; McCollom, T.M.; Martinez, I. Hydrogen and Abiotic Hydrocarbons: Molecules that Change the World. Elements 2020, 16, 13–18. [Google Scholar] [CrossRef]
- Charlou, J.L.; Fouquet, Y.; Bougault, H.; Donval, J.P.; Etoubleau, J.; Jean-Baptiste, P.; Dapoigny, A.; Appriou, P.; Rona, P.A. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1998, 62, 2323–2333. [Google Scholar] [CrossRef]
- McCollom, T.M.; Klein, F.; Robbins, M.; Moskowitz, B.; Berquó, T.S.; Jöns, N.; Bach, W.; Templeton, A. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 2016, 181, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Worman, S.L.; Pratson, L.F.; Karson, J.A.; Schlesinger, W.H. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere. Proc. Natl. Acad. Sci. USA 2020, 117, 13283–13293. [Google Scholar] [CrossRef]
- Vacquand, C.; Deville, E.; Beaumont, V.; Guyot, F.; Sissmann, O.; Pillot, D.; Arcilla, C.; Prinzhofer, A. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochim. Cosmochim. Acta 2018, 223, 437–461. [Google Scholar] [CrossRef]
- Okland, I.; Huang, S.; Thorseth, I.H.; Pedersen, R.B. Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks. Chem. Geol. 2014, 387, 22–34. [Google Scholar] [CrossRef]
- Bachaud, P.; Meiller, C.; Brosse, E.; Durand, I.; Beaumont, V. Modeling of Hydrogen Genesis in Ophiolite Massif. Procedia Earth Planet. Sci. 2017, 17, 265–268. [Google Scholar] [CrossRef]
- Kularatne, K.; Sissmann, O.; Kohler, E.; Chardin, M.; Noirez, S.; Martinez, I. Simultaneous ex-situ CO 2 mineral sequestration and hydrogen production from olivine-bearing mine tailings. Appl. Geochem. 2018, 95, 195–205. [Google Scholar] [CrossRef]
- Brunet, F. Hydrothermal Production of H2 and Magnetite From Steel Slags: A Geo-Inspired Approach Based on Olivine Serpentinization. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.; Clément, A.; Fritz, B.; Schmittbuhl, J.; Bordmann, V.; Fleury, J.M. Abiotic hydrogen generation form biotite-rich granite: A case study of the Soultz-sous-forets geothermal site, France. Appl. Geochem. 2020, 119, 104631. [Google Scholar] [CrossRef]
- Lollar, B.S.; Onstott, T.C.; Lacrampecouloume, G.; Ballentine, C.J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 2014, 516, 379–382. [Google Scholar] [CrossRef]
- Larin, V.N. Hydridic Earth the New Geology of Our Primordially Hydrogen-Rich Planet; Warren, H.C., Ed.; Polar Pub: Calgary, AB, Canada, 1993; 247p. [Google Scholar]
- Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- Zgonnik, V.; Beaumont, V.; Deville, E.; Larin, N.; Pillot, D.; Farrell, K.M. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Prog. Earth Planet. Sci. 2015, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Prinzhofer, A.; Moretti, I.; Françolin, J.; Pacheco, C.; D’Agostino, A.; Werly, J.; Rupin, F. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. Int. J. Hydrogen Energy 2019, 44, 5676–5685. [Google Scholar] [CrossRef]
- Moretti, I.; Prinzhofer, A.; Françolin, J.; Pacheco, C.; Rosanne, M.; Rupin, F.; Mertens, J. Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. Int. J. Hydrogen Energy 2021, 46, 3615–3628. [Google Scholar] [CrossRef]
- Tschinkel, W.R. The Life Cycle and Life Span of Namibian Fairy Circles. PLoS ONE 2012, 7, e38056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschinkel, W.R. Experiments Testing the Causes of Namibian Fairy Circles. PLoS ONE 2015, 10, 1–22. [Google Scholar] [CrossRef]
- Myagkiy, A.; Brunet, F.; Popov, C.; Krüger, R.; Guimarães, H.; Sousa, R.S.; Charlet, L.; Moretti, I. H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling. Appl. Geochem. 2020, 112, 104474. [Google Scholar] [CrossRef]
- Charlou, J.; Donval, J.; Fouquet, Y.; Jean-Baptiste, P.; Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 2002, 191, 345–359. [Google Scholar] [CrossRef]
- Bazarkina, E.F.; Chou, I.-M.; Goncharov, A.F.; Akinfiev, N.N. The Behavior of H2 in Aqueous Fluids under High Temperature and Pressure. Elements 2020, 16, 33–38. [Google Scholar] [CrossRef]
- Veikkolainen, T.; Pesonen, L.J.; Evans, D.A.D. PALEOMAGIA: A PHP/MYSQL database of the Precambrian paleomagnetic data. Stud. Geophys. Geod. 2014, 58, 425–441. [Google Scholar] [CrossRef]
- Maia, A.R.; Cartwright, J.; Andersen, E. Shallow plumbing systems inferred from spatial analysis of pockmark arrays. Mar. Pet. Geol. 2016, 77, 865–881. [Google Scholar] [CrossRef]
- Gay, A.; Lopez, M.; Cochonat, P.; Levaché, D.; Sermondadaz, G.; Séranne, M. Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin. Mar. Pet. Geol. 2006, 23, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.; Anka, Z.; di Primio, R.; Kuhlmann, G.; de Wit, M.J. Passive margin evolution and controls on natural gas leakage in the Orange Basin, South Africa. S. Afr. J. Geol. 2011, 114, 349–366. [Google Scholar] [CrossRef]
- Moss, J.; Cartwright, J. The spatial and temporal distribution of pipe formation, offshore Namibia. Mar. Pet. Geol. 2010, 27, 1216–1234. [Google Scholar] [CrossRef]
- Cartwright, J.; Santamarina, C. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Mar. Pet. Geol. 2015, 65, 126–140. [Google Scholar] [CrossRef]
- Cathles, L.; Prinzhofer, A. What Pulsating H2 Emissions Suggest about the H2 Resource in the Sao Francisco Basin of Brazil. Geosciiences 2020, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Truche, L.; Joubert, G.; Dargent, M.; Martz, P.; Cathelineau, M.; Rigaudier, T.; Quirt, D. Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca. Earth Planet. Sci. Lett. 2018, 493, 186–197. [Google Scholar] [CrossRef]
- Reis, H.L.S.; Alkmim, F.F.; Fonseca, R.C.S.; Nascimento, T.C.; Suss, J.F.; Prevatti, L.D. The São Francisco Basin. In São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent; Springer: Berlin/Heidelberg, Germany, 2016; pp. 117–143. [Google Scholar]
- Donzé, F.-V.; Truche, L.; Namin, P.S.; Lefeuvre, N.; Bazarkina, E.F. Migration of Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. Geosciences 2020, 10, 346. [Google Scholar] [CrossRef]
- Iaccheri, L.M. Composite basement along the southern margin of the North Australian Craton: Evidence from in-situ zircon U-Pb-O-Hf and whole-rock Nd isotopic compositions. Lithos 2019, 324, 733–746. [Google Scholar] [CrossRef]
- Markwitz, V.; Kirkland, C.L.; Evans, N.J. Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: Implications for the structure of the West Australian Craton margin. Lithosphere 2016, 9, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Olierook, H.K.; Agangi, A.; Plavsa, D.; Reddy, S.M.; Yao, W.; Clark, C.; Occhipinti, S.A.; Kylander-Clark, A.R. Neoproterozoic hydrothermal activity in the West Australian Craton related to Rodinia assembly or breakup? Gondwana Res. 2019, 68, 1–12. [Google Scholar] [CrossRef]
- Morrissey, L.J.; Barovich, K.M.; Hand, M.; Howard, K.E.; Payne, J.L. Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna (Columbia). Geosci. Front. 2019, 10, 175–194. [Google Scholar] [CrossRef]
- Hill, R.L. Lithogeochemical Characterisation of Cover Sequence on Yorke Peninsula, South Australia, and Identification of Pathfinder Elements for IOCG Exploration. Master’s Thesis, University of Adelaide, Adelaide, Australia, 2015; p. 67. [Google Scholar]
- Weinberg, R.F.; Hasalová, P.; Ward, L.; Fanning, C.M. Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia. Geol. Soc. Am. Bull. 2013, 125, 1282–1300. [Google Scholar] [CrossRef] [Green Version]
- Rezaee, R. Natural Hydrogen System in Western Australia? 2020, 2020100589, Preprints. [Google Scholar] [CrossRef]
- Ward, L.K. Inflammable gases occluded in the pre-palaeozoic rocks of south Australia. Trans. R. Soc. S. Aust. 1933, 57, 42–47. [Google Scholar]
- Johns, D.; Menpes, A.; Walshe, P.; Bache, F. Exploration of a Sub-Salt Play in the Southern Amadeus Basin, Central Austra-lia—Searching for Big Gas in Proterozoic Réservoirs; Seapex Presentation; Seapex: Singapore, 2017. [Google Scholar]
- Boreham, C.J.; Sohn, J.H.; Cox, N.; Williams, J.; Hong, Z.; Kendrick, M.A. Hydrogen and hydrocarbons associated with the Neoarchean Frog’s Leg Gold Camp, Yilgarn Craton, Western Australia. Chem. Geol. 2021, 120098. [Google Scholar] [CrossRef]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: Chichester, UK, 2007; p. 562. [Google Scholar]
- Palmer, A.N. Cave Geology; Cave Research Foundation: Kansas City, KS, USA, 2007; p. 454. [Google Scholar]
- Salama, W.; Anand, R.R.; Verrall, M. Mineral exploration and basement mapping in areas of deep transported cover using indicator heavy minerals and paleoredox fronts, Yilgarn Craton, Western Australia. Ore Geol. Rev. 2016, 72, 485–509. [Google Scholar] [CrossRef]
- Anand, R.; Hough, R.; Salama, W.; Aspandiar, M.; Butt, C.; González-Álvarez, I.; Metelka, V. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: A review with new concepts. Ore Geol. Rev. 2019, 104, 294–355. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Deville, E. De L’hydrogène Naturel Sous nos Pieds; Pour la Science: Paris, France, 2015; Volume 456. [Google Scholar]
- Myagkiy, A.; Moretti, I.; Brunet, F. Space and time distribution of subsurface H2 concentration in so-colled « fairy-circles »: Insight from a conceptual 2-D transport model. BSGF Earth Sci. Bull. 2020, 191, 13. [Google Scholar] [CrossRef]
- Alpermann, T.; Ostertag-Henning, C. Dry Abiotic Oxidation of H2 by Hematite, Pyrite, and Other Redox-Active Minerals at Subsurface Conditions (120 °C 200 Bar). In Proceedings of the Goldschmidt Conference, Barcelona, Spain, 18–23 August 2019. [Google Scholar]
- Alpermann, T.; Ostertag-Henning, C. Kinetics of the Abiotic Oxidation of Hydrogen (H2) by Hematite at Subsurface Storage Conditions. In Proceedings of the Goldschmidt Conference, Virtual. 21–26 June 2020. [Google Scholar]
- Deville, E.; Prinzhofer, A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia. Chem. Geol. 2016, 440, 139–147. [Google Scholar] [CrossRef]
- De Carvalho, J.O.A.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Gomes, R.A.T.; Martins, É.D.S.; Silva, N.C. Karst Depression Detection Using ASTER, ALOS/PRISM and SRTM-Derived Digital Elevation Models in the Bambuí Group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Panfilov, M. Underground and pipeline hydrogen storage. Compend. Hydrog. Energy 2016, 2016, 91–115. [Google Scholar] [CrossRef]
- Yeung, L.Y. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma. Earth Planet. Sci. Lett. 2017, 480, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Lei, R.X.; Zhang, K.; Muhtar, M.N.; Wu, C.Z. Neoproterozoic non-glaciogenic iron formation: Insights from Fe isotope and elemental geochemistry of the Shalong iron formation from the Central Tianshan block, southern Altaids. Precambrian Res. 2020, 351, 105959. [Google Scholar] [CrossRef]
- Schidlowski, M. Evolution of photoautotrophy and early atmospheric oxygen levels. Precambrian Res. 1983, 20, 319–335. [Google Scholar] [CrossRef]
- Santos, R.V.; de Alvarenga, C.J.S.; Dardenne, M.A.; Sial, A.N.; Ferreira, V.P. Carbon and oxygen isotope profiles across Meso-Neoproterozoic limestones from central Brazil: Bambuı´ and Paranoa´ groups. Precambrian Res. 2000, 104, 107–122. [Google Scholar] [CrossRef]
- Hiatt, E.E.; Pufahl, P.K.; da Silva, L.G. Iron and phosphorus biochemical systems and the Cryogeni-an-Ediacaran transition, Jacadigo basin, Brazil: Implications for the Neoproterozoic oxygenation event. Precambrian Res. 2020, 337, 105533. [Google Scholar] [CrossRef]
- Ward, J.F.; Verdel, C.; Campbell, M.J.; Leonard, N.; Nguyen, A.D. Rare earth element geochemistry of Australian Neopro-terozoic carbonate: Constraints on the Neoproterozoic oxygenation events. Precambrian Res. 2019, 35, 105471. [Google Scholar] [CrossRef]
- Bechstädt, T.; Jäger, H.; Rittersbacher, A.; Schweisfurth, B.; Spence, G.; Werner, G.; Boni, M. The Cryogenian Ghaub Formation of Namibia—New insights into Neoproterozoic glaciations. Earth Sci. Rev. 2018, 177, 678–714. [Google Scholar] [CrossRef]
- Ali, R.A.; Pitcairn, I.K.; Maurice, A.E.; Azer, M.K.; Bakhit, B.R.; Shahien, M.G. Petrology and geochemistry of ophiolitic ul-tramafic rocks and chromitites across the Eastern Desert of Egypt: Insights into the composition and nature of a Neoprote-rozoic mantle and implication for the evolution of SSZ system. Precambrian Res. 2020, 337, 105565. [Google Scholar] [CrossRef]
Brazil-1 | Brazil-2 | Brazil-3 | Russia | |
---|---|---|---|---|
Number of mapped structures | 86 | 406 | 183 | 540 |
Emitting Surface (km2) | 5.9 | 33.8 | 7.5 | 77 |
Density (foot print) | 1.3% | Global 1%/5% | 2.8% | na |
Average equiv radius (m) | 138 | 151 | 89 | 132 |
Min equiv radius (m) | 43 | 19 | 7 | 9 |
Max equiv radius (m) | 290 | 390 | 347 | 1250 |
Ratio depth/diameter | 0.013 | 0.011 | 0.008 | 0.007 |
Yorke Peninsula | Kangaroo Island | |||||||
---|---|---|---|---|---|---|---|---|
Depth (m) | 240 | 240 | 262 | 262 | 262 | 508 | 187 | 288 |
Original values | ||||||||
CO2 (%) | 0.8 | 0.2 | 0.8 | 0.8 | 0.6 | 0 | 5.3 | 0.52 |
O2 (%) | 0 | 0 | 3.2 | 2.4 | 3 | 1.2 | 4.3 | 3.55 |
H2 (%) | 74 | 76 | 60 | 64.4 | 60 | 84 | 51.3 | 68.64 |
CH4 (%) | 7.5 | 7.5 | 5.4 | 7 | 5.6 | 0 | 2.6 | 4.68 |
N2 (%) by difference | 17.7 | 16.3 | 30.6 | 25.4 | 30.8 | 14.8 | 36 | 22.61 |
Air corrected values | ||||||||
CO2 (%) | 0.8 | 0.2 | 1.0 | 0.9 | 0.7 | 0.0 | 6.8 | 0.6 |
H2 (%) | 74.0 | 76.0 | 71.3 | 73.1 | 70.5 | 89.3 | 65.6 | 83.3 |
CH4 (%) | 7.5 | 7.5 | 6.4 | 7.9 | 6.6 | 0.0 | 3.3 | 5.7 |
N2 (%) | 17.7 | 16.3 | 21.3 | 18.1 | 22.3 | 10.7 | 24.3 | 10.4 |
Adelaide Area–Gawler Craton | Perth Area–Yilgarm Craton | ||||
---|---|---|---|---|---|
Kangaroo Island | Yorke Peninsula | Serpentine Area | Pingrup Area | Esperance Area | |
Nb of mapped structures | 121 | 365 | 214 | 1291 | 341 |
Density (foot print) | 0.93% full island >10% near the well | 4% | 4% | 17% | |
Average equiv radius (m) | 218 | 135 | 118 | 113 | 55 |
Min equiv radius (m) | 10 | 5 | 29 | 9 | 13 |
Max equiv. Radius (m) | 2102 | 1867 | 536 | 3487 | 270 |
Ratio depth/diameter | 0.0063 | 0.0064 | 0.0043 | 0.0076 | NNN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, I.; Brouilly, E.; Loiseau, K.; Prinzhofer, A.; Deville, E. Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences 2021, 11, 145. https://doi.org/10.3390/geosciences11030145
Moretti I, Brouilly E, Loiseau K, Prinzhofer A, Deville E. Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences. 2021; 11(3):145. https://doi.org/10.3390/geosciences11030145
Chicago/Turabian StyleMoretti, Isabelle, Emyrose Brouilly, Keanu Loiseau, Alain Prinzhofer, and Eric Deville. 2021. "Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening" Geosciences 11, no. 3: 145. https://doi.org/10.3390/geosciences11030145
APA StyleMoretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A., & Deville, E. (2021). Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences, 11(3), 145. https://doi.org/10.3390/geosciences11030145