Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,786)

Search Parameters:
Keywords = observations from satellites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5686 KB  
Article
Analysis of Spatiotemporal Characteristics of Lightning Activity in the Beijing-Tianjin-Hebei Region Based on a Comparison of FY-4A LMI and ADTD Data
by Yahui Wang, Qiming Ma, Jiajun Song, Fang Xiao, Yimin Huang, Xiao Zhou, Xiaoyang Meng, Jiaquan Wang and Shangbo Yuan
Atmosphere 2026, 17(1), 96; https://doi.org/10.3390/atmos17010096 (registering DOI) - 16 Jan 2026
Abstract
Accurate lightning data are critical for disaster warning and climate research. This study systematically compares the Fengyun-4A Lightning Mapping Imager (FY-4A LMI) satellite and the Advanced Time-of-arrival and Direction (ADTD) lightning location network in the Beijing-Tianjin-Hebei (BTH) region (April–August, 2020–2023) using coefficient of [...] Read more.
Accurate lightning data are critical for disaster warning and climate research. This study systematically compares the Fengyun-4A Lightning Mapping Imager (FY-4A LMI) satellite and the Advanced Time-of-arrival and Direction (ADTD) lightning location network in the Beijing-Tianjin-Hebei (BTH) region (April–August, 2020–2023) using coefficient of variation (CV) analysis, Welch’s independent samples t-test, Pearson correlation analysis, and inverse distance weighting (IDW) interpolation. Key results: (1) A significant systematic discrepancy exists between the two datasets, with an annual mean ratio of 0.0636 (t = −5.1758, p < 0.01); FY-4A LMI shows higher observational stability (CV = 5.46%), while ADTD excels in capturing intense lightning events (CV = 28.01%). (2) Both datasets exhibit a consistent unimodal monthly pattern peaking in July (moderately strong positive correlation, r = 0.7354, p < 0.01) but differ distinctly in diurnal distribution. (3) High-density lightning areas of both datasets concentrate south of the Yanshan Mountains and east of the Taihang Mountains, shaped by topography and water vapor transport. This study reveals the three-factor (climatic background, topographic forcing, technical characteristics) coupled regulatory mechanism of data discrepancies and highlights the complementarity of the two datasets, providing a solid scientific basis for satellite-ground data fusion and regional lightning disaster defense. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 7385 KB  
Article
Observation and Analysis of VLF Electromagnetic Pulse Sequences Triggered by Solar Flares on the CSES
by Siyu Liu, Ying Han, Jianping Huang, Zhong Li, Xuhui Shen and Qingjie Liu
Atmosphere 2026, 17(1), 95; https://doi.org/10.3390/atmos17010095 (registering DOI) - 16 Jan 2026
Abstract
This study investigates the influence of solar flare events on the time–frequency characteristics of very low frequency (VLF) signals based on observations from the China Seismo–Electromagnetic Satellite (CSES) satellite. By analyzing the VLF electromagnetic wave HDF5 data downloaded on the day of the [...] Read more.
This study investigates the influence of solar flare events on the time–frequency characteristics of very low frequency (VLF) signals based on observations from the China Seismo–Electromagnetic Satellite (CSES) satellite. By analyzing the VLF electromagnetic wave HDF5 data downloaded on the day of the solar flare, the data were converted into a sequence of spectrograms, and linear structures within them were identified using image processing techniques and the K-means clustering algorithm. In this work, we detect more than twenty candidate transient near-vertical stripe elements (image-domain linear features) in the VLF spectrograms on solar-flare event days and use them as an operational texture fingerprint for large-scale screening. This finding suggests that solar flare events may trigger pulse sequence phenomena in VLF signals, providing new observational evidence for understanding the impact of solar activity on the ionosphere and offering a new perspective for investigating solar-flare effects using VLF signals. Full article
Show Figures

Figure 1

26 pages, 11726 KB  
Article
Non-Linear Global Ice and Water Storage Changes from a Combination of Satellite Laser Ranging and GRACE Data
by Filip Gałdyn, Krzysztof Sośnica, Radosław Zajdel, Ulrich Meyer and Adrian Jäggi
Remote Sens. 2026, 18(2), 313; https://doi.org/10.3390/rs18020313 (registering DOI) - 16 Jan 2026
Abstract
Determining long-term changes in global ice and water storage from satellite gravimetry remains challenging due to the limited temporal coverage of high-resolution missions. Here, we combine Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) data to reconstruct large-scale, non-linear mass [...] Read more.
Determining long-term changes in global ice and water storage from satellite gravimetry remains challenging due to the limited temporal coverage of high-resolution missions. Here, we combine Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) data to reconstruct large-scale, non-linear mass variations from 1995 to 2024, extending gravity-based observations into the pre-GRACE era while preserving spatial detail through backward extrapolation. The combined model reveals widespread and statistically significant accelerations in global water and ice mass changes and enables the identification of key turning points in their temporal evolution. Results indicate that in Svalbard, a non-linear transition in ice mass balance occurred in late 2004, followed by a pronounced acceleration of mass loss due to climate warming. Glaciers in the Gulf of Alaska exhibit persistent mass loss with a marked intensification after 2012, while in the Antarctic Peninsula, ice mass loss substantially slowed and a potential trend reversal emerged around 2021. The reconstructed mass anomalies show strong consistency with independent satellite altimetry and climate indicators, including a clear response to the 1997/1998 El Niño event prior to the GRACE mission. These findings demonstrate that integrating SLR with GRACE enables robust detection of non-linear, climate-driven mass redistribution on a global scale and provides a physically consistent extension of satellite gravimetry records beyond the GRACE era. Full article
24 pages, 7504 KB  
Article
Historical Trajectories of the Evolved Cropland Features and Their Reshaped Influences on Agricultural Landscapes and Ecosystem Services in China’s Sanjiang Commodity Grain Base
by Tao Pan, Kun Liu, Zherui Yin, Zexian Li and Lin Shi
Land 2026, 15(1), 175; https://doi.org/10.3390/land15010175 (registering DOI) - 16 Jan 2026
Abstract
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a [...] Read more.
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a century of study on the ‘land trajectory migration–landscape evolution–ecological effect,’ covering the period 1970–2020, was elucidated using the synergistic methodology of spatial analysis technology, the reclamation rate algorithm, the landscape indicator, and the newly established ecosystem service improvement model. Satellite observation results indicate that the cropland area exhibited a substantial expansion trend from 23,672.69 km2 to 42,856.17 km2 from 1970 to 2020, representing a net change of +19,183.48 km2 and a huge growth rate of 81.04%, which led to an obvious improvement in the level of agricultural cultivation. Concurrently, the internal structure of the cropland underwent dramatic restructuring, with rice fields increasing from 6.46% to 53.54%, while upland fields decreased from 93.54% to 46.46%. In different regions, spatially heterogeneous improvements of 2.64–52.47% in agricultural cultivation levels across all cities were observed. From 1970 to 2020, the tracked cropland center of gravity trajectories exhibited a distinct biphasic pattern, initially shifting westward and then followed by a southward transition, accumulating a displacement of 19.39 km2. As for the evolved agricultural landscapes, their integrity has improved (SHDI = −0.08%), accompanied by increased connectivity (CON = +8.82%) and patch edge integrity (LSI = −15.71%) but also by reduced fragmentation (PD = −48.14%). Another important discovery was that the evaluated ecosystem services continuously decreased from 2337.84 × 108 CNY in 1970 to 1654.01 × 108 CNY in 2020, a net loss of −683.84 × 108 CNY and a huge loss rate of 33.65%, accompanied by a center–periphery gradient pattern whereby degradation propagated from the low-value central croplands to the high-value surrounding natural covers. These discoveries will play a significant role in guiding farmland structure reformation, landscape optimization, and ecosystem service improvement. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

23 pages, 7021 KB  
Article
Improved Daily Nighttime Light Data as High-Frequency Economic Indicator
by Xiangqi Yue, Zhong Zhao and Kun Hu
Appl. Sci. 2026, 16(2), 947; https://doi.org/10.3390/app16020947 - 16 Jan 2026
Abstract
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar [...] Read more.
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar illumination, atmospheric conditions, and seasonality can introduce noise into daily radiance retrievals. This study develops a locally adaptive framework to diagnose and correct residual disturbances in daily NTL data. By estimating location-specific regression models, we quantify the residual sensitivity of VNP46A2 radiance to multiple disturbance factors and selectively remove statistically significant components. The results show that the proposed approach effectively removes statistically significant residual disturbances from daily NTL data in the VNP46A2 product. An application for COVID-19 containment periods in China demonstrates the effectiveness of the proposed approach, where corrected daily NTL data exhibit enhanced temporal stability and improved interpretability. Further analysis based on event study approaches demonstrates that corrected daily NTL data enable the identification of short-run policy effects that are difficult to detect with lower-frequency indicators. Overall, this study enhances the suitability of daily NTL data for high-frequency socioeconomic applications and extends existing preprocessing approaches for daily NTL observations. Full article
(This article belongs to the Collection Space Applications)
Show Figures

Figure 1

26 pages, 67070 KB  
Article
Time Series Analysis of Fucheng-1 Interferometric SAR for Potential Landslide Monitoring and Synergistic Evaluation with Sentinel-1 and ALOS-2
by Guangmin Tang, Keren Dai, Feng Yang, Weijia Ren, Yakun Han, Chenwen Guo, Tianxiang Liu, Shumin Feng, Chen Liu, Hao Wang, Chenwei Zhang and Rui Zhang
Remote Sens. 2026, 18(2), 304; https://doi.org/10.3390/rs18020304 - 16 Jan 2026
Abstract
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series [...] Read more.
Fucheng-1 is China’s first commercial synthetic aperture radar (SAR) satellite equipped with interferometric capabilities. Since its launch in 2023, it has demonstrated strong potential across a range of application domains. However, a comprehensive and systematic evaluation of its overall performance, including its time-series monitoring capability, is still lacking. This study applies the Small Baseline Subset (SBAS-InSAR) method to conduct the first systematic processing and evaluation of 22 Fucheng-1 images acquired between 2023 and 2024. A total of 45 potential landslides were identified and subsequently validated through field investigations and UAV-based LiDAR data. Comparative analysis with Sentinel-1 and ALOS-2 indicates that Fucheng-1 demonstrates superior performance in small-scale deformation identification, temporal-variation characterization, and maintaining a high density of coherent pixels. Specifically, in the time-series InSAR-based potential landslide identification, Fucheng-1 identified 13 small-scale potential landslides, whereas Sentinel-1 identified none; the number of identifications is approximately 2.17 times that of ALOS-2. For time-series subsidence monitoring, the deformation magnitudes retrieved from Fucheng-1 are generally larger than those from Sentinel-1, mainly attributable to finer spatial sampling enabled by its higher spatial resolution and a higher maximum detectable deformation gradient. Moreover, as landslide size decreases, the advantages of Fucheng-1 in deformation identification and subsidence estimation become increasingly evident. Interferometric results further show that the number of high-coherence pixels for Fucheng-1 is 7–8 times that of co-temporal Sentinel-1 and 1.1–1.4 times that of ALOS-2, providing more high-quality observations for time-series inversion and thereby supporting a more detailed and spatially continuous reconstruction of deformation fields. Meanwhile, the orbital stability of Fucheng-1 is comparable to that of Sentinel-1, and its maximum detectable deformation gradient in mountainous terrain reaches twice that of Sentinel-1. Overall, this study provides the first systematic validation of the time-series InSAR capability of Fucheng-1 under complex terrain conditions, offering essential support and a solid foundation for the operational deployment of InSAR technologies based on China’s domestic SAR satellite constellation. Full article
18 pages, 6228 KB  
Article
All-Weather Flood Mapping Using a Synergistic Multi-Sensor Downscaling Framework: Case Study for Brisbane, Australia
by Chloe Campo, Paolo Tamagnone, Suelynn Choy, Trinh Duc Tran, Guy J.-P. Schumann and Yuriy Kuleshov
Remote Sens. 2026, 18(2), 303; https://doi.org/10.3390/rs18020303 - 16 Jan 2026
Abstract
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from [...] Read more.
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from three public sensor types. Our methodology harmonizes these disparate data sources by using surface water fraction as a common variable and downscaling them with flood susceptibility and topography information. This allows for the integration of sub-daily observations from the Visible Infrared Imaging Radiometer Suite and the Advanced Himawari Imager with the cloud-penetrating capabilities of the Advanced Microwave Scanning Radiometer 2. We evaluated this approach on the February 2022 flood in Brisbane, Australia using an independent ground truth dataset. The framework successfully compensates for the limitations of individual sensors, enabling the consistent generation of detailed, high-resolution flood maps. The proposed method outperformed the flood extent derived from commercial high-resolution optical imagery, scoring 77% higher than the Copernicus Emergency Management Service (CEMS) map in the Critical Success Index. Furthermore, the True Positive Rate was twice as high as the CEMS map, confirming that the proposed method successfully overcame the cloud cover issue. This approach provides valuable, actionable insights into inundation dynamics, particularly when other public data sources are unavailable. Full article
32 pages, 10772 KB  
Article
A Robust Deep Learning Ensemble Framework for Waterbody Detection Using High-Resolution X-Band SAR Under Data-Constrained Conditions
by Soyeon Choi, Seung Hee Kim, Son V. Nghiem, Menas Kafatos, Minha Choi, Jinsoo Kim and Yangwon Lee
Remote Sens. 2026, 18(2), 301; https://doi.org/10.3390/rs18020301 - 16 Jan 2026
Abstract
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of [...] Read more.
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of weather or illumination. This study introduces a deep learning-based ensemble framework for precise inland waterbody detection using high-resolution X-band Capella SAR imagery. To improve the discrimination of water from spectrally similar non-water surfaces (e.g., roads and urban structures), an 8-channel input configuration was developed by incorporating auxiliary geospatial features such as height above nearest drainage (HAND), slope, and land cover classification. Four advanced deep learning segmentation models—Proportional–Integral–Derivative Network (PIDNet), Mask2Former, Swin Transformer, and Kernel Network (K-Net)—were systematically evaluated via cross-validation. Their outputs were combined using a weighted average ensemble strategy. The proposed ensemble model achieved an Intersection over Union (IoU) of 0.9422 and an F1-score of 0.9703 in blind testing, indicating high accuracy. While the ensemble gains over the best single model (IoU: 0.9371) were moderate, the enhanced operational reliability through balanced Precision–Recall performance provides significant practical value for flood and water resource monitoring with high-resolution SAR imagery, particularly under data-constrained commercial satellite platforms. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

16 pages, 2464 KB  
Article
A Novel Optimization Method for Shape Adjustment of a Large-Scale Planar Phased Array Antenna with Inherent Cables
by Jiyang Zhou, Xiang Liu and Guoping Cai
Actuators 2026, 15(1), 60; https://doi.org/10.3390/act15010060 - 16 Jan 2026
Abstract
Large-scale frames are increasingly used in engineering structures, particularly in aerospace structures. Among them, planar phased array satellite antennas used for global observations and target tracking have received much attention. Considering that structural deformation will degrade the coherence of antennas, a frame with [...] Read more.
Large-scale frames are increasingly used in engineering structures, particularly in aerospace structures. Among them, planar phased array satellite antennas used for global observations and target tracking have received much attention. Considering that structural deformation will degrade the coherence of antennas, a frame with inherent diagonal cables that serves to control the antennas’ static configuration is thoroughly studied. These inherent cables of planar phased arrays are pre-tensioned to preserve the structural integrity and increase the stiffness of the antenna. However, they are also used as actuators in our research; in this way, additional control devices are not needed. As a result, the antenna’s mass will decrease, and its reliability will increase. For high observation accuracy, the antennas tend to be very large. Accordingly, there is a significant deformation of space antennas when they are loaded. For this reason, a nonlinear finite element method is used to consider the structures’ geometrical nonlinearity. In order to achieve shape adjustment, the difference between active and passive cables must be carefully investigated. Furthermore, for the nonlinear structure in this paper, the active cables will deform in tandem with the structure as a whole so that the direction of the active cables’ control forces will also change during the entire control process. This paper elaborates on this problem and proposes a nonlinear optimization method considering this characteristic of the cables. Simulations of a simplified 2-bay and 18-bay satellite antenna are performed to validate the proposed method. Results of the numerical simulation demonstrate that the proposed method can successfully adjust the large-scale antenna’s static shape and achieve high precision. Full article
(This article belongs to the Special Issue Dynamics and Control of Aerospace Systems—2nd Edition)
Show Figures

Figure 1

36 pages, 2298 KB  
Review
Onboard Deployment of Remote Sensing Foundation Models: A Comprehensive Review of Architecture, Optimization, and Hardware
by Hanbo Sang, Limeng Zhang, Tianrui Chen, Weiwei Guo and Zenghui Zhang
Remote Sens. 2026, 18(2), 298; https://doi.org/10.3390/rs18020298 - 16 Jan 2026
Abstract
With the rapid growth of multimodal remote sensing (RS) data, there is an increasing demand for intelligent onboard computing to alleviate the transmission and latency bottlenecks of traditional orbit-to-ground downlinking workflows. While many lightweight AI algorithms have been widely developed and deployed for [...] Read more.
With the rapid growth of multimodal remote sensing (RS) data, there is an increasing demand for intelligent onboard computing to alleviate the transmission and latency bottlenecks of traditional orbit-to-ground downlinking workflows. While many lightweight AI algorithms have been widely developed and deployed for onboard inference, their limited generalization capability restricts performance under the diverse and dynamic conditions of advanced Earth observation. Recent advances in remote sensing foundation models (RSFMs) offer a promising solution by providing pretrained representations with strong adaptability across diverse tasks and modalities. However, the deployment of RSFMs onboard resource-constrained devices such as nano satellites remains a significant challenge due to strict limitations in memory, energy, computation, and radiation tolerance. To this end, this review proposes the first comprehensive survey of onboard RSFMs deployment, where a unified deployment pipeline including RSFMs development, model compression techniques, and hardware optimization is introduced and surveyed in detail. Available hardware platforms are also discussed and compared, based on which some typical case studies for low Earth orbit (LEO) CubeSats are presented to analyze the feasibility of onboard RSFMs’ deployment. To conclude, this review aims to serve as a practical roadmap for future research on the deployment of RSFMs on edge devices, bridging the gap between the large-scale RSFMs and the resource constraints of spaceborne platforms for onboard computing. Full article
Show Figures

Figure 1

27 pages, 11028 KB  
Article
Integration of Satellite-Derived Meteorological Inputs into SWAT, XGBoost, WGAN, and Hybrid Modelling Frameworks for Climate Change-Driven Streamflow Simulation in a Data-Scarce Region
by Sefa Nur Yeşilyurt and Gülay Onuşluel Gül
Water 2026, 18(2), 239; https://doi.org/10.3390/w18020239 - 16 Jan 2026
Abstract
The pressure of climate change on water resources has made the development of reliable hydrological models increasingly important, especially for data-scarce regions. However, due to the limited availability of ground-based observations, it considerably affects the accuracy of models developed using these inputs. This [...] Read more.
The pressure of climate change on water resources has made the development of reliable hydrological models increasingly important, especially for data-scarce regions. However, due to the limited availability of ground-based observations, it considerably affects the accuracy of models developed using these inputs. This also limits the ability to investigate future hydrological behavior. Satellite-based data sources have emerged as an alternative to address this challenge and have received significant attention. However, the transferability of these datasets across different model classes has not been widely explored. This paper evaluates the transferability of satellite-derived inputs to eleven types of models, including process-based (SWAT), data-driven methods (XGBoost and WGAN), and hybrid model structures that utilize SWAT outputs with AI models. SHAP has been applied to overcome the black-box limitations of AI models and gain insights into fundamental hydrometeorological processes. In addition, uncertainty analysis was performed for all models, enabling a more comprehensive evaluation of performance. The results indicate that hybrid models using SWAT combined with WGAN can achieve better predictive accuracy than the SWAT model based on ground observation. While the baseline SWAT model achieved satisfactory performance during the validation period (NSE ≈ 0.86, KGE ≈ 0.80), the hybrid SWAT + WGAN framework improved simulation skill, reaching NSE ≈ 0.90 and KGE ≈ 0.89 during validation. Models forced with satellite-derived meteorological inputs additionally performed as well as those forced using station-based observations, validating the feasibility of using satellite products as alternative data sources. The future hydrological status of the basin was assessed based on the best-performing hybrid model and CMIP6 climate projections, showing a clear drought signal in the flows and long-term reductions in average flows reaching up to 58%. Overall, the findings indicate that the proposed framework provides a consistent approach for data-scarce basins. Future applications may benefit from integrating spatio-temporal learning frameworks and ensemble-based uncertainty quantification to enhance robustness under changing climate conditions. Full article
(This article belongs to the Special Issue Application of Hydrological Modelling to Water Resources Management)
Show Figures

Figure 1

26 pages, 8634 KB  
Article
Using Satellite-Based Evapotranspiration (ESTIMET) in SWAT to Quantify Sediment Yield in Scarce Data in a Desertified Watershed
by Raul Gomes da Silva, Aline Maria Soares das Chagas, Monaliza Araújo de Santana, Cinthia Maria de Abreu Claudino, Victor Hugo Rabelo Coelho, Thayná Alice Brito Almeida, Abelardo Antônio de Assunção Montenegro, Yuri Jacques Agra Bezerra da Silva and Carolyne Wanessa Lins de Andrade Farias
Sustainability 2026, 18(2), 917; https://doi.org/10.3390/su18020917 - 16 Jan 2026
Abstract
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study [...] Read more.
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study proposes a remote-sensing-based calibration approach using ESTIMET to overcome data scarcity. Daily satellite-derived evapotranspiration (ET) data to assess the performance of the Soil and Water Assessment Tool (SWAT) was used to evaluate the performance of the SWAT in a desertified watershed in Brazil, aiming to assess ESTIMET’s effectiveness in supporting SWAT calibration, quantify sediment yield, and examine the influence of land-use changes on environmental quality over 21-years period. The results highlight a distinct hydrological response in SWAT initially underestimated ET, contrasting with patterns typically observed in other semi-arid applications and demonstrating that desertified environments require distinct calibration strategies. Performance indicators showed strong agreement between observed and simulated ET (R2 = 0.94; NSE = 0.76), supporting satellite-based ET as a valuable source for improving SWAT performance in watersheds where empirical hydrometeorological data are sparse or unevenly distributed. Sediment yield was generally low to moderate, with degradation concentrated in bare-soil areas associated with deforestation. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

24 pages, 12869 KB  
Article
Global Atmospheric Pollution During the Pandemic Period (COVID-19)
by Débora Souza Alvim, Cássio Aurélio Suski, Dirceu Luís Herdies, Caio Fernando Fontana, Eliza Miranda de Toledo, Bushra Khalid, Gabriel Oyerinde, Andre Luiz dos Reis, Simone Marilene Sievert da Costa Coelho, Monica Tais Siqueira D’Amelio Felippe and Mauricio Lamano
Atmosphere 2026, 17(1), 89; https://doi.org/10.3390/atmos17010089 - 15 Jan 2026
Abstract
The COVID-19 pandemic led to an unprecedented slowdown in global economic and transportation activities, offering a unique opportunity to assess the relationship between human activity and atmospheric pollution. This study analyzes global variations in major air pollutants and meteorological conditions during the pandemic [...] Read more.
The COVID-19 pandemic led to an unprecedented slowdown in global economic and transportation activities, offering a unique opportunity to assess the relationship between human activity and atmospheric pollution. This study analyzes global variations in major air pollutants and meteorological conditions during the pandemic period using multi-satellite and reanalysis datasets. Nitrogen dioxide (NO2) data were obtained from the OMI sensor aboard NASA’s Aura satellite, while carbon monoxide (CO) observations were taken from the MOPITT instrument on Terra. Reanalysis products from MERRA-2 were used to assess CO, sulfur dioxide (SO2), black carbon (BC), organic carbon (OC), and key meteorological variables, including temperature, precipitation, evaporation, wind speed, and direction. Average concentrations of pollutants for April, May, and June 2020, representing the lockdown phase, were compared with the average values of the same months during 2017–2019, representing pre-pandemic conditions. The difference between these multi-year means was used to quantify spatial changes in pollutant levels. Results reveal widespread reductions in NO2, CO, SO2, and BC concentrations across major industrial and urban regions worldwide, consistent with decreased anthropogenic activity during lockdowns. Meteorological analysis indicates that the observed reductions were not primarily driven by short-term weather variability, confirming that the declines are largely attributable to reduced emissions. Unlike most previous studies, which examined local or regional air-quality changes, this work provides a consistent global-scale assessment using harmonized multi-sensor datasets and uniform temporal baselines. These findings highlight the strong influence of human activities on atmospheric composition and demonstrate how large-scale behavioral and economic shifts can rapidly alter air quality on a global scale. The results also provide valuable baseline information for understanding emission–climate interactions and for guiding post-pandemic strategies aimed at sustainable air-quality management. Full article
Show Figures

Figure 1

31 pages, 8628 KB  
Article
HiT_DS: A Modular and Physics-Informed Hierarchical Transformer Framework for Spatial Downscaling of Sea Surface Temperature and Height
by Min Wang, Weixuan Liu, Rong Chu, Xidong Wang, Shouxian Zhu and Guanghong Liao
Remote Sens. 2026, 18(2), 292; https://doi.org/10.3390/rs18020292 - 15 Jan 2026
Abstract
Recent advances in satellite observations have expanded the use of Sea Surface Temperature (SST) and Sea Surface Height (SSH) data in climate and oceanography, yet their low spatial resolution limits fine-scale analyses. We propose HiT_DS, a modular hierarchical Transformer framework for high-resolution downscaling [...] Read more.
Recent advances in satellite observations have expanded the use of Sea Surface Temperature (SST) and Sea Surface Height (SSH) data in climate and oceanography, yet their low spatial resolution limits fine-scale analyses. We propose HiT_DS, a modular hierarchical Transformer framework for high-resolution downscaling of SST and SSH fields. To address challenges in multiscale feature representation and physical consistency, HiT_DS integrates three key modules: (1) Enhanced Dual Feature Extraction (E-DFE), which employs depth-wise separable convolutions to improve local feature modeling efficiently; (2) Gradient-Aware Attention (GA), which emphasizes dynamically important high-gradient structures such as oceanic fronts; and (3) Physics-Informed Loss Functions, which promote physical realism and dynamical consistency in the reconstructed fields. Experiments across two dynamically distinct oceanic regions demonstrate that HiT_DS achieves improved reconstruction accuracy and enhanced physical fidelity, with selective module combinations tailored to regional dynamical conditions. This framework provides an effective and extensible approach for oceanographic data downscaling. Full article
20 pages, 6153 KB  
Article
Comparing Cotton ET Data from a Satellite Platform, In Situ Sensor, and Soil Water Balance Method in Arizona
by Elsayed Ahmed Elsadek, Said Attalah, Clinton Williams, Kelly R. Thorp, Dong Wang and Diaa Eldin M. Elshikha
Agriculture 2026, 16(2), 228; https://doi.org/10.3390/agriculture16020228 - 15 Jan 2026
Abstract
Crop production in the desert Southwest of the United States, as well as in other arid and semi-arid regions, requires tools that provide accurate crop evapotranspiration (ET) estimates to support efficient irrigation management. Such tools include the web-based OpenET platform, which provides real-time [...] Read more.
Crop production in the desert Southwest of the United States, as well as in other arid and semi-arid regions, requires tools that provide accurate crop evapotranspiration (ET) estimates to support efficient irrigation management. Such tools include the web-based OpenET platform, which provides real-time ET data generated from six satellite-based models, their Ensemble, and a field-based system (LI-710, LI-COR Inc., Lincoln, NE, USA). This study evaluated simulated ET (ETSIM) of cotton (Gossypium hirsutum L.) derived from OpenET models (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop), their Ensemble approach, and LI-710. Field data were utilized to estimate cotton ET using the soil water balance (SWB) method (ETSWB) from June to October 2025 in Gila Bend, AZ, USA. Four evaluation metrics, the normalized root-mean-squared error (NRMSE), mean bias error (MBE), simulation error (Se), and coefficient of determination (R2), were employed to evaluate the performance of OpenET models, their Ensemble, and the LI-710 in estimating cotton ET. Statistical analysis indicated that the ALEXI/DisALEXI, geeSEBAL, and PT-JPL models substantially underestimated ETSWB, with simulation errors ranging from −26.92% to −20.57%. The eeMETRIC, SIMS, SSEBop, and Ensemble provided acceptable ET estimates (22.57% ≤ NRMSE ≤ 29.85%, −0.36 mm. day−1 ≤ MBE ≤ 0.16 mm. day−1, −7.58% ≤ Se ≤ 3.42%, 0.57 ≤ R2 ≤ 0.74). Meanwhile, LI-710 simulated cotton ET acceptably with a slight tendency to overestimate daily ET by 0.21 mm. A strong positive correlation was observed between daily ETSIM from LI-710 and ETSWB, with Se and NRMSE of 4.40% and 23.68%, respectively. Based on our findings, using a singular OpenET model, such as eeMETRIC, SIMS, or SSEBop, the OpenET Ensemble, and the LI-710 can offer growers and decision-makers reliable guidance for efficient irrigation management of late-planted cotton in arid and semi-arid climates. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

Back to TopTop