Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = nutrient signature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2484 KB  
Article
Discovering Anticancer Effects of Phytochemicals on MicroRNA in the Context of Data Mining
by Yumi Sakai and Kurataka Otsuka
Nutrients 2025, 17(24), 3913; https://doi.org/10.3390/nu17243913 - 14 Dec 2025
Viewed by 203
Abstract
Background: miRNA is linked to a variety of human diseases, including cancer. The expression levels and profiles can be related to disease prevention and the promotion of good health. Understanding the beneficial changes in miRNA expression mediated by micro- and macronutrients is [...] Read more.
Background: miRNA is linked to a variety of human diseases, including cancer. The expression levels and profiles can be related to disease prevention and the promotion of good health. Understanding the beneficial changes in miRNA expression mediated by micro- and macronutrients is vital for maintaining optimal health. However, it remains unknown which phytochemicals affect miRNA expression, thereby hindering the identification of novel dietary functions. Methods: We searched for and investigated novel phytochemicals that would regulate miRNAs in colon cancer using artificial intelligence. We comprehensively analyzed miRNA expression in colon cancer cell lines treated with new phytochemical candidates using next-generation sequencing. Results: We identified three phytochemicals (fisetin, glabridin, and silibinin) that suppressed cell proliferation and were associated with changes in cancer-related miRNA expression in colon cancer cells. The miRNA expression profiles observed in response to each phytochemical shared some common features while also displaying compound-specific miRNA signatures. Exploratory pathway analyses of fisetin, glabridin, or silibinin have shown that each affects pathways involved in tumor development, including the p53 signaling pathway, apoptosis, cellular senescence, and colorectal cancer. Conclusions: The use of artificial intelligence to explore candidate compounds is beneficial, leading to the discovery of new phytochemicals modulating tumor-related miRNAs. Investigating the mechanisms of action of miRNAs will be essential for understanding new functions of dietary nutrients, thereby providing further insights into the development of diet-based health promotion and disease prevention strategies. Full article
Show Figures

Figure 1

42 pages, 2533 KB  
Review
Epigenetic and Transcriptional Reprogramming in 3D Culture Models in Breast Cancer
by Laura Cecilia Flores-García, Karla Rubio, Eloisa Ibarra-Sierra, Macrina B. Silva-Cázares, Carlos Palma-Flores and César López-Camarillo
Cancers 2025, 17(23), 3830; https://doi.org/10.3390/cancers17233830 - 29 Nov 2025
Viewed by 453
Abstract
Breast cancer remains the leading cause of cancer-related death in women worldwide. This disease is characterized by its molecular and phenotypic heterogeneity, which hinders the development of effective therapies. While two-dimensional (2D) monolayer cell cultures are widely used, they are insufficient to reproduce [...] Read more.
Breast cancer remains the leading cause of cancer-related death in women worldwide. This disease is characterized by its molecular and phenotypic heterogeneity, which hinders the development of effective therapies. While two-dimensional (2D) monolayer cell cultures are widely used, they are insufficient to reproduce the characteristics of the tumor microenvironment, thus limiting our understanding of cancer biology. In this context, three-dimensional (3D) models have emerged as representative tools that more accurately reproduce tissue architecture, cell signaling, and nutrients and oxygen gradients. These cellular models offer greater similarity to primary tissues, improving the study of relevant biological processes. Although 3D cultures provide numerous advantages in cancer research, there is no unified model that standardizes the matrix type and parameters such as gelation time or porosity, hindering the reproducibility and interpretability of the data. This review integrates evidence from various studies to evaluate the effect of epigenetic variations generated by 3D culture methods, which are regulated by mechanotransduction and, consequently, by signaling pathways such as integrin/FAK-ILK/Rho-YAP derived from interactions of cells with extracellular matrix-enriched scaffolds. This affects processes such as DNA methylation, histone coding, and the regulation of non-coding RNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in different molecular subtypes of breast cancer. Overall, the evidence highlights that 3D culture methods are not equivalent but rather generate distinct epigenetic signatures at the non-coding RNA level that influence the proliferation, differentiation, therapeutic resistance, and metastatic potential of tumor cells. Furthermore, the evidence suggests that histone coding patterns, primarily through the reduction of acetylation marks, are conserved regardless of the type of 3D culture. In summary, the study highlights that the microarchitectural and compositional characteristics of 3D scaffolds are key determinants of epigenetic plasticity. Full article
(This article belongs to the Special Issue 3D Cultures and Organoids in Cancer Research)
Show Figures

Figure 1

18 pages, 7581 KB  
Article
Improving Soil Properties and Microbiomes by Mixed Eucalyptus–Cupressus Afforestation
by You-Wei Zuo, Yu-Ying Liu, Ya-Xin Jiang, Wen-Qiao Li, Yang Peng, Sheng-Mao Zhou, Shi-Qi You, Sheng-Qiao Liu and Hong-Ping Deng
Biology 2025, 14(12), 1667; https://doi.org/10.3390/biology14121667 - 24 Nov 2025
Viewed by 301
Abstract
Monoculture plantations of Eucalyptus in China have raised ecological concerns due to water depletion, soil degradation, and fire risk. Integrating Eucalyptus with Cupressus offers a sustainable approach to improving forest ecosystem health. In this study, we established five forest treatments, pure Eucalyptus (1:0), [...] Read more.
Monoculture plantations of Eucalyptus in China have raised ecological concerns due to water depletion, soil degradation, and fire risk. Integrating Eucalyptus with Cupressus offers a sustainable approach to improving forest ecosystem health. In this study, we established five forest treatments, pure Eucalyptus (1:0), mixed EucalyptusCupressus at three ratios (2:1, 1:1, and 1:2), and pure Cupressus (0:1), to assess their effects on soil properties, microbial diversity, and metabolomic profiles. Laboratory analyses revealed significant differences in physicochemical soil properties (such as water content (p < 0.05), pH (p < 0.001), organic carbon (p < 0.001), and nitrogen (p < 0.001)) among various groups within the mixed forests. Microbial community investigations highlighted a unique microbial signature in EucalyptusCupressus mixed forests, especially when the tree ratio was 1:2, characterized by a rich (Chao1, p < 0.05) and diverse (Shannon, p < 0.05) array of bacterial taxa. The mixed EucalyptusCupressus forest also exhibited an uplift in microbial communities, bacterial genera such as RB41, and fungal genera including Penicillium, Talaromyces, and Mortierella, which are associated with enhanced organic matter decomposition and nutrient cycling. Interactive networks within microbial communities were revealed through co-occurrence and Spearman correlation analyses, highlighting potential symbiotic relationships and ecological complexities. Metabolomic analysis, coupled with pathway analysis, further illuminated metabolic shifts in the mixed forests, emphasizing alterations in key metabolic pathways such as phenylpropanoid biosynthesis, tyrosine metabolism, arachidonic acid metabolism, and isoquinoline alkaloid biosynthesis. Collectively, these results show that moderately mixed EucalyptusCupressus forests improve soil fertility and microbial multifunctionality, providing a practical model for sustainable and resilient forest management in subtropical regions. Full article
Show Figures

Graphical abstract

20 pages, 6246 KB  
Article
Electrophysiological Insights into the Adaptability of Bletilla striata to Bicarbonate Stress in Karst Habitats
by Juke Zhang, Yanyou Wu, Hanqing Meng, Juyue Xiao, Mingkai Wu and Ziyang Wang
Agronomy 2025, 15(11), 2628; https://doi.org/10.3390/agronomy15112628 - 16 Nov 2025
Viewed by 387
Abstract
Bletilla striata, a perennial orchid of both medicinal and ecological value, exhibits remarkable adaptability to bicarbonate-rich karst environments. To elucidate its physiological and electrophysiological responses to bicarbonate stress, seedlings were cultivated for 45 days under NaHCO3 concentrations of 0, 5, 10, [...] Read more.
Bletilla striata, a perennial orchid of both medicinal and ecological value, exhibits remarkable adaptability to bicarbonate-rich karst environments. To elucidate its physiological and electrophysiological responses to bicarbonate stress, seedlings were cultivated for 45 days under NaHCO3 concentrations of 0, 5, 10, and 15 mM (n = 4), with the nutrient solution renewed daily. At 5 mM, biomass, chlorophyll content, electrophysiological traits, nutrient transport, metabolic indices, and conductance–resistance parameters did not differ significantly from controls, while intracellular water-use efficiency exhibited only a minor, non-significant increase—indicating stable physiological performance under low bicarbonate conditions. By contrast, higher concentrations (≥10 mM), particularly 15 mM, markedly reduced intracellular water-holding capacity (−35.90%), nutrient translocation capacity (−22.26%), and metabolic activity (−50.00%), alongside electrophysiological signatures of diminished capacitance (−48.69%) and elevated resistance (+147.61%), consistent with membrane injury and impaired ion transport. Although xylem pathways dominated HCO3 transport, the phloem—despite greater sensitivity—showed an increased relative contribution under stress, supporting partial compensatory allocation. Metabolically, severe stress induced a shift toward a “low-metabolism, high-efficiency” strategy, prioritizing water conservation over carbon assimilation. Collectively, Bletilla striata adopts a dual strategy: maintaining functional stability (and modest enhancement) under environmentally relevant bicarbonate concentrations, while shifting to conservative resource-use under excessive stress. These adaptive mechanisms highlight B. striata’s potential for ecological restoration and sustainable cultivation in bicarbonate-rich karst environments. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 2379 KB  
Article
Cardiometabolic Phenotypes and Dietary Patterns in Albanian University-Enrolled Young Adults: Cross-Sectional Findings from the Nutrition Synergies WHO-Aligned Sentinel Platform
by Vilma Gurazi, Sanije Zejnelhoxha, Megisa Sulenji, Lajza Koxha, Herga Protoduari, Kestjana Arapi, Elma Rexha, Flavia Gjata, Orgesa Spahiu and Erand Llanaj
Nutrients 2025, 17(21), 3395; https://doi.org/10.3390/nu17213395 - 29 Oct 2025
Cited by 1 | Viewed by 1057
Abstract
Background: Albania is undergoing rapid nutrition transition, yet cardiometabolic (CM) risk in young adults is poorly characterized. We report baseline, cross-sectional findings from a WHO-aligned sentinel study examining diet, physical activity and early CM phenotypes, with fat quality examined as a modifiable [...] Read more.
Background: Albania is undergoing rapid nutrition transition, yet cardiometabolic (CM) risk in young adults is poorly characterized. We report baseline, cross-sectional findings from a WHO-aligned sentinel study examining diet, physical activity and early CM phenotypes, with fat quality examined as a modifiable exposure. Methods: Young adults recruited on campus (n = 262; median age, 21 years; 172 women, 90 men) underwent standardized anthropometry, seated blood pressure (BP) and fasting glucose (FG). Diet was assessed by two interviewer-administered 24 h recalls and activity outlined by the IPAQ-short form. We derived potential renal acid load (PRAL) and a MASLD-oriented nutrient score, computed a composite CM risk score (cCMRS: sex-standardized mean of WHtR, mean arterial pressure, FG) and fitted prespecified energy-partition models for isocaloric +5% of energy substitutions (SFA → PUFA; SFA → MUFA) with Benjamini–Hochberg false discovery rate (FDR) control. Results: Despite normal average BMI (23.4), risk clustering was common: elevated BP in 63% of men and 30% of women, impaired FG (100–125 mg/dL) in almost one third and central adiposity (WHtR ≥ 0.5) in 51% of men and 24% of women. Diets were SFA-rich (~17–19%E), sodium-dense and low in fiber and several micronutrients (e.g., vitamin D, folate, potassium). In isocaloric models, SFA → PUFA was associated with more favorable nutrient signatures: MASLD-oriented score −28% (p < 0.001; FDR-significant) and PRAL −33% (p = 0.007; FDR-borderline/suggestive). Conclusions: A waist-centric CM subphenotype—central adiposity co-occurring with upward BP shifts and intermittent dysglycemia—was detectable in young adults despite normal average BMI, against a background of poor diet quality and low activity. These baseline surveillance signals are not causal effects. Integration into routine with WHO-aligned NCD surveillance is feasible. Prospective follow-up (biomarker calibration, device-based activity, repeated waves) will refine inferences and inform scalable proactive prevention. Full article
Show Figures

Graphical abstract

20 pages, 5128 KB  
Article
Bioinformatics Approach to mTOR Signaling Pathway-Associated Genes and Cancer Etiopathogenesis
by Kursat Ozdilli, Gozde Oztan, Demet Kıvanç, Ruştu Oğuz, Fatma Oguz and Hayriye Senturk Ciftci
Genes 2025, 16(11), 1253; https://doi.org/10.3390/genes16111253 - 24 Oct 2025
Viewed by 715
Abstract
Background/Objectives: The mTOR serine/threonine kinase coordinates protein translation, cell growth, and metabolism, and its dysregulation promotes tumorigenesis. We present a reproducible, pan-cancer, network-aware framework that integrates curated resources with genomics to move beyond pathway curation, yielding falsifiable hypotheses and prioritized candidates for [...] Read more.
Background/Objectives: The mTOR serine/threonine kinase coordinates protein translation, cell growth, and metabolism, and its dysregulation promotes tumorigenesis. We present a reproducible, pan-cancer, network-aware framework that integrates curated resources with genomics to move beyond pathway curation, yielding falsifiable hypotheses and prioritized candidates for mTOR axis biomarker validation. Materials and Methods: We assembled MTOR-related genes and interactions from GeneCards, KEGG, STRING, UniProt, and PathCards and harmonized identifiers. We formulated a concise working model linking genotype → pathway architecture (mTORC1/2) → expression-level rewiring → phenotype. Three analyses operationalized this model: (i) pan-cancer alteration mapping to separate widely shared drivers from tumor-specific nodes; (ii) expression-based activity scoring to quantify translational/nutrient-sensing modules; and (iii) topology-aware network propagation (personalized PageRank/Random Walk with Restart on a high-confidence STRING graph) to nominate functionally proximal neighbors. Reproducibility was supported by degree-normalized diffusion, predefined statistical thresholds, and sensitivity analyses. Results: Gene ontology analysis demonstrated significant enrichment for mTOR-related processes (TOR/TORC1 signaling and cellular responses to amino acids). Database synthesis corroborated disease associations involving MTOR and its partners (e.g., TSC2, RICTOR, RPTOR, MLST8, AKT1 across selected carcinomas). Across cohorts, our framework distinguishes broadly shared upstream drivers (PTEN, PIK3CA) from lineage-enriched nodes (e.g., RICTOR-linked components) and prioritizes non-mutated, network-proximal candidates that align with mTOR activity signatures. Conclusions: This study delivers a transparent, pan-cancer framework that unifies curated biology, genomics, and network topology to produce testable predictions about the mTOR axis. By distinguishing shared drivers from tumor-specific nodes and elevating non-mutated, topology-inferred candidates, the approach refines biomarker discovery and suggests architecture-aware therapeutic strategies. The analysis is reproducible and extensible, supporting prospective validation of prioritized candidates and the design of correlative studies that align pathway activity with clinical response. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 4256 KB  
Article
Single-Cell RNA-Seq Identifies Immune Remodeling in Lungs of β-Carotene Oxygenase 2 Knockout Mice with Improved Antiviral Response
by Yashu Tang, William Lin, Xiang Chi, Huimin Chen, Dingbo Lin, Winyoo Chowanadisai, Xufang Deng and Peiran Lu
Nutrients 2025, 17(21), 3329; https://doi.org/10.3390/nu17213329 - 23 Oct 2025
Viewed by 1028
Abstract
Background/Objectives: β-Carotene oxygenase-2 (BCO2) is a mitochondrial carotenoid-cleaving enzyme expressed in multiple tissues, including the lungs. While BCO2 regulates carotenoid handling, its role in shaping pulmonary immune architecture and antiviral responses is unknown. We hypothesized that BCO2 deficiency reprograms epithelial–innate circuits and [...] Read more.
Background/Objectives: β-Carotene oxygenase-2 (BCO2) is a mitochondrial carotenoid-cleaving enzyme expressed in multiple tissues, including the lungs. While BCO2 regulates carotenoid handling, its role in shaping pulmonary immune architecture and antiviral responses is unknown. We hypothesized that BCO2 deficiency reprograms epithelial–innate circuits and alters antiviral outcomes. Methods: BCO2-knockout (KO) and C57BL/6J wild-type (WT) mice underwent lung single-cell RNA sequencing (scRNA-seq), immunoblotting, and intranasal SARS-CoV-2 challenge to assess cell-type heterogeneity, pathway programs (by gene set variation analysis, GSVA), and antiviral responses. Results: scRNA-seq resolved 14 major lung cell populations with cell-type-specific pathway shifts. Compared with WT, BCO2 KO lungs showed increased conventional dendritic cells and natural killer (NK) cells, with reductions in macrophages, B cells, and endothelial cells. In KO alveolar type II cells, GSVA indicated a stress-adapted metabolic program. Ciliated epithelium exhibited vitamin-K-responsive and axoneme-remodeling signatures with attenuated glucocorticoid and very-low-density lipoprotein remodeling. Innate lymphoid type 2 cells favored fatty acid oxidation and chromatin dynamics with reduced mitochondrial activity. NK cells were biased toward constitutive chemokine/cytokine secretion and counter-inflammatory signaling. Immunoblotting confirmed the elevated level of interferon regulatory factor-3 protein in BCO2-KO lungs. Functionally, BCO2-KO mice had improved outcomes after intranasal SARS-CoV-2 exposure. Conclusions: Loss of BCO2 reconfigures the pulmonary immune landscape and enhances antiviral responsiveness in mice. These findings identify BCO2 as a nutrient-linked enzyme with immunomodulatory impact and highlight cell-state changes as candidate mechanisms for improved antiviral tolerance. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

20 pages, 2967 KB  
Article
The Ionome–Hormone–Flavonoid Network Shapes Genotype-Dependent Yield Adaptation in Sugarcane
by Qinyu Lu, Shimiao Chen, Bin Shan, Ailin Wei, Yuhuan Luo, Lanfang Wu, Qiang Jiang and Zhendong Chen
Plants 2025, 14(20), 3181; https://doi.org/10.3390/plants14203181 - 16 Oct 2025
Viewed by 500
Abstract
Sugarcane productivity varies widely among genotypes, but the biochemical traits underlying these differences remain poorly characterized. In this study, six contrasting sugarcane cultivars were profiled to investigate how ionomic, hormonal, flavonoid, and photosynthetic pigment signatures are associated with yield and sucrose accumulation. Morphological [...] Read more.
Sugarcane productivity varies widely among genotypes, but the biochemical traits underlying these differences remain poorly characterized. In this study, six contrasting sugarcane cultivars were profiled to investigate how ionomic, hormonal, flavonoid, and photosynthetic pigment signatures are associated with yield and sucrose accumulation. Morphological traits and field performance revealed marked genotypic variation, with ZZ14 and GL1215 achieving the highest yields and sugar content, while GT59 and GT60 performed less favorably. Multivariate analyses of ionomic data showed that potassium, magnesium, and calcium were consistently enriched in high-yield cultivars, whereas sodium, boron, and manganese were negatively associated with growth traits. Hormone profiling revealed that high-yielding genotypes utilize diverse strategies: while the high-yielding GL1215 achieved superior sugar content with the lowest levels of growth-promoting hormones, the LT1790 genotype, despite having the highest levels of these hormones, showed suboptimal yield due to a costly trade-off with its hyperactive defense system. Flavonoid analysis indicated that LT1790 contained the highest levels of Quercetin, rutin, and caffeic acid, suggesting enhanced antioxidant capacity, whereas GT59 preferentially accumulated chlorogenic acid. Canonical correlation analysis confirmed that nutrient balance and metabolite composition strongly correlated with plant height, stem diameter, and sugar concentration. Together, these results suggest that high-yield sugarcane genotypes achieve a superior metabolic balance, combining efficient nutrient uptake and robust antioxidant capacity with a favorable hormone profile that promotes strong growth without triggering a costly constitutive defense system. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

27 pages, 1050 KB  
Article
Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania
by Florina-Luciana Burescu, Simona Gavrilaș, Bianca-Denisa Chereji and Florentina-Daniela Munteanu
Environments 2025, 12(10), 377; https://doi.org/10.3390/environments12100377 - 14 Oct 2025
Viewed by 1320
Abstract
Riverbank height plays a potentially important role in hydrological dynamics and pollutant transport, yet its influence on long-term water quality trends remains insufficiently documented. This study explores possible relationships between riverbank height variations and the Global Pollution Index (IGP* [...] Read more.
Riverbank height plays a potentially important role in hydrological dynamics and pollutant transport, yet its influence on long-term water quality trends remains insufficiently documented. This study explores possible relationships between riverbank height variations and the Global Pollution Index (IGP*) in the Timiș River, Romania, over eleven (11) years (2013–2023). A dataset of 17 physicochemical parameters—including BOD5, COD-Cr, dissolved oxygen, nutrients (N and P species), heavy metals (As, Cr, Cu, and Zn), detergents, and phenols—was used to tentatively assess ecological status. The results suggest that, despite a maximum riverbank elevation change of ~11 cm between 2020 and 2025, IGP* values remained within a relatively narrow range (1.98–2.56, mean 2.19), pointing to persistent but moderate anthropogenic pressure. The highest index value (2.56, in 2016) coincided with a transient pollution event, whereas subsequent years stabilized around 2.0–2.3, which may reflect chronic diffuse pollution. Correlation analysis revealed strong associations between BOD5 and conductivity (r = 0.76, linked to organic loads), COD-Cr and heavy metals (r = 0.79, suggestive of industrial influence), and total nitrogen and nitrate (r = 0.97, related to agricultural inputs), appear to outline distinct source-related signatures. This study offers preliminary evidence that even modest riverbank fluctuations may influence hydrodynamics and the fate of pollutants, while basin-scale water quality seems to remain largely governed by diffuse pollution sources. By integrating long-term geomorphological monitoring with multi-parameter water quality data into a composite index (IGP*), our work sketches a potentially innovative framework for diagnosing pollution drivers. The findings underscore the importance of incorporating riverbank morphology into EU Water Framework Directive monitoring, alongside GIS, IoT, and machine learning tools, could contribute to more adaptive river basin management. Full article
Show Figures

Figure 1

18 pages, 2745 KB  
Article
Multi-Omics Analysis Reveals Concentrate Supplementation Alleviates Body Weight Loss by Regulating Rumen Function in Lactating Tibetan Sheep During the Cold Season
by Chao Yang, Qingling Ma, Jiancui Wang, Zhiyou Wang and Shengzhen Hou
Animals 2025, 15(19), 2791; https://doi.org/10.3390/ani15192791 - 25 Sep 2025
Viewed by 625
Abstract
The parturition season of grazing Tibetan ewes spans from October to March, a period that exacerbates the adverse impacts of nutrient-deficient herbage on milk yield, body condition, and postpartum recovery. To alleviate the weight loss of ewes during the cold seasons, we provided [...] Read more.
The parturition season of grazing Tibetan ewes spans from October to March, a period that exacerbates the adverse impacts of nutrient-deficient herbage on milk yield, body condition, and postpartum recovery. To alleviate the weight loss of ewes during the cold seasons, we provided concentrate supplements at four levels (dry matter (DM) basis), 260 g (C1), 440 g (C2), 520 g (C3), and 610 g (C4), alongside a basal diet of grazed pasture. A total of 96 multiparous Tibetan ewes (third parity, body weight: 45.17 ± 3.69 kg (body weight (BW) were enrolled within 12–18 h postpartum and randomly allocated to four dietary groups (n = 24 ewes per group). We measured growth performance, ruminal histomorphology, fermentation parameters, and digestive enzymes. A multi-omics technique (16S rRNA gene sequencing and RNA-seq) was employed to investigate the mechanisms underlying alterations in ruminal function. The results showed that increasing the concentrate level decreased body weight loss and increased average dry matter intake (p < 0.05). Rumen morphology was significantly altered: papilla width and muscle layer thickness were greatest in the C4 group, whereas submucosal thickness was highest in the C1 group (p < 0.05). Cellulase activity was lowest in the C1 group (p < 0.05). Papilla width of lactating Tibetan ewes in the C4 group was higher (p < 0.05) than that in the C1 and C3 groups. Concentrate supplementation altered ruminal microbiota composition and diversity. Each group exhibited a distinct microbial signature: the C1 group was characterized by Lachnospiraceae_XPB1014_group, Candidatus_Omnitrophus, Paenibacillus, and unclassified_Oligoflexaceae; the C2 group was enriched in Papillibacter, Anaerovibrio, V9D2013_group, and unclassified_Peptococcaceae; the C3 group was characterized by unclassified_Bacteroidales_RF16_group; and the C4 group was characterized by Ruminococcus, Pseudobutyrivibrio, and Mitsuokella (p < 0.05). Transcriptomic analysis identified differentially expressed genes (TRPA1, EPHB1, GATA3, C4, ABCG2, THBS4, and TNFRSF11B) that are predominantly involved in immune regulation, signal transduction, and nutrient digestion. The results of Spearman correlation analysis showed that Anaerovibrio was negatively correlated with propionate (r = −0.565, p < 0.05). However, it was positively correlated with the ratio of acetate and propionate (r = 0.579, p < 0.05). Moreover, Lachnospiraceae_XPB1014_group was negatively correlated with cellulase (r = −0.699, p < 0.05) and α-amylase (r = −0.514, p < 0.05). These findings suggest that the increasing concentrate supplementation alleviates body weight loss in lactating Tibetan sheep by orchestrating improvements in rumen histomorphology, digestive function, altering bacteria composition, and ruminal immune and modulating host epithelial gene expression. Full article
Show Figures

Figure 1

16 pages, 3861 KB  
Article
Moss-Induced Changes in Soil C/N/P and CEC: An Integrated Spectral Perspective
by Yu Lu and Zhikui Liu
Sustainability 2025, 17(18), 8348; https://doi.org/10.3390/su17188348 - 17 Sep 2025
Viewed by 719
Abstract
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral [...] Read more.
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral responses to moss cover were concurrently analyzed. Soil properties under moss crusts and bare controls were quantified through chemical assays. Coverage effects were compared via bar charts (sparse) and point-line plots (dense) with fitted curves and 95% confidence intervals. Spectral reflectance (250–2500 nm) was measured to characterize surface optical properties. Statistical correlations between variables were established. Research has shown the following: (1) Moss coverage significantly enhanced OC, TN, and CEC versus bare soil (B. dichotomum showed the strongest improvement: dense crust increased OC/TN/TP by 6.37/1.73/0.45 g kg−1 and doubled CEC). (2) All nutrients and CEC decreased with depth, most sharply for G. humillimum OC (22.38% reduction at 3–6 cm) and P. yokohamae CEC (9.97% reduction). (3) Stoichiometric ratios exhibited species-specific responses: B. dichotomum had the smallest inter-layer differences in C/N/P ratios, while G. humillimum increased C/N by 34.33% at 3–6 cm. Sparse coverage elevated N/P ratios up to 59.38% (G. humillimum, 0–3 cm). (4) Spectral analysis revealed the following: Sparse coverage boosted reflectance via edge scattering and soil background contributions. Dense coverage suppressed reflectance due to water absorption (1450/1900 nm) and limited scattering. Bare soil exhibited persistently low reflectance from hematite absorption (500–700 nm). Moss biocrusts—particularly dense B. dichotomum—optimize topsoil fertility and CEC in karst soils, though effects diminish sharply below 3 cm. Spectral signatures provide non-invasive indicators of coverage density and erosion resistance. These insights highlight the crucial role of species-specific moss selection in promoting sustainable restoration practices and long-term ecological recovery in rocky desertification regions. Full article
Show Figures

Figure 1

16 pages, 1800 KB  
Article
Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph
by Jingwei Song, Odile V. J. Maurelli, Mark S. Yeats, Neil F. Thompson, Michael A. Banks and Bernarda Calla
Genes 2025, 16(9), 1033; https://doi.org/10.3390/genes16091033 - 30 Aug 2025
Viewed by 1270
Abstract
Background/Objectives: Sex determination and differentiation exhibit remarkable molecular diversity across taxa, driven by genetic, epigenetic, and environmental factors. Invertebrates with sequential hermaphroditism, such as the Pacific oyster (Magallana gigas), represent a poorly understood system despite their role as keystone species and [...] Read more.
Background/Objectives: Sex determination and differentiation exhibit remarkable molecular diversity across taxa, driven by genetic, epigenetic, and environmental factors. Invertebrates with sequential hermaphroditism, such as the Pacific oyster (Magallana gigas), represent a poorly understood system despite their role as keystone species and contribution to a substantial aquaculture industry. Methods: To identify sex-related molecular markers during gametogenesis, we repeatedly sampled hemolymph from artificially conditioned oysters over two months, and sex phenotypes were assigned at the end of the experiment by biopsy. Results: RNA-sequencing analysis of five males and five females revealed subtle yet consistent sex-specific transcriptional signatures in hemolymph. We show that gametogenesis proceeds asynchronously among oysters, even within the same sex individuals. Complex physiological trade-offs were discovered between sexes during gonad maturation; in early stages of sexual maturation, females prioritized cell division, whereas males suppressed it. Females exhibited higher expression of solute carrier family (SLC) genes, suggesting enhanced nutrient exchange during oogenesis. Temporal dynamics highlighted differential expression of genes regulating cross-membrane ion gradients (e.g., transient receptor potential channels) and signal transduction (e.g., signal transducer and activator of transcription), previously linked to environmental sex determination (ESD) in some reptilian species. Conclusions: Together, these findings underscore that gametogenesis in Pacific oysters is complex and dynamic, and that molecular pathways of ESD may be partially conserved between invertebrate and vertebrate species. Full article
Show Figures

Figure 1

15 pages, 837 KB  
Review
Resetting Time: The Role of Exercise Timing in Circadian Reprogramming for Metabolic Health
by Stuart J. Hesketh
Obesities 2025, 5(3), 59; https://doi.org/10.3390/obesities5030059 - 7 Aug 2025
Viewed by 2749
Abstract
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. [...] Read more.
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. However, circadian misalignment, whether due to behavioural disruption, nutrient excess, or metabolic disease, impairs these rhythms and contributes to insulin resistance, and the development of obesity, and type 2 diabetes mellitus. Notably, the muscle clock remains responsive to non-photic cues, particularly exercise, which can reset and amplify circadian rhythms even in metabolically impaired states. This work synthesises multi-level evidence from rodent models, human trials, and in vitro studies to elucidate the role of skeletal muscle clocks in circadian metabolic health. It explores how exercise entrains the muscle clock via molecular pathways involving AMPK, SIRT1, and PGC-1α, and highlights the time-of-day dependency of these effects. Emerging data demonstrate that optimally timed exercise enhances glucose uptake, mitochondrial biogenesis, and circadian gene expression more effectively than time-agnostic training, especially in individuals with metabolic dysfunction. Finally, findings are integrated from multi-omic approaches that have uncovered dynamic, time-dependent molecular signatures that underpin circadian regulation and its disruption in obesity. These technologies are uncovering biomarkers and signalling nodes that may inform personalised, temporally targeted interventions. By combining mechanistic insights with translational implications, this review positions skeletal muscle clocks as both regulators and therapeutic targets in metabolic disease. It offers a conceptual framework for chrono-exercise strategies and highlights the promise of multi-omics in developing precision chrono-medicine approaches aimed at restoring circadian alignment and improving metabolic health outcomes. Full article
Show Figures

Figure 1

44 pages, 4214 KB  
Review
LncRNAOmics: A Comprehensive Review of Long Non-Coding RNAs in Plants
by Chinmay Saha, Saibal Saha and Nitai P. Bhattacharyya
Genes 2025, 16(7), 765; https://doi.org/10.3390/genes16070765 - 29 Jun 2025
Cited by 3 | Viewed by 3833
Abstract
The large portion of the eukaryotic genomes was considered non-functional and called the “dark matter” of the genome, now appearing as regulatory hubs coding for RNAs without the potential for making proteins, known as non-coding RNA. Long non-coding RNA (lncRNA) is defined as [...] Read more.
The large portion of the eukaryotic genomes was considered non-functional and called the “dark matter” of the genome, now appearing as regulatory hubs coding for RNAs without the potential for making proteins, known as non-coding RNA. Long non-coding RNA (lncRNA) is defined as functional RNA molecules having lengths larger than 200 nucleotides without the potential for coding for proteins. Thousands of lncRNAs are identified in different plants and animals. LncRNAs are characterized by a low abundance, fewer exons than mRNA, tissue-specific expression, and low sequence conservation compared to protein-coding genes (PCGs). LncRNAs, like PCGs, are regulated by promoters and enhancers with characteristic chromatin signatures, DNA methylation, multiple exons, introns, and alternate splicing. LncRNAs interact with DNA, mRNA, microRNA, and proteins, including chromatin/histone modifiers, transcription factors/repressors, epigenetic regulators, spliceosomal, and RNA-binding proteins. Recent observations indicate that lncRNAs code for small peptides, also called micropeptides (<100 amino acids), and are involved in the development and growth of plants, suggesting the bi-functional activities of lncRNAs. LncRNAs have emerged as the major regulators of diverse functions, principally by altering the transcription of target genes. LncRNAs are involved in plant growth, development, immune responses, and various physiological processes. Abiotic, biotic, nutrient, and other environmental stresses alter the expressions of numerous lncRNAs. Understanding the mechanisms of actions of lncRNAs opens up the possibility of improving agronomic traits by manipulating lncRNAs. However, further studies are required in order to find the interactions among the deregulated lncRNAs and validate the findings from high-throughput studies to harness their potential in crop improvement. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

21 pages, 1024 KB  
Review
Non-Invasive Micro-Test Technology in Plant Physiology Under Abiotic Stress: From Mechanism to Application
by Tianpeng Zhang, Peipei Yin, Xinghong Yang, Yunqi Liu and Ruirui Xu
Plants 2025, 14(13), 1932; https://doi.org/10.3390/plants14131932 - 23 Jun 2025
Viewed by 1297
Abstract
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living [...] Read more.
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living organisms without sample destruction. The advantages of NMT are multifaceted, encompassing real-time, non-invasive assessment, a wide array of detection indicators, and compatibility with diverse sample types. Consequently, it stands as one of the foremost tools in contemporary plant physiological research. This comprehensive review delves into the applications and research advancements of NMT within the field of plant abiotic stress physiology, including drought, salinity, extreme temperature, nutrient deficiency, ammonium toxicity, acid stress, and heavy metal toxicity. Furthermore, it offers a forward-looking perspective on the potential applications of NMT in plant physiology research, underscoring its unique capacity to monitor the flux dynamics of ions/molecules (e.g., Ca2+, H+, K+, and IAA) in real time, reveal early stress response signatures through micrometer-scale spatial resolution measurements, and elucidate stress adaptation mechanisms by quantifying bidirectional nutrient transport across root–soil interfaces. NMT enhances our understanding of the spatiotemporal patterns governing plant–environment interactions, providing deeper insights into the molecular mechanism of abiotic stress resilience. Full article
(This article belongs to the Special Issue Advances in Plant Auxin Biology)
Show Figures

Figure 1

Back to TopTop