Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Evolution of Target Parameters
3.2. Statistical Analysis
3.3. Spatiotemporal Variation of the Global Pollution Index in the Șag–Grăniceri Section
3.4. Longitudinal Assessment of Pollution Trends in the Timiș River—Șag–Grăniceri Section (2013–2023) with Consideration of Morphological and Hydrological Influences
3.5. Prognostic Interpretation and Retrospective Dynamics
- Incomplete or uneven modernization of wastewater treatment facilities in rural and peri-urban settlements;
- Persistent agricultural runoff, especially under intense rainfall or irrigation events.
- Lack of enforcement or limited monitoring of industrial discharges in some segments.
- Sediment legacy contamination slowly releases pollutants during flow events or morphological changes.
4. Conclusions, Limitations, and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BOD5 | biological oxygen demand |
| COD-Cr | chemical oxygen demand |
| DO | dissolved oxygen |
| T-N | total nitrogen |
| T-P | total phosphorus |
| WFD | Water Framework Directive |
| WQI | Water Quality Index |
References
- Rhoads, B.L. River Dynamics: Geomorphology to Support Management; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Anh, N.T.; Can, L.D.; Nhan, N.T.; Schmalz, B.; Luu, T.L. Influences of key factors on river water quality in urban and rural areas: A review. Case Stud. Chem. Environ. Eng. 2023, 8, 100424. [Google Scholar] [CrossRef]
- Khan, U.; Janjuhah, H.T.; Kontakiotis, G.; Rehman, A.; Zarkogiannis, S.D. Natural Processes and Anthropogenic Activity in the Indus River Sedimentary Environment in Pakistan: A Critical Review. J. Mar. Sci. Eng. 2021, 9, 1109. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Deng, L.; Li, W.; Liu, X.; Wang, Y.; Wang, L. Landscape Patterns and Topographic Features Affect Seasonal River Water Quality at Catchment and Buffer Scales. Remote Sens. 2023, 15, 1438. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, Y.D. Effect of Abrupt Topographical Characteristic Change on Water Quality in a River. KSCE J. Civ. Eng. 2019, 23, 3250–3263. [Google Scholar] [CrossRef]
- Liu, F.; Qin, T.; Wang, H.; Liu, S.; Nie, H.; Wang, J. Scale Effect of Sloping Landscape Characteristics on River Water Quality in the Upper Reaches of the Si River in East-Central China. Land 2023, 12, 457. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, H.; Tu, H. Impact of Landscape Pattern on River Water Quality Based on Different Topographic Relief Areas: A Case Study of Chishui River Basin in Southwest China. Sustainability 2023, 15, 1476. [Google Scholar] [CrossRef]
- Liu, H.; Yan, H.; Guan, M. Evaluating the effects of topography and land use change on hydrological signatures: A comparative study of two adjacent watersheds. Hydrol. Earth Syst. Sci. 2025, 29, 2109–2132. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.-h.; Liu, R.-q.; Cao, M. The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environ. Geol. 2008, 58, 937–942. [Google Scholar] [CrossRef]
- Alssgeer, H.M.A.; Gasim, M.B.; Hanafiah, M.M.; Abdulhadi, E.R.A.; Azid, A. GIS-based analysis of water quality deterioration in the Nerus River, Kuala Terengganu, Malaysia. Desalination Water Treat. 2018, 112, 334–343. [Google Scholar] [CrossRef]
- Rana, D.; Nandan, N.J.; Abhishek. Impact of Land Use on Water Quality Dynamics: Seasonal and Longitudinal Variations in the Rispana and Bindal Rivers of Dehradun, Uttarakhand, India. J. Environ. Bio-Sci. 2024, 38, 279. [Google Scholar] [CrossRef]
- Mainali, J.; Chang, H. Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central Nepal. Environ. Sustain. Indic. 2021, 9, 100096. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Y.; Hao, Y.; Lu, J. Identification of the control factors affecting water quality variation at multi-spatial scales in a headwater watershed. Environ. Sci. Pollut. Res. 2021, 28, 11129–11141. [Google Scholar] [CrossRef] [PubMed]
- Altés, V.; Pascual, M.; Escorihuela, M.J.; Villar, J.M. Assessing irrigation impact on water quality conditions: A case study in the River Noguera Ribagorçana (NE Spain). Agric. Water Manag. 2024, 296, 108809. [Google Scholar] [CrossRef]
- Isaac, R.; Siddiqui, S.; Higgins, P.; Sahil Paul, A.; Abhick Lawrence, N.; Samson Lall, A.; Khatoon, A.; Singh, A.; Andrew Majeed, P.; Massey, S.; et al. Assessment of seasonal impacts on Water Quality in Yamuna river using Water Quality Index and Multivariate Statistical approaches. Waste Manag. Bull. 2024, 2, 145–153. [Google Scholar] [CrossRef]
- Jafarpour, K.; Leangkim, K.; Anuar, A.N.; Yuzir, A.M.; Ros, F.C.; Said, N.F.; Asanuma, J. Impact of earthquake on river water quality based on combination of satellite data and groundwater analysis. Watershed Ecol. Environ. 2024, 6, 114–124. [Google Scholar] [CrossRef]
- Mazilamani, L.S.; Annammala, K.V.; Martin, P.; Qi, L.Y.; Sugumaran, D.; Ling, Y.E.; Reynard, P.S.; Nurhidayat, A.; Syawal, M.S.; Sutapa, I.D.A. Comprehensive assessment of water and sediment quality to support sustainable management practices and mitigate potential risks of trace metal pollution in the Johor River Basin, South Peninsular Malaysia. Ecohydrol. Hydrobiol. 2024, 25, 315–329. [Google Scholar] [CrossRef]
- Si, W.; Xu, J.; Liu, G.; Wang, G.; Zhang, M. Distribution, source identification, water quality, and risk assessment of trace elements in the surface-groundwater-sediments multifunctional system in Guohe River Basin. J. Environ. Manag. 2024, 361, 121266. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, S.; Shen, X.; Lin, Z.; Gong, L.; Zhang, R.; Huang, B. Multiple scale impacts of land use intensity on water quality in the Chishui river source area. Ecol. Indic. 2024, 166, 112396. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z. Assessment and a review of research on surface water quality modeling. Ecol. Model. 2022, 466, 109888. [Google Scholar] [CrossRef]
- Hu, H.; Tian, G.L.; Wu, Z.; Xia, Q. Cross-regional ecological compensation under the composite index of water quality and quantity: A case study of the Yellow River Basin. Environ. Res. 2023, 238, 117152. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Shen, S.-L.; Zhou, A. Indices and models of surface water quality assessment: Review and perspectives. Environ. Pollut. 2022, 308, 119611. [Google Scholar] [CrossRef]
- Moeinzadeh, H.; Yong, K.T.; Withana, A. A critical analysis of parameter choices in water quality assessment. Water Res. 2024, 258, 121777. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 24 July 2025).
- The European Parliament and the Council. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. 2007. Available online: https://www.eea.europa.eu/policy-documents/directive-2007-60-ec-of (accessed on 24 July 2025).
- Ciszewski, D.; Grygar, T.M. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems. Water Air Soil Pollut. 2016, 227, 239. [Google Scholar] [CrossRef] [PubMed]
- Margenot, A.J.; Zhou, S.; McDowell, R.; Hebert, T.; Fox, G.; Schilling, K.; Richmond, S.; Kovar, J.L.; Wickramarathne, N.; Lemke, D.; et al. Streambank erosion and phosphorus loading to surface waters: Knowns, unknowns, and implications for nutrient loss reduction research and policy. J. Environ. Qual. 2023, 52, 1063–1079. [Google Scholar] [CrossRef]
- Bateni, F.; Fakheran, S.; Soffianian, A. Assessment of land cover changes & water quality changes in the Zayandehroud River Basin between 1997–2008. Environ. Monit. Assess. 2013, 185, 10511–10519. [Google Scholar] [CrossRef]
- Hu, M.; Yao, M.; Wang, Y.; Pan, Z.; Wu, K.; Jiao, X.; Chen, D. Influence of nitrogen inputs, dam construction and landscape patterns on riverine nitrogen exports in the Yangtze River basin during 1980–2015. J. Hydrol. 2023, 617, 129109. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wu, B.; Pan, G.; Xu, J.; Wu, S. Spatial scale and seasonal dependence of land use impacts on riverine water quality in the Huai River basin, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 20995–21010. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Bahar, M.M.; Naidu, R. Diffuse soil pollution from agriculture: Impacts and remediation. Sci. Total Environ. 2025, 962, 178398. [Google Scholar] [CrossRef]
- Wijesiri, B.; Liu, A.; Deilami, K.; He, B.; Hong, N.; Yang, B.; Zhao, X.; Ayoko, G.; Goonetilleke, A. Nutrients and metals interactions between water and sediment phases: An urban river case study. Environ. Pollut. 2019, 251, 354–362. [Google Scholar] [CrossRef]
- Popescu, I.; Teau, C.; Moisescu-Ciocan, C.; Florescu, C.; Adam, R.; Constantin, A.T. Evaluating the Sustainability of Longtime Operating Infrastructure for Romanian Flood Risk Protection. Sustainability 2024, 16, 10573. [Google Scholar] [CrossRef]
- Banat Water Basin Administration. Activity Report. 2021. Available online: http://banat.rowater.ro/wp-content/uploads/2022/02/ABA-Banat_Raport-de-activitate_2021.pdf (accessed on 24 July 2025).
- Romanian Government. Decision No 351 of April 21, 2005 on the Approval of the Program for the Phasing Out of Discharges, Emissions and Losses of Priority Hazardous Substances; Romanian Government: Bucharest, Romania, 2005. [Google Scholar]
- Ministry of Environment and Water Management. Order 31/2006 Approving the Manual for Modernization and Development of Integrated Water Monitoring System in Romania (SMIAR); Ministry of Environment and Water Management: Bucharest, Romania, 2006. [Google Scholar]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Graffelman, J.; de Leeuw, J. Improved Approximation and Visualization of the Correlation Matrix. Am. Stat. 2023, 77, 432–442. [Google Scholar] [CrossRef]
- Zaharia, C. Evaluation of environmental impact produced by different economic activities with the global pollution index. Environ. Sci. Pollut. Res. Int. 2012, 19, 2448–2455. [Google Scholar] [CrossRef]
- Zaharia, C.; Murarasu, I. Environmental impact assessment induced by an industrial unit of basic chemical organic compounds synthesis using the alternative method of global pollution index. Environ. Eng. Manag. J. 2009, 8, 107–112. [Google Scholar] [CrossRef]
- Monitorul Official. Romanian Law No. 107/1996—“Water Law”, w.S.A.a.C.L.n.L.A., cu Modificările şi Completările Ulterioare; Autonoma, R., Ed.; Monitorul Official: Bucureşti, Romania, 2002. [Google Scholar]
- Kothari, V.; Vij, S.; Sharma, S.; Gupta, N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Lv, X.; Xu, X.; Weng, Q.; Lei, K. Exploration of the factors that influence total phosphorus in surface water and an evaluation of surface water vulnerability based on an advanced algorithm and traditional index method. J. Environ. Manag. 2023, 342, 118155. [Google Scholar] [CrossRef]
- Andarani, P.; Alimuddin, H.; Yokota, K.; Inoue, T.; Obaid, S.; Nguyen, M.N. Baseflow and Stormflow Zinc Loads in a Small Agricultural River Catchment Influenced by an Industrial Area. Water 2021, 13, 2113. [Google Scholar] [CrossRef]
- Vigiak, O.; Grizzetti, B.; Udias-Moinelo, A.; Zanni, M.; Dorati, C.; Bouraoui, F.; Pistocchi, A. Predicting biochemical oxygen demand in European freshwater bodies. Sci. Total Environ. 2019, 666, 1089–1105. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Gao, W.; Cai, Y. Influence of long-term anthropogenic nitrogen input and its legacy on riverine output. Sci. Rep. 2025, 15, 15261. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.M.; Puglis, H.J.; Kent, D.B.; Durán, J.L.; Bradshaw, L.M.; Farag, A.M. Ammonia and aquatic ecosystems—A review of global sources, biogeochemical cycling, and effects on fish. Sci. Total Environ. 2024, 907, 167911. [Google Scholar] [CrossRef]
- Liu, J.; Gu, W.; Liu, Y.; Li, W.; Shao, D. Influence of anthropogenic nitrogen inputs and legacy nitrogen change on riverine nitrogen export in areas with high agricultural activity. J. Environ. Manag. 2023, 338, 117833. [Google Scholar] [CrossRef] [PubMed]
- Podlasek, A.; Koda, E.; Kwas, A.; Vaverková, M.D.; Jakimiuk, A. Anthropogenic and Natural Impacts on Surface Water Quality: The Consequences and Challenges at the Nexus of Waste Management Facilities, Industrial Zones, and Protected Areas. Water Resour. Manag. 2025, 39, 1697–1718. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Munteanu, D. Trends and Applications of Principal Component Analysis in Forestry Research: A Literature and Bibliometric Review. Forests 2025, 16, 1155. [Google Scholar] [CrossRef]
- Roberts, S.; Martin, M.A. Using supervised principal components analysis to assess multiple pollutant effects. Environ. Health Perspect. 2006, 114, 1877–1882. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1764132/pdf/ehp0114-001877.pdf (accessed on 24 July 2025). [CrossRef]
- Nath Roy, B.; Roy, H.; Rahman, K.S.; Mahmud, F.; Bhuiyan, M.M.K.; Hasan, M.; Bhuiyan, A.-A.K.; Hasan, M.; Mahbub, M.S.; Jahedi, R.M.; et al. Principal component analysis incorporated water quality index modeling for Dhaka-based rivers. City Environ. Interact. 2024, 23, 100150. [Google Scholar] [CrossRef]
- Chen, G.-F.; Lai, C.-H.; Chen, W.-H. Principal component analysis and mapping to characterize the emission of volatile organic compounds in a typical petrochemical industrial park. Aerosol Air Qual. Res. 2020, 20, 465–476. [Google Scholar] [CrossRef]
- Teixeira de Souza, A.; Carneiro, L.A.T.; da Silva Junior, O.P.; de Carvalho, S.L.; Américo-Pinheiro, J.H.P. Assessment of water quality using principal component analysis: A case study of the Marrecas stream basin in Brazil. Environ. Technol. 2021, 42, 4286–4295. [Google Scholar] [CrossRef]
- Mahanty, B.; Lhamo, P.; Sahoo, N.K. Inconsistency of PCA-based water quality index—Does it reflect the quality? Sci. Total Environ. 2023, 866, 161353. [Google Scholar] [CrossRef]
- Marín Celestino, A.E.; Martínez Cruz, D.A.; Otazo Sánchez, E.M.; Gavi Reyes, F.; Vásquez Soto, D. Groundwater Quality Assessment: An Improved Approach to K-Means Clustering, Principal Component Analysis and Spatial Analysis: A Case Study. Water 2018, 10, 437. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, P.; Yan, W.; Jia, M.; Su, X.; Wang, J.; Tian, S. Riverine organic pollution source and yield from the whole Changjiang river network: Effects of urbanization under changing hydrology. J. Hydrol. 2023, 620, 129544. [Google Scholar] [CrossRef]
- Sjerps, R.M.A.; Brunner, A.M.; Fujita, Y.; Bajema, B.; de Jonge, M.; Bäuerlein, P.S.; de Munk, J.; Schriks, M.; van Wezel, A. Clustering and prioritization to design a risk-based monitoring program in groundwater sources for drinking water. Environ. Sci. Eur. 2021, 33, 32. [Google Scholar] [CrossRef]
- Alsaeedi, A.H.; Al-Sharqi, M.A.; Al-Shammary, D.; Sufi, F.; AlKhazraji, N. Adaptive clustering regression model for forecasting water quality index. Australas. J. Water Resour. 2025, 1–14. [Google Scholar] [CrossRef]
- Shakeri, R.; Amini, H.; Fakheri, F.; Lam, M.Y.; Zahraie, B. Comparative analysis of correlation and causality inference in water quality problems with emphasis on TDS Karkheh River in Iran. Sci. Rep. 2025, 15, 2798. [Google Scholar] [CrossRef]
- Li, H.; Yu, Z.; Song, L.; Chen, X.; Tan, W.; Li, P.; Zhang, J.; Xiao, K.; Wang, L.; Lin, H. Index Correlation Analysis in Water Quality Monitoring Big Data. J. Phys. Conf. Ser. 2023, 2504, 012059. [Google Scholar] [CrossRef]
- Shah, M.I.; Alaloul, W.S.; Alqahtani, A.; Aldrees, A.; Musarat, M.A.; Javed, M.F. Predictive Modeling Approach for Surface Water Quality: Development and Comparison of Machine Learning Models. Sustainability 2021, 13, 7515. [Google Scholar] [CrossRef]
- Attia, M.; Driss, Z.; Abd-Elhamid, H.F.; Ennetta, R. Enhanced water quality prediction: Application of deep neural networks and adaptive neuro-fuzzy inference systems to assess calcium concentration. Desalination Water Treat. 2025, 322, 101193. [Google Scholar] [CrossRef]
- Jothivenkatachalam, K.; Nithya, A.; Mohan, S.C. Correlation analysis of drinking water quality in and around Perur block of Coimbatore District, Tamil Nadu, India. Rasayan J. Chem. 2010, 3, 649–654. Available online: https://rasayanjournal.co.in/vol-3/issue-4/8.pdf (accessed on 24 July 2025).
- Wen, X.; Allen, H.E. Mobilization of heavy metals from Le An River sediment. Sci. Total Environ. 1999, 227, 101–108. [Google Scholar] [CrossRef]
- Chaplot, V.; Mutema, M. Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis. J. Hydrol. 2021, 603, 126941. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, H.; Yin, W.; Shao, S.; Lv, S.; Hu, Y. Water Quality and Microbial Community Changes in an Urban River after Micro-Nano Bubble Technology in Situ Treatment. Water 2019, 11, 66. [Google Scholar] [CrossRef]





| Quality Index (EQi) | Evaluation Score (ESi) | Environmental Impact |
|---|---|---|
| EQi = 0 | 10 | Water bodies are unaffected by industrial activity. |
| 0.00 < EQi ≤ 0.20 | 9 | Industrial influence is present but not quantifiable. |
| 0.20 < EQi ≤ 0.70 | 8 | Impact detected, but below first alert threshold. |
| 0.70 < EQi ≤ 1.00 | 7 | Alert level: Possible consequences. |
| 1.00 < EQi ≤ 2.00 | 6 | Impact within second-level threshold limits. Intervention level: Potential outcomes expected. |
| 2.00 < EQi ≤ 4.00 | 5 | Pollution exceeds the first legal limit. Effect: Noticeably strong impact. |
| 4.00 < EQi ≤ 8.00 | 4 | Pollution surpasses the second limit. Effect: Environmentally detrimental. |
| 8.00 < EQi ≤ 12.00 | 3 | Third limit exceeded. Effect: Clear negative consequences. |
| 12.00 < EQi ≤ 20.00 | 2 | Severe degradation—Level 1. Impact: Fatal effects over average exposure duration. |
| EQi > 20.00 | 1 | Severe degradation—Level 2. Impact: Rapid onset of fatal effects; environment rendered unsuitable for life |
| Characteristic | Indicator Value * | ||||||
|---|---|---|---|---|---|---|---|
| Threshold Limit [42] | Mean (μ) | Median | Mode | Minimum | Maximum | Standard Deviation | |
| BOD5 | 5 [mg O2/L] | 4.62 | 4.83 | 5.28 (2023, 2019, 2013) | 2.98 (2020) | 5.28 (2023, 2019, 2013) | 0.77 |
| COD-Cr | 25 [mg O2/L] | 24.31 | 20.72 | 29.89 (2023, 2019, 2013) | 14.49 (2020) | 36.11 (2016) | 6.70 |
| DO | 8 [mg O2/L] | 7.57 | 7.36 | 7.89 (2023, 2019, 2013) | 6.59 (2016) | 9.42 (2020) | 0.75 |
| Conductivity | 1000 [µS/cm] | 405.66 | 448.50 | 517 (2023, 2019, 2013) | 206 (2016) | 517 (2023, 2019, 2013) | 108.89 |
| pH | 8.5 pH units | 7.86 | 7.91 | 8.01 (2023, 2019, 2013) | 7.29 (2014) | 8.01 (2023, 2019, 2013) | 0.22 |
| Total N | 1.5 [mg/L N] | 2.57 | 2.15 | 4.23 (2023, 2019, 2013) | 1.57 (2014) | 4.23 (2023, 2019, 2013) | 1.10 |
| N-NH4 | 0.4 [mg/L N] | 0.25 | 0.25 | 0.25 (2023, 2019, 2013) | 0.13 (2020) | 0.44 (2014) | 0.08 |
| N-NO2 | 0.01 [mg/L N] | 0.04 | 0.04 | 0.04 (2023, 2019, 2013) | 0.02 (2016, 2014) | 0.06 (2020, 2018) | 0.01 |
| N-NO3 | 1 [mg/L N] | 1.27 | 1.09 | 2.05 (2023, 2019, 2013) | 0.69 (2014) | 2.05 (2023, 2019, 2013) | 0.51 |
| Total P | 0.02 [mg/L P] | 0.21 | 0.19 | 0.19 (2023, 2019, 2013 | 0.16 (2020, 2014) | 0.40 (2016) | 0.07 |
| P-PO4 | 0.05 [mg/L P] | 0.08 | 0.07 | 0.07 (2023, 2020, 2019, 2013 | 0.06 (2022, 2018) | 0.14 (2016) | 0.03 |
| detergents | 500 [µg/L] | 55.44 | 50.00 | 50.00 (2023, 2021, 2020, 2019, 2013) | 15.00 (2015) | 99.00 (2017) | 21.07 |
| Total phenols | 1.00 [µg/L] | 1.03 | 1.00 | 1.00 | 1.00 (the rest of the considered years) | 1.13 (2022, 2018) | 0.05 |
| As | 5.00 [µg/L] | 0.87 | 1.09 | 1.09 (2023, 2019, 2013) | 0.50 (2017) | 1.10 (2022, 2018) | 0.29 |
| Cr3+ + Cr6+ | 50.00 [µg/L] | 1.12 | 1.00 | 1.00 (2023–2018, 2013) | 1.00 (2023–2018, 2013) | 1.35 (2016–2014) | 0.17 |
| Cu | 20.00 [µg/L] | 4.52 | 4.28 | 4.28 (2023, 2019) | 1.10 (2014) | 8.82 (2020) | 2.25 |
| Zn | 100.00 [µg/L] | 19.41 | 23.46 | 23.46 (2023, 2019, 2013) | 12.50 (2021, 2020) | 25.00 (2016–2014) | 5.66 |
| Feature\Component | Component 1 | Component 2 | Component 3 | Component 4 |
|---|---|---|---|---|
| BOD5 (mgO2/L | −0.092 | 0.429 | −0.336 | −0.024 |
| COD-Cr (mgO2/L) | 0.185 | 0.384 | 0.199 | −0.170 |
| DO (mgO2/L) | −0.184 | −0.184 | 0.553 | −0.134 |
| Conductivity (µS/cm) | −0.238 | 0.330 | −0.117 | 0.329 |
| pH (pH unit) | −0.339 | 0.177 | −0.283 | −0.140 |
| Total N (mg/L N) | −0.217 | 0.338 | 0.352 | −0.157 |
| N-NH4 (mg/L N) | 0.278 | 0.122 | 0.156 | 0.540 |
| N-NO2 (mg/L N) | −0.275 | 0.050 | −0.264 | 0.273 |
| N-NO3 (mg/L N) | −0.201 | 0.407 | 0.215 | −0.115 |
| Total P (mg/L P) | 0.275 | 0.162 | −0.290 | −0.450 |
| P-PO4 (mg/L P) | 0.365 | 0.069 | −0.112 | −0.303 |
| Dissolved Cr (Cr3+ + Cr6+) (µg/L) | 0.396 | −0.020 | −0.081 | 0.069 |
| Dissolved Cu (µg/L) | −0.315 | −0.233 | −0.019 | −0.348 |
| Dissolved Zn (µg/L) | 0.215 | 0.335 | 0.283 | 0.002 |
| Feature\Component | Correlation Variables-Components | |||
|---|---|---|---|---|
| C1 | C2 | C3 | C4 | |
| BOD5 (mgO2/L) | −0.219 | 0.856 | −0.461 | −0.029 |
| COD-Cr (mgO2/L) | 0.442 | 0.767 | 0.273 | −0.208 |
| DO (mgO2/L) | −0.440 | −0.367 | 0.759 | −0.163 |
| Conductivity (µS/cm) | −0.567 | 0.659 | −0.161 | 0.403 |
| pH (pH unit) | −0.810 | 0.353 | −0.389 | −0.171 |
| Total N (mg/L N) | −0.518 | 0.674 | 0.483 | −0.192 |
| N-NH4 (mg/L N) | 0.663 | 0.244 | 0.214 | 0.660 |
| N-NO2 (mg/L N) | −0.655 | 0.100 | −0.362 | 0.333 |
| N-NO3 (mg/L N) | −0.479 | 0.811 | 0.294 | −0.141 |
| Total P (mg/L P) | 0.657 | 0.322 | −0.398 | −0.551 |
| P-PO4 (mg/L P) | 0.871 | 0.138 | −0.153 | −0.370 |
| Dissolved Cr (Cr3+ + Cr6+) (µg/L) | 0.945 | −0.039 | −0.110 | 0.084 |
| Dissolved Cu (µg/L) | −0.753 | −0.465 | −0.027 | −0.426 |
| Dissolved Zn (µg/L) | 0.512 | 0.668 | 0.388 | 0.003 |
| 2023 | 2021 | 2016 | |
|---|---|---|---|
| 2023 | 0 | 68.088 | 249.600 |
| 2021 | 68.088 | 0 | 184.080 |
| 2016 | 249.600 | 184.080 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burescu, F.-L.; Gavrilaș, S.; Chereji, B.-D.; Munteanu, F.-D. Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania. Environments 2025, 12, 377. https://doi.org/10.3390/environments12100377
Burescu F-L, Gavrilaș S, Chereji B-D, Munteanu F-D. Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania. Environments. 2025; 12(10):377. https://doi.org/10.3390/environments12100377
Chicago/Turabian StyleBurescu, Florina-Luciana, Simona Gavrilaș, Bianca-Denisa Chereji, and Florentina-Daniela Munteanu. 2025. "Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania" Environments 12, no. 10: 377. https://doi.org/10.3390/environments12100377
APA StyleBurescu, F.-L., Gavrilaș, S., Chereji, B.-D., & Munteanu, F.-D. (2025). Linking Riverbank Morphodynamics to Water Contamination: A Long-Term Evaluation of the Global Pollution Index in the Timiș River, Romania. Environments, 12(10), 377. https://doi.org/10.3390/environments12100377

