Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = nucleic acid sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 11370 KB  
Review
Nucleic Acid-Based Field-Effect Transistor Biosensors
by Haoyu Fan, Dekai Ye, Xiuli Gao, Yuan Luo and Lihua Wang
Biosensors 2026, 16(2), 95; https://doi.org/10.3390/bios16020095 - 3 Feb 2026
Abstract
The demand for rapid and highly sensitive sensing technologies is increasing across diverse fields, including precise disease diagnosis, early-stage screening, and real-time environmental monitoring. Field-effect transistor (FET)-based sensing platforms have shown tremendous potential for detecting target molecules at extremely low concentrations, owing to [...] Read more.
The demand for rapid and highly sensitive sensing technologies is increasing across diverse fields, including precise disease diagnosis, early-stage screening, and real-time environmental monitoring. Field-effect transistor (FET)-based sensing platforms have shown tremendous potential for detecting target molecules at extremely low concentrations, owing to their ultrahigh sensitivity, label-free and amplification-free operation, and rapid response. In recent years, the rapid advancement of nucleic acid probe design and interfacial engineering has markedly accelerated the development of FET sensors, leading to the emergence of nucleic acid-based FET (NA-FET) biosensors. Beyond their fundamental role in nucleic acid detection, the integration of nucleic acid aptamers and framework nucleic acids has greatly expanded NA-FET biosensors’ applicability to a wide range of analytes and multiplexed detection. At the same time, advances in semiconductor materials have endowed the NA-FET biosensor with highly efficient signal transduction and diverse device architectures, enabling successful proof-of-concept demonstrations for various clinically and environmentally relevant molecular biomarkers. Furthermore, the integration into portable, wearable, and implantable devices has laid a solid foundation for their future development into real-world applications. This review summarizes recent cutting-edge progress in NA-FET biosensors, highlights key design strategies and performance improvements, and discusses current challenges, future development directions, and their prospects for practical applications. Full article
(This article belongs to the Special Issue DNA Molecular Engineering-Based Biosensors)
Show Figures

Figure 1

33 pages, 1944 KB  
Review
Electrochemical Detection of Cancer Biomarkers: From Molecular Sensing to Clinical Translation
by Ahmed Nadeem-Tariq, John Russell Rafanan, Nicole Kang, Sunny Zhang, Hemalatha Kanniyappan and Aftab Merchant
Biosensors 2026, 16(1), 44; https://doi.org/10.3390/bios16010044 - 4 Jan 2026
Viewed by 794
Abstract
Early cancer detection is crucial for improving survival rates and treatment outcomes. Electrochemical biosensors have emerged as powerful tools for early cancer detection due to their high sensitivity, specificity, and rapid detection capabilities. This review explores recent advancements (2015–2025) in electrochemical biosensors for [...] Read more.
Early cancer detection is crucial for improving survival rates and treatment outcomes. Electrochemical biosensors have emerged as powerful tools for early cancer detection due to their high sensitivity, specificity, and rapid detection capabilities. This review explores recent advancements (2015–2025) in electrochemical biosensors for cancer biomarker detection, their working principles, novel nanomaterial-based enhancements, challenges, and prospects for clinical applications. Specifically, we highlight the electrochemical detection of protein biomarkers (e.g., CEA, PSA, CRP), nucleic acid markers (ctDNA, miRNA, methylation patterns), and metabolic indicators, emphasizing their clinical relevance in early diagnosis and monitoring. Unlike previous reviews which focus on either biomarker classes or sensor platforms, this review uniquely integrates both factors. This review provides a novel perspective on how next-generation electrochemical biosensors can bridge the gap between laboratory development and real-world cancer diagnostics. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

22 pages, 1613 KB  
Review
Recent Advances in Nucleic Acid-Based Electrochemical Sensors for the Detection of Food Allergens
by Simone Fortunati, Shaista Nazir and Marco Giannetto
Sensors 2026, 26(1), 263; https://doi.org/10.3390/s26010263 - 1 Jan 2026
Viewed by 520
Abstract
Food allergies represent a growing public health concern, requiring analytical methods capable of detecting trace levels of allergenic ingredients in increasingly complex and processed food matrices. In recent years, nucleic acid-based electrochemical sensors have emerged as a powerful alternative to protein-targeting assays, offering [...] Read more.
Food allergies represent a growing public health concern, requiring analytical methods capable of detecting trace levels of allergenic ingredients in increasingly complex and processed food matrices. In recent years, nucleic acid-based electrochemical sensors have emerged as a powerful alternative to protein-targeting assays, offering improved stability and sequence specificity, as well as compatibility with portable, low-cost sensing platforms. This review provides a comprehensive overview of nucleic acid-based sensing strategies developed for detecting either allergen proteins or nucleic acids related to allergenic species. Particular attention is given to the methodological approaches implemented, which for DNA detection include sandwich-type designs and DNA switches, while for protein detection rely on aptamer-based assays in a labelled or label-free setup. The review also discusses the impact of pre-analytical steps, such as nucleic acid extraction and PCR-based amplification, on assay reproducibility, cost and applicability at the point of need. Although significant improvements in analytical performance have been achieved, challenges remain in terms of simplifying workflows, standardizing methods, validating them on a large scale, and developing continuous monitoring schemes for timely intervention. The review highlights emerging opportunities, including multiplexed detection platforms, robust extraction protocols, and the harmonization of allergen thresholds, which are key to supporting the practical implementation of nucleic acid-based sensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

7 pages, 451 KB  
Opinion
A Novel Tyrosine Kinase Axis in Innate Immune Signaling
by Santanu Das, Pracheta Sengupta, Manoj Veleeparambil and Saurabh Chattopadhyay
Viruses 2026, 18(1), 10; https://doi.org/10.3390/v18010010 - 20 Dec 2025
Viewed by 502
Abstract
Tyrosine phosphorylation has emerged as a central regulatory mechanism in innate immunity. Building on our recent studies that Syk and EGFR sequentially phosphorylate TLR9 to fully activate it, we discuss how similar mechanisms operate across other Toll-like receptors and the cytosolic DNA sensor [...] Read more.
Tyrosine phosphorylation has emerged as a central regulatory mechanism in innate immunity. Building on our recent studies that Syk and EGFR sequentially phosphorylate TLR9 to fully activate it, we discuss how similar mechanisms operate across other Toll-like receptors and the cytosolic DNA sensor STING. Evidence from complementary systems reveals that receptor and nonreceptor tyrosine kinases, including Src-family kinases, Syk, BTK, and EGFR, form an integrated signaling network that triggers receptor activation, trafficking, and downstream gene expression. Scavenger receptors such as SR-A further drive this kinase cascade by coordinating viral recognition to TLR activation. These observations reveal a novel ‘tyrosine kinase axis’ that connects nucleic acid sensing to spatially controlled innate immune signaling and highlight new opportunities to modulate innate immunity through tyrosine kinase regulation. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 4th Edition)
Show Figures

Graphical abstract

29 pages, 10573 KB  
Review
Research Progress on Nanomaterials in SPR Sensors
by Hongji Zhang, Zhe Gao, Yulin Zhang, Runze Hou, Haoran Zhang, Ziqi Yan, Jiazhen Tian, Pengcheng Tao and Xinlei Zhou
Nanomaterials 2025, 15(24), 1847; https://doi.org/10.3390/nano15241847 - 8 Dec 2025
Viewed by 781
Abstract
While surface plasmon resonance (SPR) sensors serve as vital tools for biomolecular detection; conventional versions suffer from inherent limitations, including confined localized electromagnetic fields and inadequate sensitivity for detecting low-abundance analytes. Consequently, this paper reviews the progress of research in nanomaterial-enhanced SPR sensors [...] Read more.
While surface plasmon resonance (SPR) sensors serve as vital tools for biomolecular detection; conventional versions suffer from inherent limitations, including confined localized electromagnetic fields and inadequate sensitivity for detecting low-abundance analytes. Consequently, this paper reviews the progress of research in nanomaterial-enhanced SPR sensors to address these challenges. Initially, the review elaborates on the sensing principles and signal modulation strategies of SPR sensors. It systematically analyzes the enhancement mechanisms of noble metal nanoparticles (ranging from spherical 0D to advanced anisotropic 1D/2D nanostructures), magnetic nanoparticles (MNPs), and two-dimensional (2D) nanomaterials, alongside their applications in the detection of small molecules, nucleic acids, and biomacromolecules. Crucially, this review provides a comparative benchmarking of these materials, evaluating their trade-offs between sensitivity enhancement and practical stability. Furthermore, it identifies critical bottlenecks in industrialization, specifically addressing environmental challenges such as thermal cross-sensitivity and oxidative degradation, alongside issues of reproducibility and standardization. Finally, future research directions are proposed, including developing novel nanomaterials, exploring low-cost alternatives, and constructing flexible wearable sensing systems. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

14 pages, 4041 KB  
Article
Comparative Analysis of Crystal Violet-Binding Aptamers as Potential Cores for Binary Sensors
by Gleb A. Bobkov, Gleb S. Yushkov, Andrei D. Kuzmin, Tatiana D. Popysheva, Elena I. Stepchenkova and Maria S. Rubel
Int. J. Mol. Sci. 2025, 26(19), 9833; https://doi.org/10.3390/ijms26199833 - 9 Oct 2025
Viewed by 830
Abstract
‘Light-up’ aptamers are short oligonucleotides that can induce fluorescence of certain organic compounds upon binding. In this study, we compared three crystal violet (CV) aptamers—CV30S, parallel G-quadruplex (G4), and antiparallel G4—regarding their absolute fluorescence intensity, signal-to-background ratio (S/B), and potential as a core [...] Read more.
‘Light-up’ aptamers are short oligonucleotides that can induce fluorescence of certain organic compounds upon binding. In this study, we compared three crystal violet (CV) aptamers—CV30S, parallel G-quadruplex (G4), and antiparallel G4—regarding their absolute fluorescence intensity, signal-to-background ratio (S/B), and potential as a core component in binary sensors for nucleic acid detection. The G4 antiparallel aptamer exhibited the highest fluorescence intensity and a robust S/B ratio, indicating its effectiveness in stabilizing the CV binding and enhancing fluorescence. In contrast, the G4 parallel aptamer demonstrated poorer performance, suggesting that its structural topology is less suitable for interactions with CV. The CV30S aptamer showed distinct advantages in binary sensor configurations, achieving the best limit of detection at 6 nM. Full article
Show Figures

Graphical abstract

31 pages, 1560 KB  
Review
Overcoming Immune Therapy Resistance in Cancer Through Innate Immune Reprogramming
by Giada Mandracci, Nardine Soliman and Nadia El Khawanky
Int. J. Mol. Sci. 2025, 26(19), 9554; https://doi.org/10.3390/ijms26199554 - 30 Sep 2025
Cited by 1 | Viewed by 2505
Abstract
Overcoming immune resistance remains the critical barrier to durable immunotherapy responses. Tumors with non-inflamed, “cold” microenvironments exclude cytotoxic lymphocytes and evade checkpoint blockade. Innate nucleic acid-sensing pathways—including TLRs, RIG-I-like RNA sensors, and the cGAS–STING DNA-sensing axis—can recondition this hostile landscape by licensing dendritic [...] Read more.
Overcoming immune resistance remains the critical barrier to durable immunotherapy responses. Tumors with non-inflamed, “cold” microenvironments exclude cytotoxic lymphocytes and evade checkpoint blockade. Innate nucleic acid-sensing pathways—including TLRs, RIG-I-like RNA sensors, and the cGAS–STING DNA-sensing axis—can recondition this hostile landscape by licensing dendritic cells, restoring antigen presentation, and recruiting effector T and NK cells. In this review, we synthesize mechanistic insights into how these receptors function across tumor and immune compartments and evaluate recent translational advances spanning small-molecule and nucleic acid agonists, engineered delivery systems, and clinical trials. We highlight challenges that have limited clinical impact, including pathway silencing, systemic toxicity, and lack of predictive biomarkers, while emphasizing emerging solutions such as tumor-intrinsic targeting, CAR-T/NK engineering, and biomarker-guided patient selection. By integrating innate activation into rational combination regimens, innate immune reprogramming offers a blueprint to convert resistant disease into one susceptible to durable immune control. Full article
Show Figures

Figure 1

17 pages, 2215 KB  
Article
Exploring an Aptamer-Based Approach to Assess Canine Parvovirus Integrity After Disinfection Treatment
by Md Anik Ashfaq Khan, Ahmed Abd El Wahed, Stefan Breuers, Knut Krohn, Günter Mayer, Torsten Schöneberg and Uwe Truyen
Viruses 2025, 17(10), 1309; https://doi.org/10.3390/v17101309 - 27 Sep 2025
Viewed by 992
Abstract
Virus inactivation exhibits varying disinfection kinetics due to structural or genomic differences. Standard post-disinfection assessment relies on observing cytopathic effects in inoculated cell cultures, which are limited by sensitivity, availability, cost, and turnaround time. This study explores nucleic acid aptamers as molecular sensors [...] Read more.
Virus inactivation exhibits varying disinfection kinetics due to structural or genomic differences. Standard post-disinfection assessment relies on observing cytopathic effects in inoculated cell cultures, which are limited by sensitivity, availability, cost, and turnaround time. This study explores nucleic acid aptamers as molecular sensors to differentiate between intact and post-disinfection virus particles. To discover aptamers, 12 cycles of an automated SELEX (Systematic Evolution of Ligands by Exponential Enrichment) experiment were performed using recombinant (r)-VP2 protein of canine parvovirus (CPV). Enrichment of single stranded (ss) DNA binders was evaluated by sequencing the enriched libraries. The most abundant sequences were tested for binding with coated rVP2 and CPV (intact and treated with heat and peracetic acid (PAA) disinfectant) followed by detection using PCR. Binding specificity was assessed using intact and heat-treated feline panleukopenia virus (FPV) and porcine parvovirus (PPV). Sequencing of the DNA libraries from selection cycle 6 and cycle 12 products showed individual sequence enrichment with maximum frequencies of 2.14% and 8.65%, respectively. The top three abundant sequences from each cycle confirmed rVP2 binding. In the case of CPV, only heat-treated and PAA-treated CPV showed binding to the candidate sequences. However, reduced binding to the CPV-specific antibody was observed for rVP2 and treated CPV compared to intact CPV. No apparent binding of the tested sequences was observed for FPV and PPV. Aptamers binding to denatured but not intact CPV demonstrate the potential to distinguish between the two states, providing a basis for developing a molecular assay to assess disinfection efficacy. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

23 pages, 1211 KB  
Review
Advancements and Applications of Split Technology in CRISPR/Cas12a: Transforming Molecular Diagnostics and Biosensing
by Saikarthik Jayakumar, Srinivasan Vengadassalapathy, Santhosh Venkadassalapathy, Sheela Durairajan, Radha Vijayaraj and Lakshmanan Govindan
Biosensors 2025, 15(9), 595; https://doi.org/10.3390/bios15090595 - 10 Sep 2025
Cited by 1 | Viewed by 1775
Abstract
The rapid evolution of CRISPR technology has revolutionized molecular biology, and among the various systems, CRISPR/Cas12a stands out for its high specificity and efficient collateral cleavage activity. This review article focuses on the recent advancements and applications of split technology within the CRISPR/Cas12a [...] Read more.
The rapid evolution of CRISPR technology has revolutionized molecular biology, and among the various systems, CRISPR/Cas12a stands out for its high specificity and efficient collateral cleavage activity. This review article focuses on the recent advancements and applications of split technology within the CRISPR/Cas12a framework, highlighting its transformative role in molecular diagnostics and biosensing. Split technology innovatively divides functional nucleic acid components into modular segments that are activated by specific targets, significantly enhancing the specificity and sensitivity of biosensors. This design addresses the inherent limitations of traditional sensor systems, enabling the direct detection of ultrashort nucleic acids and improved discrimination of single-nucleotide variants, thereby facilitating the simultaneous detection of multiple biomolecules. The versatility of split-enabled biosensors extends beyond genetic testing, making them valuable tools in diagnostics, therapeutics, and environmental science. Despite challenges such as crRNA degradation and reassembly kinetics, ongoing research and engineering solutions continue to enhance the stability and performance of these systems. This review synthesizes the foundational principles, recent advancements, and potential applications of split technology while also identifying challenges and opportunities for future exploration. Ultimately, our insights provide a comprehensive resource to leverage the full potential of CRISPR/Cas12a-based split technology in advancing biosensing methodologies and clinical applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

30 pages, 6580 KB  
Article
Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products
by Ana Kuprešanin, Marija Pavlović, Ljiljana Šašić Zorić, Milinko Perić, Stefan Jarić, Teodora Knežić, Ljiljana Janjušević, Zorica Novaković, Marko Radović, Mila Djisalov, Nikola Kanas, Jovana Paskaš and Zoran Pavlović
Biosensors 2025, 15(9), 584; https://doi.org/10.3390/bios15090584 - 5 Sep 2025
Viewed by 1565
Abstract
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in [...] Read more.
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in genetically modified (GM) plants, combining the loop-mediated isothermal amplification (LAMP) method with electrodes functionalized by two-dimensional (2D) nanomaterials. The sensor design exploits the high surface area and excellent conductivity of reduced graphene oxide, Ti3C2Tx, and molybdenum disulfide (MoS2) to enhance signal transduction. Furthermore, we used a “green synthesis” method for Ti3C2Tx preparation that eliminates the use of hazardous hydrofluoric acid (HF) and hydrochloric acid (HCl), providing a safer and more sustainable approach for nanomaterial production. Within this framework, the performance of various custom-fabricated electrodes, including laser-patterned gold leaf films, physical vapor deposition (PVD)-deposited gold electrodes, and screen-printed gold electrodes, is evaluated and compared with commercial screen-printed gold electrodes. Additionally, gold and carbon electrodes were electrochemically covered by gold nanoparticles (AuNPs), and their properties were compared. Several electrochemical methods were used during the DNA detection, and their importance and differences in excitation signal were highlighted. Electrochemical properties, sensitivity, selectivity, and reproducibility are characterized for each electrode type to assess the influence of fabrication methods and material composition on sensor performance. The developed biosensing systems exhibit high sensitivity, specificity, and rapid response, highlighting their potential as practical tools for on-site GMO screening and regulatory compliance monitoring. This work advances electrochemical nucleic acid detection by integrating environmentally-friendly nanomaterial synthesis with robust biosensing technology. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

16 pages, 1096 KB  
Review
Nucleic Acid Diversity in cGAS-STING Pathway Activation and Immune Dysregulation
by Jingwei Guo, Mingjun Lu, Chenyang Wang, Dongchang Wang and Teng Ma
Biomedicines 2025, 13(9), 2158; https://doi.org/10.3390/biomedicines13092158 - 4 Sep 2025
Viewed by 3851
Abstract
The cGAS-STING pathway initiates the core cascade of innate immune defense by recognizing pathogen-associated and self-derived abnormal nucleic acids, and key molecules (such as cGAS, STING, downstream IFN-β, IL-6, etc.) may serve as biomarkers in various diseases. The diverse mechanisms by which distinct [...] Read more.
The cGAS-STING pathway initiates the core cascade of innate immune defense by recognizing pathogen-associated and self-derived abnormal nucleic acids, and key molecules (such as cGAS, STING, downstream IFN-β, IL-6, etc.) may serve as biomarkers in various diseases. The diverse mechanisms by which distinct nucleic acids activate this pathway provide novel insights for therapeutic strategies targeting infectious diseases, cancer, and autoimmune disorders. To prevent aberrant cGAS-STING pathway activation, cells employ multiple regulatory mechanisms, including restricting self-DNA recognition and terminating downstream signaling. Strategies to mitigate pathological activation involve reducing nucleic acid accumulation through nuclease degradation (e.g., of mitochondrial DNA or neutrophil extracellular traps, NETs) or directly inhibiting cGAS or STING. This review elucidates the molecular mechanism of nucleic acid-mediated regulation of cGAS-STING and its role in disease regulation. Full article
Show Figures

Figure 1

14 pages, 1850 KB  
Article
Rapid Detection of Saxitoxin Using a Nucleic Acid Aptamer Biosensor Based on Graphene Oxide as a Fluorescence Quencher
by Yi Jiao, Liqing Yang, Junping Hao, Yuhang Wen, Jianhua Wang, Hengchao E, Zhiyong Zhao, Yufeng Chen and Xianli Yang
Toxins 2025, 17(9), 430; https://doi.org/10.3390/toxins17090430 - 28 Aug 2025
Viewed by 1524
Abstract
Saxitoxin (STX) is a toxin with paralyzing and lethal properties, necessitating the development of a simple analytical method. This study developed a nucleic acid aptamer biosensor using graphene oxide (GO) as a fluorescence quencher for STX detection. GO was combined with M30-f, an [...] Read more.
Saxitoxin (STX) is a toxin with paralyzing and lethal properties, necessitating the development of a simple analytical method. This study developed a nucleic acid aptamer biosensor using graphene oxide (GO) as a fluorescence quencher for STX detection. GO was combined with M30-f, an STX nucleic acid aptamer modification with 5-carboxyfluorescein, which can produce fluorescence absorption under the conditions of an excitation wavelength of 408 nm and emission wavelength of 515 nm. Based on the principle of fluorescence resonance energy transfer, the fluorescence of M30-f was quenched. In the presence of STX, M30-f specifically binds to STX and dissociates from the GO surface, thereby restoring fluorescence. The STX content can be quantitatively detected through differences in fluorescence absorption. The influence of ultrasonic time on the fluorescence quenching ability of GO was investigated. The aqueous solution of graphene oxide, 30GO, optimized by ultrasound treatment for a duration of 30 min, demonstrated excellent fluorescence quenching capability. 30GO was analyzed utilizing various characterization techniques, including SEM, FT-IR, UV, XPS, XRD, AFM, and contact angle measurements. The methodological validation showed that the established STX sensor exhibits excellent linearity within a concentration range of 10–100,000 ng/L, with a limit of detection (LOD) as low as 0.098 μg/L. In addition, the results further demonstrated the sensor’s high specificity for detecting neurotoxic shellfish toxin STX. The recovery rate for clam samples ranged from 89.12% to 104.71%, while that for oyster samples ranged from 91.20% to 109.65%, with relative standard deviations (RSDs) all below 3%. This aptamer sensor is characterized by its simplicity, high sensitivity, and broad detection range, providing significant technical support for advancing marine biotoxin research. Full article
(This article belongs to the Special Issue Exploration of Toxins from Marine Organisms)
Show Figures

Figure 1

24 pages, 2384 KB  
Review
Amplification-Free Testing of microRNA Biomarkers in Cancer
by Bahareh Soleimanpour, Juan Jose Diaz Mochon and Salvatore Pernagallo
Cancers 2025, 17(16), 2715; https://doi.org/10.3390/cancers17162715 - 21 Aug 2025
Viewed by 2771
Abstract
Background: Circulating miRNAs have been identified as potential biomarkers for the early diagnosis and monitoring of cancers. However, limitations of polymerase chain reaction (PCR)-based methods are currently delaying the transition of miRNA research into clinical practice. These include labour-intensive workflows, exposure to errors [...] Read more.
Background: Circulating miRNAs have been identified as potential biomarkers for the early diagnosis and monitoring of cancers. However, limitations of polymerase chain reaction (PCR)-based methods are currently delaying the transition of miRNA research into clinical practice. These include labour-intensive workflows, exposure to errors and difficulties in detecting and quantifying low-abundance miRNAs. Objectives: This review emphasizes the need to develop amplification-free (“PCR-free”) technologies to improve the reliability, scalability and practicality of miRNA diagnostics in clinical settings. Methods: This review explores recent advances in PCR-free technologies developed over the past five years. It focuses on innovative methods, such as bead-based assays and sensor detection platforms, which serve as valuable alternatives to conventional PCR-based approaches. These emerging technologies have the potential to overcome the key limitations of PCR by offering streamlined workflows, reduced error rates and enhanced compatibility with a variety of clinical sample types. Crucially, they enable absolute quantification without the need for pre-nucleic acid extraction, reverse transcription or amplification, as well as the simultaneous detection of multiple miRNAs within a single assay. These provide cost-effective and scalable solutions for comprehensive biomarker profiling. The transition from PCR-based to PCR-free technologies is a significant step forward in miRNA diagnostics, overcoming long-standing technical barriers and paving the way for broader adoption of miRNA analysis in routine clinical settings. This shift supports the advancement of precision medicine and holds promises for improving early cancer detection. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

32 pages, 3717 KB  
Review
Recent Advance in Electrochemical Chiral Recognition Based on Biomaterials (2019–2024)
by Shan Qiu, Guo-Ying Chen, Yi-Dan Qin, Ting-Ting Li and Feng-Qing Yang
Molecules 2025, 30(16), 3386; https://doi.org/10.3390/molecules30163386 - 14 Aug 2025
Cited by 2 | Viewed by 2012
Abstract
Chirality is a prevalent characteristic of natural systems that plays a significant role in the biological activities of living organisms, and the enantiomers typically exhibit different pharmacological activities. Consequently, developing methods with high selectivity and sensitivity for chiral analysis is of great importance [...] Read more.
Chirality is a prevalent characteristic of natural systems that plays a significant role in the biological activities of living organisms, and the enantiomers typically exhibit different pharmacological activities. Consequently, developing methods with high selectivity and sensitivity for chiral analysis is of great importance for pharmaceutical engineering, biomedicine, and food safety. Electrochemical chiral recognition has garnered significant attention owing to its unique advantages, including simplicity of operation, rapid response, and cost-effectiveness. The biomaterials, such as amino acids, proteins, nucleic acids, and polysaccharides, possess inherent chiral sites, excellent biocompatibility, and abundant modifiable groups, rendering them ideal candidates for constructing electrochemical chiral sensors. This review focuses on the research progress of electrochemical chiral recognition based on different biomaterials from 2019 to 2024. In addition, the distinct chiral recognition mechanisms and electrochemical analysis methods, as well as the research challenges and prospects of electrochemical chiral sensors based on biomaterials in enantiomer recognition are discussed. This review can provide a reference for further study in related fields. Full article
Show Figures

Graphical abstract

40 pages, 14675 KB  
Review
Recent Advances in Hydrogel-Promoted Photoelectrochemical Sensors
by Yali Cui, Yanyuan Zhang, Lin Wang and Yuanqiang Hao
Biosensors 2025, 15(8), 524; https://doi.org/10.3390/bios15080524 - 10 Aug 2025
Cited by 3 | Viewed by 3098
Abstract
Photoelectrochemical (PEC) sensors have garnered increasing attention due to their high sensitivity, low background signal, and rapid response. The incorporation of hydrogels into PEC platforms has significantly expanded their analytical capabilities by introducing features such as biocompatibility, tunable porosity, antifouling behavior, and mechanical [...] Read more.
Photoelectrochemical (PEC) sensors have garnered increasing attention due to their high sensitivity, low background signal, and rapid response. The incorporation of hydrogels into PEC platforms has significantly expanded their analytical capabilities by introducing features such as biocompatibility, tunable porosity, antifouling behavior, and mechanical flexibility. This review systematically categorizes hydrogel materials into four main types—nucleic acid-based, synthetic polymer, natural polymer, and carbon-based—and summarizes their functional roles in PEC sensors, including structural support, responsive amplification, antifouling interface construction, flexible electrolyte integration, and visual signal output. Representative applications are highlighted, ranging from the detection of ions, small biomolecules, and biomacromolecules to environmental pollutants, photodetectors, and flexible bioelectronic devices. Finally, key challenges—such as improving fabrication scalability, enhancing operational stability, integrating emerging photoactive materials, and advancing bio-inspired system design—are discussed to guide the future development of hydrogel-enhanced PEC sensing technologies. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

Back to TopTop