Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = novel pharmacotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1248 KiB  
Review
Mechanisms of GLP-1 in Modulating Craving and Addiction: Neurobiological and Translational Insights
by Gabriel Amorim Moreira Alves, Masatoki Teranishi, Ana Claudia Teixeira de Castro Gonçalves Ortega, Frank James and Arosh S. Perera Molligoda Arachchige
Med. Sci. 2025, 13(3), 136; https://doi.org/10.3390/medsci13030136 - 15 Aug 2025
Abstract
Substance use disorders (SUDs) remain a major public health challenge, with existing pharmacotherapies offering limited long-term efficacy. Traditional treatments focus on dopaminergic systems but often overlook the complex interplay between metabolic signals, neuroplasticity, and conditioned behaviors that perpetuate addiction. Glucagon-like peptide-1 receptor agonists [...] Read more.
Substance use disorders (SUDs) remain a major public health challenge, with existing pharmacotherapies offering limited long-term efficacy. Traditional treatments focus on dopaminergic systems but often overlook the complex interplay between metabolic signals, neuroplasticity, and conditioned behaviors that perpetuate addiction. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), originally developed for type 2 diabetes and obesity, have recently emerged as promising modulators of reward-related brain circuits. This review synthesizes current evidence on the role of glucagon-like peptide-1 (GLP-1) and its receptor in modulating craving and substance-seeking behaviors. We highlight how GLP-1 receptors are expressed in addiction-relevant brain regions, including the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC), where their activation influences dopaminergic, glutamatergic, and GABAergic neurotransmission. In addition, we explore how GLP-1 signaling affects reward processing through gut–brain vagal pathways, hormonal crosstalk, and neuroinflammatory mechanisms. Preclinical studies demonstrate that GLP-1RAs attenuate intake and relapse-like behavior across a range of substances, including alcohol, nicotine, and cocaine. Early-phase clinical trials support their safety and suggest potential efficacy in reducing craving. By integrating findings from molecular signaling, neurocircuitry, and behavioral models, this review provides a translational perspective on GLP-1RAs as an emerging treatment strategy in addiction medicine. We propose that targeting gut–brain metabolic signaling could provide a novel framework for understanding and treating SUDs. Full article
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Viewed by 658
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

36 pages, 1483 KiB  
Review
Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine
by Aneta Nowicka, Hanna Tomczak, Edyta Szałek, Agnieszka Karbownik and Lidia Gil
Biomedicines 2025, 13(7), 1761; https://doi.org/10.3390/biomedicines13071761 - 18 Jul 2025
Viewed by 671
Abstract
Increasing evidence demonstrates the mutualistic connection between the microbiome and acute myeloid leukemia (AML) treatment. Drugs disrupt the microbial balance and, conversely, changes in the microbiome influence therapy. A new field, pharmacomicrobiomics, examines the role of the microbiome in pharmacokinetics, pharmacodynamics, and drug [...] Read more.
Increasing evidence demonstrates the mutualistic connection between the microbiome and acute myeloid leukemia (AML) treatment. Drugs disrupt the microbial balance and, conversely, changes in the microbiome influence therapy. A new field, pharmacomicrobiomics, examines the role of the microbiome in pharmacokinetics, pharmacodynamics, and drug toxicity. The multimodal therapeutic management of AML, along with disease-related immunosuppression, infection, and malnutrition, creates the unique microbial profile of AML patients, in which every delicate modification plays a crucial role in pharmacotherapy. While both preclinical and real-world data have confirmed a bilateral connection between standard chemotherapy and the microbiome, the impact of novel targeted therapies and immunotherapy remains unknown. Multi-omics technologies have provided qualitative and mechanistic insights into specific compositional and functional microbial signatures associated with the outcomes of AML therapy, but require a large-scale investigation to draw reliable conclusions. In this review, we outline the role of the microbiome within the therapeutic landscape of AML, focusing on the determinants of post-treatment dysbiosis and its effects on the therapeutic response and toxicity. We explore emerging strategies for microbiota modulation, highlighting their safety and efficacy. Advances in microbiome-based approaches are an inevitable step toward precision medicine in AML. However, clinical research in a well-defined group of immunocompromised patients is needed to study their variable effects on human health and determine safety issues. Full article
(This article belongs to the Collection Feature Papers in Microbiology in Human Health and Disease)
Show Figures

Figure 1

16 pages, 5315 KiB  
Article
Guarana, Selenium, and L-Carnitine Supplementation Improves the Oxidative Profile but Fails to Reduce Tissue Damage in Rats with Osteoarthritis
by Aline Zuanazzi Pasinato, José Eduardo Vargas, Julia Spanhol da Silva, Joana Grandó Moretto, Cibele Ferreira Teixeira, Verônica Farina Azzolin, Ivana Beatrice Mânica da Cruz, Camile da Rosa Trevisan, Emanuele Cristina Zub, Renato Puga, Verónica Inés Vargas, Grethel León-Mejía and Rômulo Pillon Barcelos
Antioxidants 2025, 14(7), 881; https://doi.org/10.3390/antiox14070881 - 18 Jul 2025
Viewed by 492
Abstract
Osteoarthritis (OA) is a progressive joint disease that is commonly managed with palliative drugs, many of which are associated with undesirable side effects. This study investigated the therapeutic potential of a novel supplementation with guarana, selenium, and L-carnitine (GSC) in a rat model [...] Read more.
Osteoarthritis (OA) is a progressive joint disease that is commonly managed with palliative drugs, many of which are associated with undesirable side effects. This study investigated the therapeutic potential of a novel supplementation with guarana, selenium, and L-carnitine (GSC) in a rat model of chemically induced OA. Forty male Wistar rats (8–9 weeks old) received intra-articular sodium monoiodoacetate (Mia) to induce OA, and were subsequently treated with GSC. Inflammatory and oxidative stress parameters were analyzed at the end of the experiment. GSC supplementation enhanced endogenous antioxidant defenses, suggesting systemic antioxidant activity. However, no histological improvement was observed. In silico analyses indicated that Mia-induced OA may involve a complex molecular environment that GSC, at the tested dose, failed to modulate at the site of injury. Despite the limited local effects, these findings support the systemic benefits of GSC and highlight the potential of natural compound-based strategies in OA management. Given the adverse effects of conventional pharmacotherapy, the development of alternative, naturally derived treatments remains a promising avenue for future research. Full article
(This article belongs to the Special Issue The OxInflammation Process and Tissue Repair)
Show Figures

Graphical abstract

22 pages, 678 KiB  
Review
Pharmacologic Disruption: How Emerging Weight Loss Therapies Are Challenging Bariatric Surgery Guidelines
by Safi G. Alqatari, Abrar J. Alwaheed, Manal A. Hasan, Reem J. Al Argan, Marj M. Alabdullah and Mohammed D. Al Shubbar
Medicina 2025, 61(7), 1292; https://doi.org/10.3390/medicina61071292 - 18 Jul 2025
Viewed by 749
Abstract
Obesity is a chronic, relapsing disease with multifactorial origins and significant global health implications. Historically, bariatric surgery has been the most effective intervention for achieving sustained weight loss and metabolic improvement, especially in individuals with moderate to severe obesity. However, the therapeutic landscape [...] Read more.
Obesity is a chronic, relapsing disease with multifactorial origins and significant global health implications. Historically, bariatric surgery has been the most effective intervention for achieving sustained weight loss and metabolic improvement, especially in individuals with moderate to severe obesity. However, the therapeutic landscape is rapidly evolving. Recent advances in pharmacotherapy—including GLP-1 receptor agonists, dual and triple incretin agonists, and amylin-based combination therapies—have demonstrated unprecedented efficacy, with some agents inducing 15–25% weight loss, approaching outcomes once exclusive to surgical intervention. These developments challenge the continued applicability of existing bariatric surgery criteria, which were established in an era of limited medical alternatives. In this narrative review, we examine the evolution of surgical eligibility thresholds and critically assess the potential role of novel pharmacotherapies in redefining treatment algorithms. By comparing the efficacy, safety, metabolic benefits, and cost-effectiveness of surgery versus next-generation drugs, we explore whether a more stepwise, pharmacotherapy-first approach may now be justified, particularly in patients with BMI 30–40 kg/m2. We also discuss future directions in obesity management, including personalized treatment strategies, perioperative drug use, and the integration of pharmacologic agents into long-term care pathways. As the field advances, a paradigm shift toward individualized, minimally invasive interventions appears inevitable—necessitating a timely re-evaluation of current bariatric surgery guidelines to reflect the expanding potential of medical therapy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 1321 KiB  
Review
Emerging Trends in Endoscopic Bariatric Therapies: Personalization Through Genomics and Synergistic Pharmacotherapy
by Wissam Ghusn, Annika Divakar, Yara Salameh, Kamal Abi Mosleh and Andrew C. Storm
J. Clin. Med. 2025, 14(13), 4681; https://doi.org/10.3390/jcm14134681 - 2 Jul 2025
Viewed by 690
Abstract
Obesity is a major global health challenge associated with significant metabolic and gastrointestinal comorbidities. While metabolic and bariatric surgery remains the gold standard for durable weight loss, the desire for additional options has fueled the development of endoscopic bariatric therapies (EBTs) as another [...] Read more.
Obesity is a major global health challenge associated with significant metabolic and gastrointestinal comorbidities. While metabolic and bariatric surgery remains the gold standard for durable weight loss, the desire for additional options has fueled the development of endoscopic bariatric therapies (EBTs) as another tool for weight loss. This review examines established EBTs, including endoscopic sleeve gastroplasty (ESG), intragastric balloons (IGBs), and transoral outlet reduction (TORe), alongside emerging therapies such as duodenal mucosal resurfacing (DMR), incisionless anastomosis creation, and fully automated endoscopic gastric remodeling systems. ESG has demonstrated durable weight loss, favorable safety, and superior cost-effectiveness compared to pharmacotherapy alone, while combination strategies using EBTs and anti-obesity medications (AOMs), particularly GLP-1 receptor agonists, have resulted in greater total-body weight loss than either modality alone. Genetic variation, particularly within the leptin–melanocortin pathway, may predict response to endoscopic interventions and guide personalized treatment selection. Novel investigational procedures such as DMR, automated or robotic gastric remodeling, and magnetic or ultrasound-assisted gastric bypass show promising early results. Endoscopic therapies are poised to become increasingly central to the personalized, scalable management of obesity and related metabolic diseases. Full article
Show Figures

Figure 1

18 pages, 668 KiB  
Review
The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review
by Eleni Giannoulis, Christos Nousis, Lydia-Angeliki Eytaxia, Olga Kaimakami and Ioannis Malogiannis
Brain Sci. 2025, 15(7), 708; https://doi.org/10.3390/brainsci15070708 - 30 Jun 2025
Viewed by 655
Abstract
Background/Objectives: Borderline personality disorder (BPD) is a complex psychiatric condition marked by emotional dysregulation, interpersonal instability, and impulsivity. Despite the advances in psychotherapy and pharmacotherapy, many patients show a partial or unstable response. Recent research suggests that oxytocin, a neuropeptide involved in social [...] Read more.
Background/Objectives: Borderline personality disorder (BPD) is a complex psychiatric condition marked by emotional dysregulation, interpersonal instability, and impulsivity. Despite the advances in psychotherapy and pharmacotherapy, many patients show a partial or unstable response. Recent research suggests that oxytocin, a neuropeptide involved in social cognition and emotional regulation, may offer novel therapeutic avenues. Methods: We systematically synthesize evidence from PubMed, PsycINFO, Web of Science, and Google Scholar on oxytocin’s role in BPD, prioritizing studies on neurobiology, emotion regulation, clinical interventions, and adjunctive therapy models. Thirty studies were included and critically appraised using PRISMA and Cochrane’s tools. Due to methodological heterogeneity, no meta-analysis was conducted; instead, the findings were integrated through a narrative synthesis approach. Results: Evidence supports oxytocin’s modulatory effects on amygdala reactivity, prefrontal–limbic connectivity, and hypothalamic–pituitary–adrenal axis function. Intranasal oxytocin appears beneficial for emotional regulation and interpersonal sensitivity, particularly in individuals with early trauma. The reported effect sizes ranged from small (Cohen’s d ≈ 0.40) to large (d ≈ 0.83), though some trials reported null or adverse effects, such as increased hypermentalization. Heterogeneous responses were influenced by factors such as sex, trauma history, and OXTR gene variants. Conclusions: Although intranasal oxytocin shows promise in modulating core neurobiological systems implicated in BPD and enhancing emotion regulation and social cognition, its clinical effects remain variable and context-dependent. The evidence supports cautious exploration of oxytocin as an adjunct to psychotherapeutic interventions rather than as a standalone treatment. Future research should focus on biomarker-informed, stratified trials that account for trauma history, genetic variation, and sex differences to clarify its therapeutic potential. Full article
Show Figures

Figure 1

12 pages, 559 KiB  
Review
Mirogabalin for Neuropathic Pain: A Review of Non-Opioid Pharmacotherapy with Insights from Japan
by Mizuho Sumitani, Takamichi Kogure, Hiroaki Abe, Rikuhei Tsuchida, Reo Inoue and Masahiko Sumitani
Future Pharmacol. 2025, 5(3), 31; https://doi.org/10.3390/futurepharmacol5030031 - 25 Jun 2025
Viewed by 1658
Abstract
Background and Aim: Neuropathic pain leads to a significant deterioration in health-related quality of life (HRQOL). Treating neuromusculoskeletal pain is especially important to prevent and improve physical frailty and the locomotive syndrome. Varied pharmacotherapies could be applicable for neuropathic pain patients, but evidence [...] Read more.
Background and Aim: Neuropathic pain leads to a significant deterioration in health-related quality of life (HRQOL). Treating neuromusculoskeletal pain is especially important to prevent and improve physical frailty and the locomotive syndrome. Varied pharmacotherapies could be applicable for neuropathic pain patients, but evidence has been limited for a wide range of neuropathic pain conditions with different etiologies. The aim of this review was to highlight mirogabalin, a novel calcium channel α2δ ligand which was first approved in Japan, and which is effective for various types of neuropathic pain diseases. Methods: We conducted a narrative review of the recent evidence that mirogabalin has significant analgesic potency for varied types of neuropathic pain conditions. Futher, this review highlighted specific advantages over other calcium channel ligands. Results: Analgesic potency of mirogabalin could cover peripheral neuropathic pain conditions including post-herpetic neuralgia, diabetic peripheral neuropathy, cauda equina syndrome caused by lumbar spinal stenosis, radiculopathy caused by cervical spondylosis, and also central neuropathic pain conditions like spinal cord injury. Mirogabalin consistently demonstrated daytime sleepiness and dizziness as adverse effects, but most of these were mild. Conclusions: Mirogabalin is recommended as the first-line drug against most molecular mechanisms that cause neuropathic pain regardless of whether they have a peripheral or central origin. Mirogabalin demonstrates relatively less daytime sleepiness, making it age-friendly in the current global situation where population aging is accelerated. Considering the epidemic of ‘opiophobia’ in Japan and other countries, pharmacotherapy using mirogabalin could treat neuropathic pain associated with cancer and its treatment (e.g., chemotherapy-induced peripheral neuropathy), as well as non-cancer etiologies worldwide. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2025)
Show Figures

Figure 1

13 pages, 1292 KiB  
Article
Miyako Bidens pilosa Extract Ameliorates Allodynia and Suppresses Spinal Microglial Activation in Mice with Partial Sciatic Nerve Ligation
by Ai Takahashi, Hiroko Miyagishi, Komugi Tsuruta, Hiroshi Nango, Dai Hirose, Yuri Aono, Minoru Tanigawa, Katsushi Nishimura, Minoru Saito, Takayuki Kawato, Tadashi Saigusa and Yasuhiro Kosuge
Curr. Issues Mol. Biol. 2025, 47(6), 453; https://doi.org/10.3390/cimb47060453 - 12 Jun 2025
Viewed by 675
Abstract
Neuropathic pain, characterized by chronic allodynia, remains difficult to manage with current pharmacotherapies. Microglial activation plays a pivotal role in the development and maintenance of neuropathic pain and represents a promising therapeutic target. We previously demonstrated that Miyako Bidens pilosa extract powder (MBP), [...] Read more.
Neuropathic pain, characterized by chronic allodynia, remains difficult to manage with current pharmacotherapies. Microglial activation plays a pivotal role in the development and maintenance of neuropathic pain and represents a promising therapeutic target. We previously demonstrated that Miyako Bidens pilosa extract powder (MBP), derived from Miyako Island, Okinawa, suppresses glial activation in a mouse model of amyotrophic lateral sclerosis. In this study, we investigated the analgesic potential of MBP in a mouse model of neuropathic pain. Neuropathic pain was induced in male ICR mice by partial sciatic nerve ligation (PSNL). Mice were orally administered MBP (2 g/kg) or vehicle daily. Mechanical allodynia was assessed using von Frey filaments. On postoperative day 7, MBP-treated mice exhibited significantly reduced allodynia compared to vehicle-treated mice. MBP also attenuated thermal hyperalgesia on postoperative day 7. Lumbar spinal cords (L5) were subjected to immunohistochemical analysis for ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker. MBP significantly decreased the number of Iba1-positive microglia in the ipsilateral dorsal horn. These results suggest that MBP alleviates neuropathic pain, at least in part, by suppressing microglial activation in the spinal cord. MBP may represent a novel plant-derived therapeutic candidate for treating neuropathic pain. Full article
Show Figures

Figure 1

33 pages, 2003 KiB  
Review
Acute Compartment Syndrome and Intra-Abdominal Hypertension, Decompression, Current Pharmacotherapy, and Stable Gastric Pentadecapeptide BPC 157 Solution
by Predrag Sikiric, Sven Seiwerth, Anita Skrtic, Mario Staresinic, Sanja Strbe, Antonia Vuksic, Suncana Sikiric, Dinko Bekic, Toni Penovic, Dominik Drazenovic, Tomislav Becejac, Marijan Tepes, Zrinko Madzar, Luka Novosel, Lidija Beketic Oreskovic, Ivana Oreskovic, Mirjana Stupnisek, Alenka Boban Blagaic and Ivan Dobric
Pharmaceuticals 2025, 18(6), 866; https://doi.org/10.3390/ph18060866 - 10 Jun 2025
Viewed by 1200
Abstract
In this study, pharmacotherapies of abdominal compartment syndrome (ACS) and intra-abdominal hypertension (IAH) in animal studies were reviewed from the perspective of ACS/IAH as failed cytoprotection issues, as non-specific injuries, and from the point of view of the cytoprotection concept as resolution. Therefore, [...] Read more.
In this study, pharmacotherapies of abdominal compartment syndrome (ACS) and intra-abdominal hypertension (IAH) in animal studies were reviewed from the perspective of ACS/IAH as failed cytoprotection issues, as non-specific injuries, and from the point of view of the cytoprotection concept as resolution. Therefore, this review challenges the unresolved theoretical and practical issues of severe multiorgan failure, acknowledged significance in clinics, and resolving outcomes (i.e., open abdomen). Generally, the reported agents not aligned with cytoprotection align with current pharmacotherapy limitations and have (non-)confirmed effectiveness, mostly in only one organ, mild/moderate IAH, prophylactic application, and provide only a tentative resolution. Contrarily, stable gastric pentadecapeptide BPC 157 therapy, as a novel and relevant cytoprotective mediator having pleiotropic beneficial effects, simultaneously resolves many targets, resolving established disturbances, specifically compression/ischemia (grade III and grade IV), and decompression/advanced reperfusion. BPC 157 therapy rapidly activates collateral bypassing pathways, and, in ACS and IAH, and later, in reperfusion, there is a “bypassing key” (i.e., azygos vein direct blood flow delivery). This serves to counteract multiorgan and vessel failure, including lesions and hemorrhages in the brain, heart, lung, liver, kidney and gastrointestinal tract, thrombosis, peripherally and centrally, intracranial (superior sagittal sinus), portal and caval hypertension and aortal hypotension, occlusion/occlusion-like syndrome, advanced Virchow triad circumstances, and free radical formation acting as a membrane stabilizer and free radical scavenger. Likewise, not only in ACS/IAH resolving, but also in other occlusion/occlusion-like syndromes, this “bypassing key” could be an effect of the essential endothelial cytoprotective capacity of BPC 157 and a particular modulatory effect on the NO-system, and a rescuing impact on vasomotor tone. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

30 pages, 1318 KiB  
Review
Pathogenesis and Therapeutic Perspectives of Tubular Injury in Diabetic Kidney Disease: An Update
by Jiamian Geng, Sijia Ma, Hui Tang and Chun Zhang
Biomedicines 2025, 13(6), 1424; https://doi.org/10.3390/biomedicines13061424 - 10 Jun 2025
Viewed by 1306
Abstract
Diabetic kidney disease (DKD), a well-characterized microvascular complication associated with the progression of diabetes mellitus, has been identified as the leading etiological factor contributing to the global burden of end-stage kidney disease (ESKD). Historically, DKD research has predominantly centered on glomerular mechanisms; however, [...] Read more.
Diabetic kidney disease (DKD), a well-characterized microvascular complication associated with the progression of diabetes mellitus, has been identified as the leading etiological factor contributing to the global burden of end-stage kidney disease (ESKD). Historically, DKD research has predominantly centered on glomerular mechanisms; however, recent studies have increasingly emphasized the critical role of tubular dysfunction. Extensive evidence has elucidated the key pathological drivers of tubular injury in DKD, encompassing metabolic dysregulation, pro-inflammatory signaling pathways, diverse cellular stress responses, and epithelial–mesenchymal transition (EMT). Furthermore, emerging mechanistic studies reveal that autophagic flux impairment and epigenetic memory formation collaboratively drive cellular senescence in DKD. Regarding the treatment of DKD, various hypoglycemic drugs, as well as hypotensive drugs, and microcirculatory improvers have garnered significant attention. Recently, stem cell-based interventions and precision gene editing techniques have unveiled novel therapeutic paradigms for DKD, fundamentally expanding the treatment arsenal beyond conventional pharmacotherapy. This review synthesizes updated insights into the pathogenesis of tubular injury in DKD and highlights promising therapeutic strategies for managing this condition. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (2nd Edition))
Show Figures

Figure 1

12 pages, 5963 KiB  
Case Report
Successful Management of a Posterior Post-Infarction Ventricular Septal Defect and Mitral Regurgitation with Delayed Surgery—A Case Report and Overview of the Literature
by Mihai Ștefan, Mircea Robu, Cornelia Predoi, Răzvan Ilie Radu and Daniela Filipescu
Reports 2025, 8(2), 87; https://doi.org/10.3390/reports8020087 - 4 Jun 2025
Viewed by 958
Abstract
Background and Clinical Significance: Ventricular septal defect (VSD) is a rare but serious complication following myocardial infarction (MI) that can lead to cardiogenic shock and carries a high mortality rate. Acute mitral regurgitation (MR) is another severe complication of MI with additional risks [...] Read more.
Background and Clinical Significance: Ventricular septal defect (VSD) is a rare but serious complication following myocardial infarction (MI) that can lead to cardiogenic shock and carries a high mortality rate. Acute mitral regurgitation (MR) is another severe complication of MI with additional risks of mortality. The optimal timing of surgical intervention for VSD with MR is still being debated, and delaying surgery in medically manageable patients has been associated with improved survival. However, managing these patients in the intensive care unit (ICU) presents unique challenges. Case Presentation: In this paper, we present the case of a 52-year-old male with comorbidities who developed post-MI VSD with severe MR and underwent successful delayed surgical repair and mitral valve replacement. Our aim is to highlight the clinical characteristics, diagnostic approach, and management strategies of this rare complication in the critical care setting. The patient presented in cardiogenic shock and acute pulmonary edema. After stabilization using an intra-aortic balloon pump, pre- and afterload reducing pharmacotherapy and non-invasive mechanical ventilation, a watchful waiting strategy was employed, and surgery was performed on day 21 after hospital admission. Surgery was performed under general anesthesia, and the patient did not develop any complications related to the intra-aortic balloon pump or novel organ dysfunction. Conclusions: This case highlights the importance of a multidisciplinary approach to managing post-MI VSD with MR and emphasizes the need for careful patient selection and timing of surgical intervention in the critical care setting. Clinicians should be aware of the potential benefits of delaying surgical intervention in medically manageable patients, while also considering the unique challenges of managing these patients in the ICU. Full article
(This article belongs to the Section Cardiology/Cardiovascular Medicine)
Show Figures

Figure 1

12 pages, 811 KiB  
Review
Retatrutide—A Game Changer in Obesity Pharmacotherapy
by Vasiliki Katsi, Georgios Koutsopoulos, Christos Fragoulis, Kyriakos Dimitriadis and Konstantinos Tsioufis
Biomolecules 2025, 15(6), 796; https://doi.org/10.3390/biom15060796 - 30 May 2025
Viewed by 6396
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are global health crises with significant morbidity and mortality. Retatrutide, a novel triple receptor agonist targeting glucagon-like peptide-1 (GLP-1), Glucose-Dependent Insulinotropic Polypeptide (GIP), and glucagon receptors, represents a groundbreaking advancement in obesity and T2DM pharmacotherapy. This [...] Read more.
Obesity and type 2 diabetes mellitus (T2DM) are global health crises with significant morbidity and mortality. Retatrutide, a novel triple receptor agonist targeting glucagon-like peptide-1 (GLP-1), Glucose-Dependent Insulinotropic Polypeptide (GIP), and glucagon receptors, represents a groundbreaking advancement in obesity and T2DM pharmacotherapy. This review synthesizes findings from preclinical and clinical studies, highlighting retatrutide’s mechanisms, efficacy, and safety profile. Retatrutide’s unique molecular structure enables potent activation of GLP-1, GIP, and glucagon receptors, leading to significant weight reduction, improved glycemic control, and favorable metabolic outcomes. Animal studies demonstrate retatrutide’s ability to delay gastric emptying, reduce food intake, and promote weight loss, with superior efficacy compared to other incretin-based therapies. Phase I and II clinical trials corroborate these findings, showing dose-dependent weight loss, reductions in Glycated Hemoglobin (HbA1c) levels, and improvements in liver steatosis and diabetic kidney disease. Common adverse effects are primarily gastrointestinal and dose-related. Ongoing Phase III trials, such as the TRIUMPH studies, aim to further evaluate retatrutide’s long-term safety and efficacy in diverse patient populations. While retatrutide shows immense promise, considerations regarding cost and the quality of weight loss beyond BMI reduction warrant further investigation. Retatrutide heralds a new era in obesity and T2DM treatment, offering hope for improved patient outcomes. Full article
Show Figures

Figure 1

19 pages, 1019 KiB  
Review
Innovative Strategies in the Diagnosis and Treatment of Liver Cirrhosis and Associated Syndromes
by Ashok Kumar Sah, Mohd Afzal, Rabab H. Elshaikh, Anass M. Abbas, Manar G. Shalabi, Pranav Kumar Prabhakar, Asaad M. A. Babker, Fariza Tursunbaevna Khalimova, Velilyaeva Aliya Sabrievna and Ranjay Kumar Choudhary
Life 2025, 15(5), 779; https://doi.org/10.3390/life15050779 - 13 May 2025
Cited by 1 | Viewed by 1881
Abstract
Liver cirrhosis continues to be a major global health issue, contributing to high morbidity and mortality due to its progressive nature and associated complications. This review explores recent advancements in the diagnosis and treatment of liver cirrhosis and its related syndromes. Non-invasive diagnostic [...] Read more.
Liver cirrhosis continues to be a major global health issue, contributing to high morbidity and mortality due to its progressive nature and associated complications. This review explores recent advancements in the diagnosis and treatment of liver cirrhosis and its related syndromes. Non-invasive diagnostic tools, such as elastography and serum biomarkers, have significantly improved early detection, reducing the need for liver biopsies. Advanced imaging techniques, including MRI and CT, further enhance diagnostic accuracy. In parallel, molecular and genomic research is providing new insights into the pathogenesis of the disease, paving the way for precision medicine. On the treatment front, pharmacological innovations, such as antifibrotic agents and targeted therapies, show promise in slowing disease progression. Endoscopic interventions like variceal banding are improving the management of complications, while advancements in liver transplantation and artificial liver support systems offer life-saving alternatives. Regenerative medicine, particularly stem cell therapy and tissue engineering, is emerging as a promising strategy for liver repair. Managing cirrhosis-related syndromes, including portal hypertension, ascites, hepatic encephalopathy, and hepatorenal syndrome, now involves evolving therapeutic approaches such as transjugular intrahepatic portosystemic shunt (TIPS) and novel pharmacotherapies. Prognostic scoring systems like the MELD and Child–Pugh are being refined with new biomarkers for better risk stratification. The future of cirrhosis care will likely involve the integration of artificial intelligence and machine learning for early diagnosis and personalized treatments, alongside emerging therapies currently under investigation. Despite these advancements, challenges such as costs, accessibility, and healthcare disparities remain barriers to widespread adoption. This review highlights the importance of incorporating innovative diagnostic and therapeutic strategies into clinical practice to improve the outcomes for patients with liver cirrhosis and its complications. Full article
Show Figures

Figure 1

25 pages, 4600 KiB  
Article
Cannabidiol-Loaded Retinal Organoid-Derived Extracellular Vesicles Protect Oxidatively Stressed ARPE-19 Cells
by Peggy Arthur, Sangeetha Kandoi, Anil Kalvala, Breana Boirie, Aakash Nathani, Mounika Aare, Santanu Bhattacharya, Tanmay Kulkarni, Li Sun, Deepak A. Lamba, Yan Li and Mandip Singh
Biomedicines 2025, 13(5), 1167; https://doi.org/10.3390/biomedicines13051167 - 10 May 2025
Viewed by 832
Abstract
Background/Objectives: Age-related macular degeneration (AMD) is the third leading cause of irreversible blindness in elderly individuals aged over 50 years old. Oxidative stress plays a crucial role in the etiopathogenesis of multifactorial AMD disease. The phospholipid bilayer EVs derived from the culture-conditioned medium [...] Read more.
Background/Objectives: Age-related macular degeneration (AMD) is the third leading cause of irreversible blindness in elderly individuals aged over 50 years old. Oxidative stress plays a crucial role in the etiopathogenesis of multifactorial AMD disease. The phospholipid bilayer EVs derived from the culture-conditioned medium of human induced pluripotent stem cell (hiPSC) differentiated retinal organoids aid in cell-to-cell communication, signaling, and extracellular matrix remodeling. The goal of the current study is to establish and evaluate the encapsulation of a hydrophobic compound, cannabidiol (CBD), into retinal organoid-derived extracellular vesicles (EVs) for potential therapeutic use in AMD. Methods: hiPSC-derived retinal organoid EVs were encapsulated with CBD via sonication (CBD-EVs), and structural features were elucidated using atomic force microscopy, nanoparticle tracking analysis, and small/microRNA (miRNA) sequencing. ARPE-19 cells and oxidative-stressed (H2O2) ARPE-19 cells treated with CBD-EVs were assessed for cytotoxicity, apoptosis (MTT assay), reactive oxygen species (DCFDA), and antioxidant proteins (immunohistochemistry and Western blot). Results: Distinct miRNA cargo were identified in early and late retinal organoid-derived EVs, implicating their roles in retinal development, differentiation, and functionality. The therapeutic effects of CBD-loaded EVs on oxidative-stressed ARPE-19 cells showed greater viability, decreased ROS production, downregulated expression of inflammation- and apoptosis-related proteins, and upregulated expression of antioxidants by Western blot and immunocytochemistry. Conclusions: miRNAs are both prognostic and predictive biomarkers and can be a target for developing therapy since they regulate RPE physiology and diseases. Our findings indicate that CBD-EVs could potentially alleviate the course of AMD by activating the targeted proteins linked to the adenosine monophosphate kinase (AMPK) pathway. Implicating the use of CBD-EVs represents a novel frontline to promote long-term abstinence from drugs and pharmacotherapy development in treating AMD. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids, 3rd Edition)
Show Figures

Figure 1

Back to TopTop