The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
- Empirical investigations, randomized controlled trials (RCTs), observational studies, systematic reviews, or meta-analyses.
- Focused on oxytocin’s neurobiological mechanisms or the clinical effects of oxytocin in BPD populations.
- Examined either the endogenous or intranasal administration of oxytocin.
- Investigated oxytocin in the context of psychotherapeutic augmentation (e.g., DBT, MBT).
- Case reports, opinion pieces, editorials, or theoretical essays without empirical data.
- Studies unrelated to BPD or not focused on oxytocin.
- Articles without peer-review validation.
2.3. Study Selection Process
2.4. Data Extraction
- Study design (e.g., randomized controlled trial, observational, neuroimaging study).
- Sample characteristics (e.g., size, sex distribution, trauma history).
- Method and dosage of oxytocin administration (e.g., intranasal or endogenous measurement).
- Targeted outcomes (e.g., amygdala activity, prefrontal connectivity, cortisol levels, emotional regulation, and social cognition).
- Moderator variables (e.g., OXTR gene polymorphisms, psychiatric comorbidities).
- Key findings and, where reported, statistical effect sizes (e.g., Cohen’s d).
2.5. Quality Assessment
2.6. Data Synthesis
2.7. Risk of Bias Assessment
- Clarity of inclusion criteria.
- Valid exposure/outcome measurement.
- Identification and control of confounders.
- Appropriateness of statistical analysis.
- Transparency in reporting.
3. Results
3.1. Overview of Study Selection and Characteristics
- Not focused on BPD (n = 20).
- Theoretical or opinion based without empirical data (n = 18).
- Methodologically inadequate (e.g., no control group or poor outcome reporting) (n = 12).
- Twelve RCTs.
- Ten observational studies.
- Five neuroimaging studies.
- Three systematic reviews.
- (1)
- Neurobiological mechanisms of oxytocin in BPD;
- (2)
- Effects on emotional regulation and social cognition;
- (3)
- Clinical trials evaluating treatment efficacy and therapeutic integration.
3.2. Neurobiological Mechanisms of Oxytocin in BPD
3.3. Oxytocin and Emotional/Social Processing in BPD
3.4. Oxytocin and Its Involvement in Social Cognition
3.5. Clinical Effectiveness of Intranasal Oxytocin
3.5.1. Oxytocin and Depressive Symptoms
3.5.2. Oxytocin and Stress Response
3.5.3. Neuroplasticity and Long-Term Effects
3.5.4. Clinical Evidence on Oxytocin Treatment of BPD
3.6. Integration with Psychotherapy: Adjunctive Applications
4. Discussion
4.1. Summary of Key Findings
4.2. Implications of Neurobiological Findings
4.3. Translational Value: Emotion Regulation and Social Cognition
4.4. Clinical Applications and Integration into Psychotherapy
4.5. Limitations
4.6. Future Directions and Research Recommendations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPD | Borderline Personality Disorder |
DBT | Dialectical Behaviour Therapy |
MBT | Mentalization-Based Therapy |
HPA | Hypothalamic–Pituitary–Adrenal |
Appendix A
Study | Design | Sample Size | Oxytocin Admin | Outcomes Measured | Key Findings |
---|---|---|---|---|---|
Bertsch et al. (2013) | RCT | N = 40 | Intranasal | Social threat sensitivity. | Reduced social threat, improved |
emotion regulation | regulation | ||||
Domes et al. (2007) | RCT | N = 30 | Intranasal | Amygdala reactivity | Reduced amygdala activity |
Brine et al. (2013) | RCT | N = 34 | Intranasal | Interpersonal trust. | improved prosocial behavior |
cooperation | |||||
Simeon et al. (2011) | Plot Study | N = 10 | Intranasal | Stress reactivity | Attenuated stress response |
Ebert et al. (2013) | Observational | N = 31 | Endogenous | interpersonal trust, childhood | Trust modulation moderated by |
trauma | trauma | ||||
Lischke et al. (2017) | MRI | N = 28 | Intranasal | Amygdala reactivity to | Differential limbic responses in BPD |
emotional scenes | vs controls | ||||
Schneider et al. (2020) | RCT | N = 60 | Intranasal | Approach-avoidance behavior | Normalized behavioral responses |
Domes et al. (2019) | RCT | N = 45 | Intranasal | Empathy, approach | Enhanced empathy and social |
motivation | motivation | ||||
Macz et al. (2024) | RCT | N = 70 | Intranasal | Depressive symptoms. | Improved symptoms in MDD, not BPD |
symptom severity | |||||
Bertsch et al. (2013) | RCT | N = 40 | Intranasal | Social threat sensitivity. | Reduced social threat, improved |
emotion regulation | regulation | ||||
Domes et al. (2007) | RCT | N = 30 | Intranasal | Amygdala reactivity | Reduced amygdala activity |
Brine et al. (2013) | RCT | N = 34 | Intranasal | Interpersonal trust. | Improved prosocial behavior |
cooperation | |||||
Simeon et al. (2011) | Plot Study | N = 10 | Intranasal | Stress reactivity | Attenuated stress response |
Ebert et al. (2013) | Observational | N = 31 | Endogenous | Interpersonal trust, childhood | Trust modulation moderated by |
trauma | trauma | ||||
Lischke et al. (2017) | MRI | N = 28 | Intranasal | Amygdala reactivity to | Differential limbic responses in BPD |
emotional scenes | vs controls | ||||
Schneider et al. (2020) | RCT | N = 60 | Intranasal | Approach-avoidance behavior | Normalized behavioral responses |
Domes et al. (2019) | RCT | N = 45 | Intranasal | Empathy, approach | Enhanced empathy and social |
Brine et al. (2013) | RCT | N = 34 | Intranasal | interpersonal trust. | Improved prosocial behavior |
cooperation | |||||
Simeon et al. (2011) | Plot Study | N = 10 | Intranasal | Stress reactivity | Attenuated stress response |
Ebert et al. (2013) | Conventional | N = 31 | Endogenous | Interpersonal trust, childhood | Trust modulation moderated by |
trauma | trauma | ||||
Lischke et al. (2017) | fMRI | N = 28 | Intranasal | Amygdala reactivity to | Differential limbic responses in BPD |
emotional scenes | vs controls | ||||
Schneider et al. (2020) | RCT | N = 60 | Intranasal | Approach-avoidance behavior | Normalized behavioral responses |
Domes et al. (2019) | RCT | N = 45 | Intranasal | Empathy, approach | Enhanced empathy and social |
motivation | motivation | ||||
Macz et al. (2024) | RCT | N = 70 | Intranasal | Depressive symptoms, | Improved symptoms in MDO, not BPD |
symptom severity | |||||
Bertsch et al. (2013) | RCT | N = 40 | Intranasal | Social threat sensitivity | Reduced social threat, improved |
emotion regulation | regulation | ||||
Domes et al. (2007) | RCT | N = 30 | Intranasal | Amygdala reactivity | Reduced amygdala activity |
Brine et al. (2013) | RCT | N = 34 | Intranasal | interpersonal trust, | improved prosocial behavior |
cooperation |
Section | Item | Checklist Item | Location in Manuscript |
---|---|---|---|
TITLE | 1 | Identify the report as a systematic review. | Title page, Abstract |
ABSTRACT | 2 | Structured summary of background, objectives, methods, results, limitations. | Abstract |
INTRODUCTION | 3 | Rationale for the review. | Section 1, p. 2 |
4 | Objectives or research questions addressed. | Section 1, end of p. 2 | |
METHODS | 5 | Eligibility criteria (inclusion/exclusion). | Section 2.2 |
6 | Information sources (databases, search dates). | Section 2.1 | |
7 | Search strategy, including Boolean terms. | Section 2.1 | |
8 | Selection process (reviewers, consensus). | Section 2.3 | |
9 | Data collection process (who, how, tools). | Section 2.4 | |
10 | Data items (what was extracted). | Section 2.4 | |
11 | Risk of bias assessment methods. | Section 2.5 | |
12 | Effect measures. | Not applicable (narrative synthesis) | |
13 | Synthesis methods (e.g., rationale for no meta-analysis). | End of Section 2.1 and Section 2.4 | |
14 | Reporting bias assessment. | Not applicable (no meta-analysis) | |
15 | Certainty of evidence. | Not conducted explicitly (limitations discussed) | |
RESULTS | 16 | Study selection (numbers, reasons, PRISMA flow). | Section 3.1 + Figure 1 |
17 | Study characteristics. | Table A1 | |
18 | Risk of bias in studies. | Appendix A | |
19 | Results of individual studies. | Section 3 (summarized narratively) | |
20 | Results of syntheses. | Section 3 | |
21 | Reporting biases. | Not applicable | |
22 | Certainty of evidence. | Not conducted | |
DISCUSSION | 23 | Summary, limitations, conclusions. | Section 4 |
OTHER INFORMATION | 24 | Registration and protocol. | Not registered (add if applicable) |
25 | Support/funding. | Section 5 | |
26 | Competing interests. | 5 | |
27 | Availability of data/code. | Not applicable |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Leichsenring, F.; Fonagy, P.; Heim, N.; Kernberg, O.F.; Leweke, F.; Luyten, P.; Salzer, S.; Spitzer, C.; Steinert, C. Borderline personality disorder: A comprehensive review of diagnosis and clinical presentation, etiology, treatment, and current controversies. World Psychiatry 2024, 23, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Zanarini, M.C.; Frankenburg, F.R.; Reich, D.B.; Silk, K.R.; Hudson, J.I.; McSweeney, L.B. The subsyndromal phenomenology of borderline personality disorder: A 10-year follow-up study. Am. J. Psychiatry 2007, 164, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Thadani, B.; Pérez-García, A.M.; Bermúdez, J. Functional impairment in borderline personality disorder: The mediating role of perceived social support. Front. Psychol. 2022, 13, 883833. [Google Scholar] [CrossRef] [PubMed]
- Sansone, R.A.; Sansone, L.A. Gender patterns in borderline personality disorder. Innov. Clin. Neurosci. 2011, 8, 16–20. [Google Scholar]
- Sher, L.; Rutter, S.; New, A.; Siever, L.; Hazlett, E. Gender differences and similarities in aggression, suicidal behavior, and psychiatric comorbidity in borderline personality disorder. Acta Psychiatr. Scand. 2018, 139, 145–153. [Google Scholar] [CrossRef]
- Bozzatello, P.; Blua, C.; Brandellero, D.; Baldassarri, L.; Brasso, C.; Rocca, P.; Bellino, S. Gender differences in borderline personality disorder: A narrative review. Front. Psychiatry 2024, 15, 1320546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gunderson, J.G.; Stout, R.L.; McGlashan, T.H.; Shea, M.T.; Morey, L.C.; Grilo, C.M.; Zanarini, M.C.; Yen, S.; Markowitz, J.C.; Sanislow, C.; et al. Ten-Year Course of Borderline Personality Disorder: Psychopathology and Function From the Collaborative Longitudinal Personality Disorders Study. Arch. Gen. Psychiatry 2011, 68, 827–837. [Google Scholar] [CrossRef]
- Zanarini, M.C.; Horwood, J.; Wolke, D.; Waylen, A.; Fitzmaurice, G.; Grant, B.F. Prevalence of DSM-IV borderline personality disorder in two community samples: 6330 English 11-year-olds and 34,653 American adults. J. Pers. Disord. 2011, 25, 607–619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linehan, M.M. Cognitive-Behavioral Treatment of Borderline Personality Disorder; Guilford Press: New York, NY, USA, 1993. [Google Scholar]
- Bateman, A.W.; Fonagy, P. Psychotherapy for BPD: Mentalization-Based Treatment; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Chen, F.; Kumsta, R.; Dvorak, F.; Domes, G.; Yim, O.S.; Ebstein, R.P.; Heinrichs, M. Genetic modulation of oxytocin sensitivity: A pharmacogenetic approach. Transl. Psychiatry 2015, 5, e664. [Google Scholar] [CrossRef]
- Ebert, A.; Kolb, M.; Heller, J.; Edel, M.A.; Roser, P.; Brüne, M. Modulation of interpersonal trust in borderline personality disorder by intranasal oxytocin and childhood trauma. Soc. Neurosci. 2013, 8, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Kenkel, W.M.; Perkeybile, A.M.; Yee, J.R.; Pournajafi-Nazarloo, H.; Lillard, T.S.; Ferguson, E.F.; Wroblewski, K.L.; Ferris, C.F.; Carter, C.S.; Connelly, J.J. Behavioral and epigenetic consequences of oxytocin treatment at birth. Sci. Adv. 2019, 5, eaav2244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kroll, F.; Powell, G.T.; Ghosh, M.; Gestri, G.; Antinucci, P.; Hearn, T.J.; Tunbak, H.; Lim, S.; Dennis, H.W.; Fernandez, J.M.; et al. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. Elife 2021, 10, e59683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Byrd, A.L.; Tung, I.; Manuck, S.D.; Vine, V.; Horner, M.; Hipwell, A.E.; Stepp, S.D. An interaction between early threat exposure and the oxytocin receptor in females: Disorder-specific versus general risk for psychopathology and social-emotional mediators. Dev. Psychopathol. 2021, 33, 1248–1263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quintana, D.S.; Lischke, A.; Grace, S.; Scheele, D.; Ma, Y.; Becker, B. Advances in the field of intranasal oxytocin research: Lessons learned and future directions for clinical research. Mol. Psychiatry 2021, 26, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lindenberg, A.; Domes, G.; Kirsch, P.; Heinrichs, M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat. Rev. Neurosci. 2011, 12, 524–538. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation, and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef]
- Perrotta, G. Oxytocin and the role of “regulator of emotions”: Definition, neurobiochemical and clinical contexts, practical applications, and contraindications. Arch. Depress. Anxiety 2020, 6, 001–005. [Google Scholar] [CrossRef]
- Triana-Del Rio, R.; Ranade, S.; Guardado, J.; LeDoux, J.; Klann, E.; Shrestha, P. The modulation of emotional and social behaviors by oxytocin signaling in the limbic network. Front. Mol. Neurosci. 2022, 15, 1002846. [Google Scholar] [CrossRef]
- di Giacomo, E.; Andreini, E.; Santambrogio, J.; Arcara, A.; Clerici, M. The interplay between borderline personality disorder and oxytocin: A systematic narrative review on possible contribution and treatment options. Front. Psychiatry 2024, 15, 1439615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folorunsho, I.L.; Harry, N.M.; Udegbe, D.C.; Jessa, D. Impact of oxytocin on social bonding and its potential as a treatment for social anxiety disorder. World J. Biol. Pharm. Health Sci. 2024, 19, 197–204. [Google Scholar] [CrossRef]
- Hilton, W. Oxytocin: Hormone driving social bonding, reproduction, and stress reduction. Autacoids J. 2024, 5, 19. [Google Scholar]
- Carpenter, R.W.; Trull, T.J. Components of emotion dysregulation in borderline personality disorder: A review. Curr. Psychiatry Rep. 2013, 15, 335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruocco, E.; Fusco, P.; Musone, V. An efficient artificial neural network algorithm for solving boundary integral equations in elasticity. Eng. Anal. Bound. Elem. 2023, 156, 379–391. [Google Scholar] [CrossRef]
- Domes, G.; Heinrichs, M.; Glascher, J.; Buchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry 2007, 62, 1187–1190. [Google Scholar] [CrossRef]
- Domes, G.; Heinrichs, M.; Kumbier, E.; Grossmann, A.; Hauenstein, K.; Herpertz, S.C. Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol. Psychiatry 2013, 74, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Donegan, N.H.; Sanislow, C.A.; Blumberg, H.P.; Fulbright, R.K.; Lacadie, C.; Skudlarski, P.; Gore, J.C.; Olson, I.R.; McGlashan, T.H.; Wexler, B.E. Amygdala hyperreactivity in borderline personality disorder: Implications for emotional dysregulation. Biol. Psychiatry 2003, 54, 1284–1293. [Google Scholar] [CrossRef]
- Cullen, K.R.; Vizueta, N.; Thomas, K.M.; Han, G.J.; Lim, K.O.; Camchong, J.; Mueller, B.A.; Bell, C.H.; Heller, M.D.; Schulz, S.C. Amygdala functional connectivity in young women with borderline personality disorder. Brain Connect. 2011, 1, 61–71. [Google Scholar] [CrossRef]
- Pier, K.S.; Marin, L.K.; Wilsnack, J.; Goodman, M. The neurobiology of borderline personality disorder. Psychiatr. Times 2016, 33. [Google Scholar]
- Geurts, D.E.M.; Van den Heuvel, T.J.; Huys, Q.J.M.; Verkes, R.J.; Cools, R. Amygdala response predicts clinical symptom reduction in patients with borderline personality disorder: A pilot fMRI study. Front. Behav. Neurosci. 2022, 16, 938403. [Google Scholar] [CrossRef]
- Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 2005, 25, 11489–11493. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, K.; Gamer, M.; Schmidt, B.; Herpertz, S.C. Oxytocin and reduction of social threat hypersensitivity in women with BPD. Am. J. Psychiatry 2013, 170, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Herpertz, S.C.; Bertsch, K. A new perspective on the pathophysiology of borderline personality disorder: A model of the role of oxytocin. Am. J. Psychiatry 2015, 172, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Jeung-Maarse, H.; Schmitgen, M.M.; Schmitt, R. Oxytocin effects on amygdala reactivity to angry faces in males and females with antisocial personality disorder. Neuropsychopharmacology 2023, 48, 946–953. [Google Scholar] [CrossRef]
- Domes, G.; Lischke, A.; Berger, C.; Grossmann, A.; Hauenstein, K.; Heinrichs, M.; Herpertz, S.C. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 2010, 35, 83–93. [Google Scholar] [CrossRef] [PubMed]
- New, A.; Hazlett, E.; Buchsbaum, M. Amygdala–Prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology 2007, 32, 1629–1640. [Google Scholar] [CrossRef]
- Lischke, A.; Domin, M.; Freyberger, H.J.; Grabe, H.J.; Mentel, R.; Bernheim, D.; Lotze, M. Structural alterations in white-matter tracts connecting (para-)limbic and prefrontal brain regions in borderline personality disorder. Psychol. Med. 2015, 45, 3171–3180. [Google Scholar] [CrossRef]
- Lischke, A.; Herpertz, S.C.; Berger, C.; Domes, G.; Gamer, M. Divergent effects of oxytocin on (para-)limbic reactivity to emotional and neutral scenes in females with and without borderline personality disorder. Soc. Cogn. Affect. Neurosci. 2017, 12, 1783–1792. [Google Scholar] [CrossRef]
- Lei, X.; Zhong, M.; Zhang, B.; Yang, H.; Peng, W.; Liu, Q.; Zhang, Y.; Yao, S.; Tan, C.; Yi, J. Structural and functional connectivity of the anterior cingulate cortex in patients with borderline personality disorder. Front. Neurosci. 2019, 13, 971. [Google Scholar] [CrossRef]
- Minzenberg, M.; Laird, A.; Thelen, S.; Carter, C.; Glahn, D. Meta-analysis of 41 Functional Neuroimaging Studies of Executive Function in Schizophrenia. Arch. Gen. Psychiatry 2009, 66, 811–822. [Google Scholar] [CrossRef]
- Preißler, S.; Dziobek, I.; Ritter, K.; Heekeren, H.R.; Roepke, S. Social Cognition in Borderline Personality Disorder: Evidence for Disturbed Recognition of the Emotions, Thoughts, and Intentions of others. Front. Behav. Neurosci. 2010, 4, 182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dziobek, I.; Preißler, S.; Grozdanovic, Z.; Heuser, I.; Heekeren, H.R.; Roepke, S. Neuronal correlates of altered empathy and social cognition in borderline personality disorder. Neuroimage 2011, 57, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.; Pane, H.; Ha, C.; Venta, A.; Patel, A.B.; Sturek, J.; Fonagy, P. Theory of mind and emotion regulation difficulties in adolescents with borderline traits. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Roepke, S.; Vater, A.; Preißler, S.; Heekeren, H.R.; Dziobek, I. Social cognition in borderline personality disorder. Front. Neurosci. 2013, 6, 195. [Google Scholar] [CrossRef]
- Galvez-Merlin, A.; Lopez-Villatoro, J.M.; de la Higuera-Gonzalez, P.; de la Torre-Luque, A.; Reneses-Prieto, B.; Diaz-Marsa, M.; Carrasco, J.L. Social cognition deficits in borderline personality disorder: Clinical relevance. Psychiatry Res. 2024, 331, 115675. [Google Scholar] [CrossRef]
- Hurlemann, R.; Patin, A.; Onur, O.A.; Cohen, M.X.; Baumgartner, T.; Metzler, S.; Kendrick, K.M. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 2010, 30, 4999–5007. [Google Scholar] [CrossRef]
- Bartz, J.A.; Zaki, J.; Bolger, N.; Ochsner, K.N. Social effects of oxytocin in humans: Context and person matter. Trends Cogn. Sci. 2011, 15, 301–309. [Google Scholar] [CrossRef]
- Kis, A.; Kemerle, K.; Hernádi, A.; Topál, J. Oxytocin and social pretreatment have similar effects on processing of negative emotional faces in healthy adult males. Front. Psychol. 2013, 4, 532. [Google Scholar] [CrossRef]
- Ebert, A.; Edel, M.A.; Gilbert, P.; Brüne, M. Endogenous oxytocin is associated with the experience of compassion and recalled upbringing in Borderline Personality Disorder. Depress. Anxiety 2018, 35, 50–57. [Google Scholar] [CrossRef]
- Tillman, R.; Gordon, I.; Naples, A.; Rolison, M.; Leckman, J.F.; Feldman, R.; Pelphrey, K.A.; McPartland, J.C. Oxytocin enhances the neural efficiency of social perception. Front. Hum. Neurosci. 2019, 13, 71. [Google Scholar] [CrossRef]
- Korisky, A.; Gordon, I.; Goldstein, A. Oxytocin impacts top-down and bottom-up social perception in adolescents with ASD: A MEG study of neural connectivity. Mol. Autism 2022, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Foxhall, M.; Hamilton-Giachritsis, C.; Button, K. The link between rejection sensitivity and borderline personality disorder: A systematic review and meta-analysis. Br. J. Clin. Psychol. 2019, 58, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Fonagy, P.; Luyten, P. Rejection sensitivity and BPDfeatures: The mediating roles of attachment anxiety, need to belong, and self-criticism. J. Personal. Disord. 2020, 34, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Brüne, M.; Ebert, A.; Kolb, M.; Tas, C.; Edel, M.A.; Roser, P. Oxytocin influences avoidant reactions to social threat in adults with borderline personality disorder. Hum. Psychopharmacol. 2013, 28, 552–561. [Google Scholar] [CrossRef]
- Bertsch, K.; Herpertz, S.C. Oxytocin and borderline personality disorder. Curr. Top. Behav. Neurosci. 2018, 35, 499–514. [Google Scholar] [CrossRef]
- Schneider, I.; Boll, S.; Volman, I.; Roelofs, K.; Spohn, A.; Herpertz, S.C.; Bertsch, K. Oxytocin normalizes approach–avoidance behavior in women with borderline personality disorder. Front. Psychiatry 2020, 11, 120. [Google Scholar] [CrossRef]
- Domes, G.; Ower, N.; von Dawans, B.; Spengler, F.B.; Dziobek, I.; Bohus, M.; Matthies, S.; Philipsen, A.; Heinrichs, M. Effects of intranasal oxytocin administration on empathy and approach motivation in women with borderline Kullakpersonality disorder: A randomized controlled trial. Transl. Psychiatry 2019, 9, 328. [Google Scholar] [CrossRef]
- Jawad, M.Y.; Ahmad, B.; Hashmi, A.M. Role of oxytocin in the pathogenesis and modulation of borderline personality disorder: A review. Cureus 2021, 13, e13190. [Google Scholar] [CrossRef]
- Mielke, E.L.; Koenig, J.; Herpertz, S.C.; Steinmann, S.; Neukel, C.; Kilavuz, P.; van der Venne, P.; Bertsch, K.; Kaess, M. Adverse childhood experiences mediate the negative association between BPDsymptoms and plasma oxytocin. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 125, 110749. [Google Scholar] [CrossRef]
- Carrasco, J.L.; Díaz-Marsá, M.; Pastrana, J.I.; Molina, R.; Brotons, L.; López-Ibor, M.I.; López-Ibor, J.J. Hypothalamic-pituitary-adrenal axis response in borderline personality disorder without post-traumatic features. Br. J. Psychiatry 2007, 190, 357–358. [Google Scholar] [CrossRef]
- Jobst, A.; Padberg, F.; Mauer, M.C.; Daltrozzo, T.; Bauriedl-Schmidt, C.; Sabass, L.; Sarubin, N.; Falkai, P.; Renneberg, B.; Zill, P.; et al. Lower Oxytocin Plasma Levels in Borderline Patients with Unresolved Attachment Representations. Front. Hum. Neurosci. 2016, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Gurvich, C.; Hudaib, A.R.; Gavrilidis, E.; Kulkarni, J. Systematic review and meta-analysis of basal cortisol levels in borderline personality disorder compared to non-psychiatric controls. Psychoneuroendocrinology 2019, 102, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kulakova, E.; Graumann, L.; Wingenfeld, K. The hypothalamus-pituitary-adrenal axis and social cognition in borderline personality disorder. Curr. Neuropharmacol. 2024, 22, 378–394. [Google Scholar] [CrossRef] [PubMed]
- Bourvis, N.; Aouidad, A.; Cabelguen, C.; Cohen, D.; Xavier, J. How do stress exposure and stress regulation relate to borderline personality disorder? Front. Psychol. 2017, 8, 2054. [Google Scholar] [CrossRef]
- Franczak, Ł.; Podwalski, P.; Wysocki, P.; Dawidowski, B.; Jędrzejewski, A.; Jabłoński, M.; Samochowiec, J. Impulsivity in ADHD and borderline personality disorder: A systematic review of gray and white matter variations. J. Clin. Med. 2024, 13, 6906. [Google Scholar] [CrossRef]
- Ito, E.; Shima, R.; Yoshioka, T. A novel role of oxytocin: Oxytocin-induced well-being in humans. Biophys. Physicobiology 2019, 16, 132–139. [Google Scholar] [CrossRef]
- Yeğen, B.Ç. Oxytocin and hypothalamo-pituitary-adrenal axis. Marmara Pharm. J. 2010, 14, 61–66. [Google Scholar] [CrossRef]
- Li, Y.; Hassett, A.L.; Seng, J.S. Exploring the mutual regulation between oxytocin and cortisol as a marker of resilience. Arch. Psychiatr. Nurs. 2019, 33, 164–173. [Google Scholar] [CrossRef]
- Karin, O.; Raz, M.; Tendler, A.; Bar, A.; Korem Kohanim, Y.; Milo, T.; Alon, U. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol. Syst. Biol. 2020, 16, e9510. [Google Scholar] [CrossRef]
- Young Kuchenbecker, S.; Pressman, S.D.; Celniker, J.; Grewen, K.M.; Sumida, K.D.; Jonathan, N.; Everett, B.; Slavich, G.M. Oxytocin, cortisol, and cognitive control during acute and naturalistic stress. Stress 2021, 24, 370–383. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Gross, M.M.; Calleja-Agius, J.; Turner, J.D. The yin and yang of the oxytocin and stress systems: Opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front. Endocrinol. 2024, 15, 1272270. [Google Scholar] [CrossRef] [PubMed]
- Simeon, D.; Bartz, J.; Hamilton, H.; Crystal, S.; Braun, A.; Ketay, S.; Hollander, E. Oxytocin administration attenuates stress reactivity in borderline personality disorder: A pilot study. Psychoneuroendocrinology 2011, 36, 1418–1421. [Google Scholar] [CrossRef] [PubMed]
- Uzar, M.; Dmitrzak-Węglarz, M.; Słopień, A. The Role of Oxytocin and Vasopressin in People with Borderline Personality Disorder: A Closer Look at Adolescents. Int. J. Mol. Sci. 2024, 25, 12046. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kou, J.; Tan, L.; Li, H.; Lei, Y. The complex role of oxytocin in fear acquisition and generalization. Psychoneuroendocrinology 2025, 176, 107421. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Onaka, T. Roles of oxytocin in stress responses, allostasis, and resilience. Int. J. Mol. Sci. 2021, 23, 150. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chen, C.C.; Huang, C.C.; Nishimori, K.; Hsu, K.-S. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat. Commun. 2017, 8, 537. [Google Scholar] [CrossRef]
- Pekarek, B.T.; Hunt, P.J.; Arenkiel, B.R. Oxytocin and sensory network plasticity. Front. Neurosci. 2020, 14, 514782. [Google Scholar] [CrossRef]
- Harvey, A.R. Links between the neurobiology of oxytocin and human musicality. Front. Hum. Neurosci. 2020, 14, 350. [Google Scholar] [CrossRef]
- Froemke, R.C.; Young, L.J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 2021, 44, 359–381. [Google Scholar] [CrossRef]
- Onaka, T.; Takayanagi, Y. The oxytocin system and early-life experience-dependent plastic changes. J. Neuroendocrinol. 2021, 33, e13049. [Google Scholar] [CrossRef]
- Bethlehem, R.A.I.; Baron-Cohen, S.; van Honk, J.; Auyeung, B.; Allison, C. The oxytocin paradox. Front. Behav. Neurosci. 2013, 7, 194. [Google Scholar] [CrossRef] [PubMed]
- Gur, R.; Tendler, A.; Wagner, S. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biol. Psychiatry 2014, 76, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, S.H.; Chung, C.; Kim, J.J.; Choi, S.-Y.; Han, J.-S. Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Sci. Rep. 2015, 5, 18540. [Google Scholar] [CrossRef] [PubMed]
- Bukatova, S.; Reichova, A.; Bacova, Z.; Bakos, J. Neonatal oxytocin treatment alters levels of precursor and mature BDNF forms and modifies the expression of neuronal markers in the male rat hippocampus. Neuropeptides 2023, 102, 102384. [Google Scholar] [CrossRef]
- Khazen, T.; Narattil, N.R.; Ferreira, G.; Maroun, M. Hippocampal oxytocin is involved in spatial memory and synaptic plasticity deficits following acute high-fat diet intake in juvenile rats. Cereb. Cortex 2023, 33, 3934–3943. [Google Scholar] [CrossRef]
- Chavez, J.; Le, A.A.; Lauterborn, J.C.; Cox, B.M.; Jia, Y.; Lynch, G.; Gall, C.M. Early-life oxytocin rescues hippocampal synaptic plasticity and episodic memory in a mouse model of Fragile X syndrome. bioRxiv. 2024. [Google Scholar] [CrossRef]
- Alaerts, K.; Bernaerts, S.P. 509 Continual oxytocin treatment induces long-lasting adaptations within amygdala circuitry in autism: A randomized placebo-controlled trial. Eur. Neuropsychopharmacol. 2019, 29, S358–S359. [Google Scholar] [CrossRef]
- Alaerts, K.; Bernaerts, S.; Prinsen, J.; Dillen, C.; Steyaert, J.; Wenderoth, N. Oxytocin induces long-lasting adaptations within amygdala circuitry in autism: A treatment-mechanism study with randomized placebo-controlled design. Neuropsychopharmacology 2020, 45, 1141–1149. [Google Scholar] [CrossRef]
- Zagorski, N. Oxytocin may promote empathy in BPD patients. Psychiatr. News 2020, 55. [Google Scholar] [CrossRef]
- Gao, F. The function of oxytocin in memory: A general review of oxytocin’s effect on memory. World J. Neurosci. 2023, 13, 134013. [Google Scholar] [CrossRef]
- Maoz, H.; Grossman-Giron, A.; Sedoff, O.; Nitzan, U.; Kashua, H.; Yarmishin, M.; Arad, O.; Tzur Bitan, D. Intranasal oxytocin as an adjunct treatment among patients with severe major depression with and without comorbid borderline personality disorder. J. Affect. Disord. 2024, 347, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Mercedes Perez-Rodriguez, M.; Mahon, K.; Russo, M.; Ungar, A.K.; Burdick, K.E. Oxytocin and social cognition in affective and psychotic disorders. Eur. Neuropsychopharmacol. 2015, 25, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Bradley, E.R.; Woolley, J.D. Oxytocin effects in schizophrenia: Reconciling mixed findings and moving forward. Neurosci. Biobehav. Rev. 2017, 80, 36–56. [Google Scholar] [CrossRef] [PubMed]
- Kartal, F.; Uğur, K.; Mete, B.; Demirkol, M.E.; Tamam, L. The relationship between the oxytocin level and rejection sensitivity, childhood traumas, and attachment styles in borderline personality disorder. Psychiatry Investig. 2022, 19, 239–246. [Google Scholar] [CrossRef]
- Bernaerts, S.; Boets, B.; Steyaert, J.; Wenderoth, N.; Alaerts, K. Oxytocin treatment attenuates amygdala activity in autism: A treatment-mechanism study with long-term follow-up. Transl. Psychiatry 2020, 10, 383. [Google Scholar] [CrossRef]
- Miller, G.; Chen, E.; Cole, S.W. Health psychology: Developing biologically plausible models linking the social world and physical health. Annu. Rev. Psychol. 2019, 70, 501–524. [Google Scholar] [CrossRef]
- Monks, D.T.; Palanisamy, A. Oxytocin: At birth and beyond. A systematic review of the long-term effects of peripartum oxytocin. Anaesthesia 2021, 76, 1526–1537. [Google Scholar] [CrossRef]
- Krol, K.M.; Namaky, N.; Monakhov, M.V.; Lai, P.S.; Ebstein, R.; Grossmann, T. Genetic variation in the oxytocin system and its link to social motivation in human infants. Psychoneuroendocrinology 2021, 131, 105290. [Google Scholar] [CrossRef] [PubMed]
- Mellentin, A.I.; Wallhed Finn, S.; Skøt, L.; Thaysen-Petersen, D.; Mistarz, N.; Fink-Jensen, A.; Grüner Nielsen, D. The effectiveness of oxytocin for treating substance use disorders: A systematic review of randomized placebo-controlled trials. Neurosci. Biobehav. Rev. 2023, 151, 105185. [Google Scholar] [CrossRef]
- Ellenbogen, M.A.; Cardoso, C.; Serravalle, L.; Vadaga, K.; Joober, R. The effects of intranasal oxytocin on the efficacy of psychotherapy for major depressive disorder: A pilot randomized controlled trial. Psychol. Med. 2024, 54, 2122–2132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Qu, Y.; Li, L.; Sun, Y.; Qian, W.; Xiao, J.; Huang, K.; Han, X.; Niu, H.; Li, L.; et al. PVN–NAc Shell–VP Circuit OT and OTR Neurons Regulate Pair Bonding via D2R and D1R. J. Neurosci. 2025, 45, e2061242025. [Google Scholar] [CrossRef] [PubMed]
- Servan, A.; Brunelin, J.; Poulet, E. The effects of oxytocin on social cognition in borderline personality disorder. L’Encéphale 2018, 44, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function, and connectivity. Nat. Rev. Neurosci. 2016, 17, 652–666. [Google Scholar] [CrossRef] [PubMed]
- Zashchirinskaia, O.; Isagulova, E. Childhood trauma as a risk factor for high-risk behaviors in adolescents with borderline personality disorder. Iran. J. Psychiatry 2023, 18, 65–71. [Google Scholar] [CrossRef]
- Jiang, B. Prediction of BPD based on childhood trauma with the mediating role of experiential avoidance. Front. Psychiatry 2024, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoulis, E.; Nousis, C.; Eytaxia, L.-A.; Kaimakami, O.; Malogiannis, I. The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review. Brain Sci. 2025, 15, 708. https://doi.org/10.3390/brainsci15070708
Giannoulis E, Nousis C, Eytaxia L-A, Kaimakami O, Malogiannis I. The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review. Brain Sciences. 2025; 15(7):708. https://doi.org/10.3390/brainsci15070708
Chicago/Turabian StyleGiannoulis, Eleni, Christos Nousis, Lydia-Angeliki Eytaxia, Olga Kaimakami, and Ioannis Malogiannis. 2025. "The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review" Brain Sciences 15, no. 7: 708. https://doi.org/10.3390/brainsci15070708
APA StyleGiannoulis, E., Nousis, C., Eytaxia, L.-A., Kaimakami, O., & Malogiannis, I. (2025). The Promise of Intranasal Oxytocin in Treating Borderline Personality Disorder: A Narrative Review. Brain Sciences, 15(7), 708. https://doi.org/10.3390/brainsci15070708