Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (664)

Search Parameters:
Keywords = novel isoforms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

16 pages, 6361 KiB  
Article
The Study of Chromobox Protein Homolog 4 in 3D Organoid Models of Colon Cancer as a Potential Predictive Marker
by Vincenza Ciaramella, Valentina Belli, Francesco Izzo, Andrea Belli, Antonio Avallone, Alfonso De Stefano, Andrea Soricelli and Anna Maria Grimaldi
Int. J. Mol. Sci. 2025, 26(15), 7385; https://doi.org/10.3390/ijms26157385 - 30 Jul 2025
Viewed by 129
Abstract
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal [...] Read more.
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal cancer (CC) remain unclear. In this study, we show that CBX genes are significantly dysregulated in CC tissues and cell models compared to normal colorectal tissue. Among them, CBX4 and CBX8 emerged as the most upregulated isoforms in tumors. Functional analyses revealed that CBX4 overexpression enhances CC cell proliferation, while its silencing reduces tumor growth. Similarly, pharmacological inhibition of CBX4 in patient-derived tumor organoids led to decreased proliferation, supporting its pro-tumorigenic role. Immunofluorescence analysis further revealed alterations in NF-κB signaling upon CBX4 inhibition, along with reduced mRNA levels of pathway components including NF-κB, TNF, IL-1, and c-Myc. These findings point to a potential interplay between CBX4 and inflammation-related pathways in CC. Overall, our study highlights the oncogenic role of CBX4 in colorectal cancer and supports its potential as a novel therapeutic target and early biomarker for disease progression. Full article
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 159
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

18 pages, 14270 KiB  
Article
Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors
by Zahra Khosrowpour, Nivedha Ramaswamy, Elise N. Engquist, Berkay Dincer, Alisha M. Shah, Hossam A. N. Soliman, Natalya A. Goloviznina, Peter I. Karachunski and Michael Kyba
Cells 2025, 14(15), 1150; https://doi.org/10.3390/cells14151150 - 25 Jul 2025
Viewed by 280
Abstract
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, [...] Read more.
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, although in vivo studies to date have provided only an early single-time-point snapshot. In this study, we isolated a specific population of CD82+ ERBB3+ NGFR+ cells from human iPSC-derived teratomas and verified their long-term in vivo regenerative capacity following transplantation into NSG-mdx4Cv mice. Transplanted cells engrafted, expanded, and generated human Dystrophin+ muscle fibers that increased in size over time and persisted stably long-term. A dynamic population of PAX7+ human satellite cells was established, initially expanding post-transplantation and declining moderately between 4 and 8 months as fibers matured. MyHC isoform analysis revealed a time-based shift from embryonic to neonatal and slow fiber types, indicating a slow progressive maturation of the graft. We further show that these progenitors can be cryopreserved and maintain their engraftment potential. Together, these findings give insight into the evolution of teratoma-derived human myogenic stem cell grafts, and highlight the long-term regenerative potential of teratoma-derived human skeletal myogenic progenitors. Full article
Show Figures

Figure 1

17 pages, 7296 KiB  
Article
The Expression Pattern of the Splice Variants of Coxsackievirus and Adenovirus Receptor Impacts CV-B3-Induced Encephalitis and Myocarditis in Neonatal Mice
by Xinglong Zhang, Xin Zhang, Yifan Zhang, Heng Li, Huiwen Zheng, Jingjing Wang, Yun Liao, Li Yu, Dandan Li, Heng Zhao, Jiali Li, Zihan Zhang, Haijing Shi and Longding Liu
Int. J. Mol. Sci. 2025, 26(15), 7163; https://doi.org/10.3390/ijms26157163 - 24 Jul 2025
Viewed by 169
Abstract
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, [...] Read more.
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, we used young Balb/c mice at three developmental stages (7-, 14-, and 30-day-old mice) to investigate CV-B3 pathogenesis. Our findings revealed that 7-day-old mice exhibited substantial infection susceptibility and pathological severity compared to older mice. Critically, an age-dependent analysis showed a progressive decline in the expression of CV-B3-binding Coxsackievirus and Adenovirus Receptor (CAR) splice variants (CAR1 and CAR2) at both the transcriptional and translational levels as the mice matured from 7 to 30 days. These receptor isoforms demonstrated a direct correlation with viral replication efficiency in younger hosts. Concurrently, aging was associated with a rise in non-binding CAR variants (CAR3 and CAR4). During CV-B3 infection, the abundance of CAR1/CAR2 in young mice facilitated accelerated viral proliferation, coupled with the hyperactivation of the NLRP3 inflammasome and the expansion of IL-17-producing γδT cells (γδT17 cells). This cascade triggered excessive production of proinflammatory cytokines (IL-1β, IL-18, and IL-17), culminating in pronounced inflammatory infiltrates within cardiac and cerebral tissues. These findings establish NLRP3 inflammasome dysregulation as a critical determinant of CV-B3-induced tissue damage and provide novel insights into the heightened susceptibility to CV-B infection during early life and its associated severe disease rates. Full article
Show Figures

Figure 1

16 pages, 2877 KiB  
Article
Functional Disruption of IQGAP1 by Truncated PALB2 in Two Cases of Breast Cancer: Implications for Proliferation and Invasion
by Natalia-Dolores Pérez-Rodríguez, Rita Martín-Ramírez, Rebeca González-Fernández, María del Carmen Maeso, Julio Ávila and Pablo Martín-Vasallo
Biomedicines 2025, 13(8), 1804; https://doi.org/10.3390/biomedicines13081804 - 23 Jul 2025
Viewed by 402
Abstract
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 [...] Read more.
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 were investigated in this study based on two cases of truncated PALB2 human breast invasive ductal carcinoma (IDC), specifically, c.1240C>T (p.Arg414*) and c.2257C>T (p.Arg753*). Methods: Using confocal microscopy, we examined co-expression patterns of IQGAP1 with PALB2, PCNA, CK7, and β-tubulin in tumor tissues from both control cancer and PALB2-mutated cases. Results: In PALB2-truncated tumors, IQGAP1 exhibited enhanced peripheral and plasma membrane localization with elevated co-localization levels compared to controls, suggesting altered cytoskeletal organization. PALB2 truncation increased nuclear and cytoplasmic N-terminal PALB2 immunoreactivity, indicating the presence of truncated isoforms disrupting the homologous recombination repair system. Co-expression analyses with PCNA revealed an inverse expression pattern between IQGAP1 and proliferation markers, suggesting S-phase cell cycle-dependent heterogeneity. Furthermore, the loss of IQGAP1 dominance over CK7 and β-tubulin in mutant tumors, along with persistent intercellular spacing, implied a loss of cell–cell cohesion and the acquisition of invasive traits. Conclusions: These data support a model where PALB2 truncation triggers a reorganization of IQGAP1 that disrupts its canonical structural functions and facilitates tumor progression via enhanced motility and impaired cell–cell interaction. IQGAP1 thus serves as both a functional effector and potential biomarker in PALB2-mutated IDC, opening novel paths for diagnosis and targeted therapeutic intervention. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

25 pages, 5946 KiB  
Article
Targeting Sodium Transport Reveals CHP1 Downregulation as a Novel Molecular Feature of Malignant Progression in Clear Cell Renal Cell Carcinoma: Insights from Integrated Multi-Omics Analyses
by Yun Wu, Ri-Ting Zhu, Jia-Ru Chen, Xiao-Min Liu, Guo-Liang Huang, Jin-Cheng Zeng, Hong-Bing Yu, Xin Liu and Cui-Fang Han
Biomolecules 2025, 15(7), 1019; https://doi.org/10.3390/biom15071019 - 15 Jul 2025
Viewed by 415
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common RCC subtype, displays significant intratumoral heterogeneity driven by metabolic reprogramming, which complicates our understanding of disease progression and limits treatment efficacy. This study aimed to construct a comprehensive cellular and transcriptional landscape of ccRCC, [...] Read more.
Clear cell renal cell carcinoma (ccRCC), the most common RCC subtype, displays significant intratumoral heterogeneity driven by metabolic reprogramming, which complicates our understanding of disease progression and limits treatment efficacy. This study aimed to construct a comprehensive cellular and transcriptional landscape of ccRCC, with emphasis on gene expression dynamics during malignant progression. An integrated analysis of 90 scRNA-seq samples comprising 534,227 cells revealed a progressive downregulation of sodium ion transport-related genes, particularly CHP1 (calcineurin B homologous protein isoform 1), which is predominantly expressed in epithelial cells. Reduced CHP1 expression was confirmed at both mRNA and protein levels using bulk RNA-seq, CPTAC proteomics, immunohistochemistry, and ccRCC cell lines. Survival analysis showed that high CHP1 expression correlated with improved prognosis. Functional analyses, including pseudotime trajectory, Mfuzz clustering, and cell–cell communication modeling, indicated that CHP1+ epithelial cells engage in immune interaction via PPIA–BSG signaling. Transcriptomic profiling and molecular docking suggested that CHP1 modulates amino acid transport through SLC38A1. ZNF460 was identified as a potential transcription factor of CHP1. Virtual screening identified arbutin and imatinib mesylate as candidate CHP1-targeting compounds. These findings establish CHP1 downregulation as a novel molecular feature of ccRCC progression and support its utility as a prognostic biomarker. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

18 pages, 11436 KiB  
Article
Interaction of Potato Autophagy-Related StATG8 Family Proteins with Pathogen Effector and WRKY Transcription Factor in the Nucleus
by Sung Un Huh
Microorganisms 2025, 13(7), 1589; https://doi.org/10.3390/microorganisms13071589 - 5 Jul 2025
Viewed by 311
Abstract
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of [...] Read more.
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of autophagosome biogenesis. Among these, ATG8 proteins, orthologous to the mammalian LC3 family, are conserved ubiquitin-like modifiers that serve as central hubs in selective autophagy regulation. Although ATG8 proteins are localized in both the cytoplasm and nucleus, their functions within the nucleus remain largely undefined. In the present study, the ATG8-interacting motif (AIM) was identified and functionally characterized in the potato ATG8 homolog (StATG8), demonstrating its capacity for selective target recognition. StATG8 was shown to form both homodimeric and heterodimeric complexes with other ATG8 isoforms, implying a broader regulatory potential within the ATG8 family. Notably, StATG8 was found to interact with the Ralstonia solanacearum type III effector PopP2, a nuclear-localized acetyltransferase, suggesting a possible role in effector recognition within the nucleus. In addition, interactions between StATG8 and transcription factors AtWRKY40 and AtWRKY60 were detected in both cytoplasmic autophagosomes and the nuclear compartment. These observations provide novel insights into the noncanonical, nucleus-associated roles of plant ATG8 proteins. The nuclear interactions with pathogen effectors and transcriptional regulators suggest that ATG8 may function beyond autophagic degradation, contributing to the regulation of nuclear signaling and plant immunity. These findings offer a foundational basis for further investigation into the functional diversification of ATG8 in plant cellular compartments. Full article
Show Figures

Figure 1

31 pages, 7317 KiB  
Article
Synthesis, Biological Evaluation, and In Silico Characterization of Novel Imidazothiadiazole–Chalcone Hybrids as Multi-Target Enzyme Inhibitors
by Hakan Alici, Senol Topuz, Kadir Demir, Parham Taslimi and Hakan Tahtaci
Pharmaceuticals 2025, 18(7), 962; https://doi.org/10.3390/ph18070962 - 26 Jun 2025
Viewed by 593
Abstract
Background/Objectives: The need for dual-targeted enzyme inhibitors is critical in addressing complex diseases like Alzheimer’s and glaucoma. Imidazothiadiazole and chalcone moieties are known for diverse bioactivities. This study aimed to develop novel imidazothiadiazole–chalcone hybrids as potential inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and [...] Read more.
Background/Objectives: The need for dual-targeted enzyme inhibitors is critical in addressing complex diseases like Alzheimer’s and glaucoma. Imidazothiadiazole and chalcone moieties are known for diverse bioactivities. This study aimed to develop novel imidazothiadiazole–chalcone hybrids as potential inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase isoforms (hCAs), specifically hCA I and hCA II. Methods: Four hybrid molecules (8a–8d) were synthesized and structurally confirmed via 1H NMR, 13C NMR, FT-IR, MS, and elemental analysis techniques. Their enzyme inhibitory activities were assessed using Ellman’s and Verpoorte’s methods. Molecular docking and 100 ns molecular dynamics (MD) simulations were conducted to examine binding interactions. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were predicted using the pkCSM platform. Results: All compounds showed strong enzyme inhibition: AChE (Ki: 3.86–11.35 nM), BChE (Ki: 1.01–1.78 nM), hCA I (Ki: 45.13–81.24 nM), and hCA II (Ki: 36.08–52.45 nM). Docking analyses confirmed favorable binding, particularly with active-site residues. MD simulations demonstrated stable interactions throughout 100 ns. Compound 8a exhibited the highest cholinesterase inhibition, while compounds 8d and 8c were the most potent against hCA I and hCA II, respectively. The ADMET results showed high absorption and acceptable safety, with mild mutagenicity or cardiotoxicity concerns in select compounds. Conclusions: These findings suggest that imidazothiadiazole–chalcone hybrids are promising multi-target enzyme inhibitors. Their potent activity, structural stability, and pharmacokinetic potential support their further development for therapeutic use in neurodegenerative and ocular diseases. Full article
Show Figures

Graphical abstract

35 pages, 8277 KiB  
Review
Is the Voltage-Dependent Anion Channel a Major Player in Neurodegenerative Diseases?
by Sebastian Neumann and Rolf Heumann
Int. J. Mol. Sci. 2025, 26(13), 6138; https://doi.org/10.3390/ijms26136138 - 26 Jun 2025
Viewed by 781
Abstract
The family of voltage-dependent anion channels (VDACs) comprises three isoforms (VDAC-1, VDAC-2, VDAC-3). VDACs have been extensively described as localised in the outer mitochondrial membrane where they are involved in the exchange of ions, metabolites, and ATP/ADP between mitochondria and cytosol. The VDAC [...] Read more.
The family of voltage-dependent anion channels (VDACs) comprises three isoforms (VDAC-1, VDAC-2, VDAC-3). VDACs have been extensively described as localised in the outer mitochondrial membrane where they are involved in the exchange of ions, metabolites, and ATP/ADP between mitochondria and cytosol. The VDAC interacts with disease-specific proteins and thus regulates the mitochondrial function and controls the cellular energy resources, explaining its involvement in cell death and apoptosis. In addition, VDAC-1 and -2 can also be found at other cellular locations such as in the sarcoplasmic reticulum, in the endoplasmic reticulum, as well as in the plasma membrane. Through single-channel pore regulation, oligomerisation, or changed expression levels the VDAC is involved in different neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Huntington’s disease, and others. Here, we critically summarise current discussions about the VDAC as a common key player for these diseases. We suggest that the VDAC acts as a transmembrane multifunctional regulatory protein which might serve as a pharmacological target for the development of novel drugs against neurodegenerative diseases such as the application of recombinant antibody technology. Full article
Show Figures

Figure 1

16 pages, 5527 KiB  
Article
Metabolomic Analysis Identifies Betaine as a Key Mediator of TAp73α-Induced Ferroptosis in Ovarian Granulosa Cells
by Liping Mei, Le Chen, Bingfei Zhang, Xianbo Jia, Xiang Gan and Wenqiang Sun
Int. J. Mol. Sci. 2025, 26(13), 6045; https://doi.org/10.3390/ijms26136045 - 24 Jun 2025
Viewed by 349
Abstract
Granulosa cells (GCs) are essential for follicular growth and development, and their functional state critically impacts folliculogenesis. TAp73α, a transcriptionally active isoform of the p73 gene, is crucial for maintaining follicular integrity. In this study, we demonstrate that TAp73α overexpression promotes ferroptosis [...] Read more.
Granulosa cells (GCs) are essential for follicular growth and development, and their functional state critically impacts folliculogenesis. TAp73α, a transcriptionally active isoform of the p73 gene, is crucial for maintaining follicular integrity. In this study, we demonstrate that TAp73α overexpression promotes ferroptosis in bovine GCs by downregulating SLC7A11, depleting intracellular glutathione (GSH), and enhancing lipid peroxidation, particularly under Erastin treatment. By contrast, TAp73α knockdown restores antioxidant capacity, elevates GSH levels, and attenuates ferroptosis. To elucidate the underlying mechanism, untargeted metabolomic profiling revealed that TAp73α overexpression significantly altered the metabolic landscape of GCs, with marked enrichment in the glutathione metabolism pathway. Notably, betaine—a metabolite closely linked to redox homeostasis—was markedly downregulated. Functional assays confirmed that exogenous betaine supplementation restored SLC7A11 expression, increased GSH levels, and alleviated oxidative damage induced by either H2O2 or TAp73α overexpression. Moreover, betaine co-treatment effectively reversed lipid peroxide accumulation and mitigated TAp73α-induced ferroptosis. Collectively, our findings identify a novel mechanism by which TAp73α promotes ferroptosis in granulosa cells through the suppression of betaine and glutathione metabolism, highlighting betaine as a key metabolic modulator with promising protective potential. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 881
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

16 pages, 2629 KiB  
Article
Full-Length Transcriptome of Testis and Ovary Provides Insights into Alternative Splicing During Gonadal Development in Litopenaeus vannamei
by Youyan Wang, Yang Yu, Yue Wang and Fuhua Li
Int. J. Mol. Sci. 2025, 26(12), 5863; https://doi.org/10.3390/ijms26125863 - 19 Jun 2025
Viewed by 484
Abstract
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling [...] Read more.
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling unisex breeding strategies. While previous studies have focused on gene expression differences between females and males, structural differences in transcriptomic regulation between sexes have been largely overlooked. Here, we present a comprehensive full-length transcriptome analysis of L. vannamei testis and ovary, identifying 830 and 690 novel genes, respectively, and over 6000 new isoforms. Notably, we discovered extensive alternative splicing (AS) events, with the cartilage oligomeric matrix protein-like gene exhibiting over 300 AS isoforms in the ovary compared to only 2 in the testis, suggesting a potential role in ovarian development. Furthermore, sex-determining genes such as Fem-1a, Fem-1c, and Sxl were found to produce AS isoforms exclusively in ovarian tissue. We also identified three germ cell development-associated genes—MAD2-like, RAD51-like, and Su(dx)-like—that undergo distinct AS events in gonadal tissues, leading to sex-specific structural domain alterations. These findings highlight the complexity of AS-mediated post-transcriptional regulation in L. vannamei and provide novel insights into the molecular mechanisms governing sex differentiation and gonadal development. Full article
Show Figures

Figure 1

17 pages, 5282 KiB  
Article
Discovery of Novel Imidazothiazole-Based Hydroxamic Acid Derivatives as Potent Indoleamine 2,3-Dioxygenase 1 and Histone Deacetylase 6 Dual Inhibitors
by Shi Zhang, Yan-Fei Wang, Hai-Rui Lu, Xue-Qin Yang, Ye Zhang, Xian-Li Ma and Ri-Zhen Huang
Molecules 2025, 30(12), 2508; https://doi.org/10.3390/molecules30122508 - 7 Jun 2025
Viewed by 717
Abstract
In order to take advantage of both immunotherapeutic and epigenetic antitumor agents, a series of imidazothiazole-based hydroxamic acid derivatives were designed based on the pharmacophore fusion strategy and evaluated as potent IDO1 and HDAC6 dual inhibitors. Among these inhibitors, the most potent compound [...] Read more.
In order to take advantage of both immunotherapeutic and epigenetic antitumor agents, a series of imidazothiazole-based hydroxamic acid derivatives were designed based on the pharmacophore fusion strategy and evaluated as potent IDO1 and HDAC6 dual inhibitors. Among these inhibitors, the most potent compound 3-(4-Bromophenyl)-N-{4-[(7-(hydroxyamino)-7-oxoheptyl)amino]phenyl}imidazo[2,1-b]thiazole-5-carboxamide (10e) showed considerable IDO1 inhibitory activity and a good selectivity profile for HDAC6 over the other HDAC isoforms. The intracellular inhibition of HDAC6 by 10e was validated by Western blot analysis. Docking studies illustrated that the possible binding modes of compound 10e interacted with IDO1 and HDAC6. Moreover, compound 10e was found to arrest the cell cycle at the G2/M phase in HCT-116 cells. In particular, compound 10e also exhibited potent in vivo antitumor efficacy in CT26 tumor-bearing BALB/c mice models, with no significant toxicity. Collectively, this work provides a promising lead compound that serves as IDO1/HDAC6 dual inhibitor for the development of novel antitumor agents. Full article
Show Figures

Graphical abstract

27 pages, 770 KiB  
Review
Alternative Splicing in Tumorigenesis and Cancer Therapy
by Huiping Chen, Jingqun Tang and Juanjuan Xiang
Biomolecules 2025, 15(6), 789; https://doi.org/10.3390/biom15060789 - 29 May 2025
Cited by 1 | Viewed by 1233
Abstract
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly [...] Read more.
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly regulated by splicing factors (SFs), such as serine/arginine-rich proteins (SRs), heterogeneous nuclear ribonucleoproteins (hnRNPs), and RNA-binding motif (RBM) proteins. These factors recognize specific sequences, including 5′ and 3′ splice sites and branch points, to ensure precise splicing. While AS is essential for normal cellular function, its dysregulation is increasingly implicated in cancer pathogenesis. Aberrant splicing can lead to the production of oncogenic isoforms that promote tumorigenesis, metastasis, and resistance to therapy. Furthermore, such abnormalities can cause the loss of tumor-suppressing activity, thereby contributing to cancer development. Importantly, abnormal AS events can generate neoantigens, which are presented on tumor cell surfaces via major histocompatibility complex (MHC) molecules, suggesting novel targets for cancer immunotherapy. Additionally, splice-switching oligonucleotides (SSOs) have shown promise as therapeutic agents because they modulate splicing patterns to restore normal gene function or induce tumor-suppressive isoforms. This review explores the mechanisms of AS dysregulation in cancer, its role in tumor progression, and its potential as a therapeutic target. We also discuss innovative technologies, such as high-throughput sequencing and computational approaches, that are revolutionizing the study of AS in cancer. Finally, we address the challenges and future prospects of targeting AS for personalized cancer therapies, emphasizing its potential in precision medicine. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

Back to TopTop