Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = notched Ti-6Al-4V

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3279 KiB  
Article
Rapid Assessment of Ti-6Al-4V Fatigue Limit via Infrared Thermography
by Chiara Colombo, Antonio Salerno, Arthur Teyssiéras and Carlo Alberto Biffi
Metals 2025, 15(8), 825; https://doi.org/10.3390/met15080825 - 23 Jul 2025
Viewed by 254
Abstract
The experimental tests needed for the estimation of the fatigue limit generally require extensive time and many specimens. A valid but not standardized alternative is the thermographic analysis of the self-heating phenomenon. The present work is aimed at using Infrared thermography to determine [...] Read more.
The experimental tests needed for the estimation of the fatigue limit generally require extensive time and many specimens. A valid but not standardized alternative is the thermographic analysis of the self-heating phenomenon. The present work is aimed at using Infrared thermography to determine the fatigue limit in two kinds of Ti-6Al-4V samples obtained by hot rolling: (1) with the standard dog-bone shape (unnotched specimen) and (2) with two opposed semicircular notches at the sides (notched specimen). Uniaxial tensile experiments are performed on unnotched samples, and the surface temperature variation during loading is monitored. The stress corresponding to the end of the thermoelastic stage gives a rough indication of the fatigue limit. Then, fatigue tests at different sinusoidal loads are performed, and the thermographic signal is monitored and processed. The results obtained using lock-in thermography in dissipative mode, e.g., analyzing the second harmonic, showed a sudden change in slope when the applied stress exceeded a certain limit. This slope change is related to the fatigue limit. In addition, the ratio between the fatigue limits obtained for notched and unnotched specimens, e.g., the fatigue strength reduction factor, is consistent with literature values based on the selected geometry. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

21 pages, 42318 KiB  
Article
Effective Ductile Fracture Characterization of 17-4PH and Ti6Al4V by Shear–Tension Tests: Experiments and Damage Models Calibration
by Gabriele Cortis and Luca Cortese
Appl. Sci. 2025, 15(7), 3645; https://doi.org/10.3390/app15073645 - 26 Mar 2025
Viewed by 586
Abstract
An experimental campaign based on multiaxial tests is carried out to characterize the ductile behavior of 17-4PH steel and a Ti6Al4V titanium alloy, and to calibrate numerical ductile damage models, accordingly. This study aimed to identify a minimal set of four specimen types [...] Read more.
An experimental campaign based on multiaxial tests is carried out to characterize the ductile behavior of 17-4PH steel and a Ti6Al4V titanium alloy, and to calibrate numerical ductile damage models, accordingly. This study aimed to identify a minimal set of four specimen types to ensure the robust tuning of the damage models, using only a conventional uniaxial machine for testing. Two different shear–tension candidate geometries are identified, modified, and used together with cylindrical and notched bar specimens to evaluate material plastic strain at fracture under several stress states, characterized by different triaxialities and Lode angles. Finite element analysis and digital image correlation techniques are used to identify local data not directly measured from the tests. Three recent ductile damage models are calibrated using the experimental data. The accuracy of the proposed approach is validated and presented for the two alloys, by comparing the results with calibrations performed on the same materials using more conventional multiaxial tests. It is shown that the new methodology is effective, and how either one of the two shear–tension geometries in addition to tensile tests could replace, with the same level of accuracy, typical more complex calibration procedures involving tests that require dedicated facilities. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

11 pages, 4967 KiB  
Article
Small Punch Testing of a Ti6Al4V Titanium Alloy and Simulations under Different Stress Triaxialities
by Kun Wang, Xilong Zhao and Zeyu Cao
Materials 2024, 17(17), 4203; https://doi.org/10.3390/ma17174203 - 25 Aug 2024
Cited by 1 | Viewed by 1085
Abstract
The mechanical properties of local materials subjected to various stress triaxialities were investigated via self-designed small punch tests and corresponding simulations, which were tailored to the geometry and notch forms of the samples. The finite element model was developed on the basis of [...] Read more.
The mechanical properties of local materials subjected to various stress triaxialities were investigated via self-designed small punch tests and corresponding simulations, which were tailored to the geometry and notch forms of the samples. The finite element model was developed on the basis of the actual test method. After verifying the accuracy of the simulation, the stress, strain, and void volume fraction distributions of the Ti6Al4V titanium alloy under different stress states were compared and analyzed. The results indicate that the mechanical properties of the local material significantly differ during downward pressing depending on the geometric shape. A three-dimensional tensile stress state was observed in the center area, where the void volume fraction was greater than the fracture void volume fraction. The fracture morphology of the samples further confirmed the presence of different stress states. Specifically, the fracture morphology of the globular head samples (with or without U-shaped notches) predominantly featured dimples. Modifying the specimen’s geometry effectively increased stress triaxiality, facilitating the determination of the material’s constitutive relationship under varying stress states. Full article
Show Figures

Figure 1

25 pages, 30359 KiB  
Article
Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure
by Xu Wang, Yekun Wang, Xuanda Shao, Kaiyao Zhou, Qianfa Deng, Zewei Yuan and Binghai Lyu
Processes 2024, 12(6), 1114; https://doi.org/10.3390/pr12061114 - 28 May 2024
Cited by 2 | Viewed by 1762
Abstract
TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the [...] Read more.
TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the electrolyte flow rate on the polishing effect. The optimization of the electrochemical polishing parameters was conducted using experiments and simulations. The effects of process parameters, such as the concentration of sodium chloride (NaCl) and zinc chloride (ZnCl2), polishing time, and processing voltage, on the quality of the post-polished surface were studied. Experiments were conducted on microgrooves with different aspect ratios under the optimized polishing process parameters. Changes in the surface elements of the microgrooves after polishing were detected. The experimental results indicated that the optimal electrochemical polishing solution flow rate, NaCl concentration, ZnCl2 concentration, polishing time, and processing voltage were 0.2 m/s, 4.0 wt.%, 0.4 wt.%, 8 min, and 90 V, respectively. After 8 min of electrochemical polishing, a TiO2 passivation film was formed on the surface of the microgroove. The surface roughness of the notch and bottom of the microgroove decreased from 250 nm to below 40 nm, with a minimum of 24.5 nm. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

22 pages, 8979 KiB  
Article
Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy
by Iuliia M. Modina, Grigory S. Dyakonov, Alexander V. Polyakov, Andrey G. Stotskiy and Irina P. Semenova
Metals 2024, 14(1), 36; https://doi.org/10.3390/met14010036 - 28 Dec 2023
Cited by 3 | Viewed by 2085
Abstract
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of [...] Read more.
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of the UFG alloy’s crystallographic texture in the process of deformation during the production of a semi-product and/or a part, as well as its effect on the ductile–brittle transition region in the temperature range from −196 °C to 500 °C and the material’s fracture mechanisms. To test Charpy impact strength, standard samples of square cross-section with a V-shape notch were used (KCV). It was found that the impact toughness anisotropy is caused by textural effects and has a pronounced character at temperatures in the ductile–brittle transition range. Up to 100 °C the KCV values are close in the specimens processed by ECAP and ECAP+upsetting (along and perpendicularly to the upsetting axis—along the Z-axis and along the Y-axis, respectively), while a large difference is observed at test temperatures of 200 °C and higher. At a temperature of 500 °C, the impact toughness of the UFG Ti-6Al-4V alloy after ECAP reaches a level of that after ECAP+upsetting in the fracture direction along the Z-axis (1.60 and 1.77 MJ/m2, respectively). Additionally, an additional ECAP upsetting after ECAP decreases the ductile–brittle transition temperature of the UFG Ti-6Al-4V alloy, which increases the temperature margin of the toughness of the structural material and reduces the risk of the catastrophic failure of a product. The fractographic analysis of the fracture surface of the specimens after Charpy tests in a wide temperature range revealed the features of crack propagation depending on the type of the alloy’s microstructure and texture in the fracture direction. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

11 pages, 3246 KiB  
Article
Fatigue and Fracture Evaluations in Ti-10V-2Fe-3Al (Ti 10-2-3)
by Martin Bache
Metals 2023, 13(12), 1986; https://doi.org/10.3390/met13121986 - 7 Dec 2023
Cited by 4 | Viewed by 1606
Abstract
A mechanical assessment was conducted to characterise the near β titanium alloy Ti-10V-2Fe-3Al (Ti 10-2-3), which was heat-treated to provide two strength variants. Low cycle fatigue and crack propagation tests were performed under standard laboratory air plus a salt fog environment. The differences [...] Read more.
A mechanical assessment was conducted to characterise the near β titanium alloy Ti-10V-2Fe-3Al (Ti 10-2-3), which was heat-treated to provide two strength variants. Low cycle fatigue and crack propagation tests were performed under standard laboratory air plus a salt fog environment. The differences in static strength were also demonstrated under fatigue conditions utilising plain specimens. However, the alloy was essentially insensitive to the test environment when comparing LCF performance in air and salt fog. Salt fog also provided no effect on crack growth behaviour. A double edge notch specimen geometry was employed to measure free initiation and the growth of cracks from a stress-raising feature. The current data now supplement previous studies aimed at expanding the mechanical database for Ti 10-2-3 component design and in-service life predictions. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

16 pages, 5165 KiB  
Article
Predicting the Effect of Surface Waviness on Fatigue Life of a Wire + Arc Additive Manufactured Ti-6Al-4V Alloy
by Muhammad Shamir, Xiang Zhang, Abdul Khadar Syed and Wayne Sadler
Materials 2023, 16(15), 5355; https://doi.org/10.3390/ma16155355 - 30 Jul 2023
Cited by 13 | Viewed by 1848
Abstract
This paper reports the effect of as-deposited surface conditions on the fatigue strength of an additively manufactured titanium alloy, Ti-6Al-4V (WAAM Ti64). First, the local stress concentration caused by the surface waviness was quantified using a metrology technique and computer modelling. Fatigue tests [...] Read more.
This paper reports the effect of as-deposited surface conditions on the fatigue strength of an additively manufactured titanium alloy, Ti-6Al-4V (WAAM Ti64). First, the local stress concentration caused by the surface waviness was quantified using a metrology technique and computer modelling. Fatigue tests were conducted under bending loads at a cyclic load ratio of 0.1. The applicability of two predictive methods was the focus of this study. The traditional notch stress method was unable to predict the correct S–N curve trend slope, which could be attributed to the early crack initiation from the troughs on the as-built surface, with crack propagation being the dominant failure mechanism. By treating the troughs as small cracks, the fracture mechanics approach delivered good predictions at every applied stress level. Surface machining and polishing may not always be practical or required; it depends on the applications and service load levels. This research demonstrated that the fracture mechanics approach can be used for predicting the fatigue life of WAAM titanium alloys in as-built conditions and, hence, can be a tool for decision making on the level of surface machining. Full article
(This article belongs to the Special Issue Fatigue in Materials Produced by Additive Manufacturing)
Show Figures

Figure 1

21 pages, 13234 KiB  
Article
Effect of Post-Processing Treatment on Fatigue Performance of Ti6Al4V Alloy Manufactured by Laser Powder Bed Fusion
by Ane Miren Mancisidor, María Belén García-Blanco, Iban Quintana, Pedro José Arrazola, Elixabete Espinosa, Mikel Cuesta, Joseba Albizuri and Fermin Garciandia
J. Manuf. Mater. Process. 2023, 7(4), 119; https://doi.org/10.3390/jmmp7040119 - 22 Jun 2023
Cited by 3 | Viewed by 2548
Abstract
Fatigue properties of parts are of particular concern for safety-critical structures. It is well-known that discontinuities in shape or non-uniformities in materials are frequently a potential nucleus of fatigue failure. This is especially crucial for the Ti6Al4V alloy, which presents high susceptibility to [...] Read more.
Fatigue properties of parts are of particular concern for safety-critical structures. It is well-known that discontinuities in shape or non-uniformities in materials are frequently a potential nucleus of fatigue failure. This is especially crucial for the Ti6Al4V alloy, which presents high susceptibility to the notch effect. This study investigates how post-processing treatments affect the mechanical performance of Ti6Al4V samples manufactured by laser powder bed fusion technology. All the fatigue samples were subjected to a HIP cycle and post-processed by machining and using combinations of alternative mechanical and electrochemical surface treatments. The relationship between surface properties such as roughness, topography and residual stresses with fatigue performance was assessed. Compressive residual stresses were introduced in all surface-treated samples, and after tribofinishing, roughness was reduced to 0.31 ± 0.10 µm, which was found to be the most critical factor. Fractures occurred on the surface as HIP removed critical internal defects. The irregularities found in the form of cavities or pits were stress concentrators that initiated cracks. It was concluded that machined surfaces presented a fatigue behavior comparable to wrought material, offering a fatigue limit superior to 450 MPa. Additionally, alternative surface treatments showed a fatigue behavior equivalent to the casting material. Full article
(This article belongs to the Special Issue Fatigue and Fracture Mechanics in Additive Manufacturing)
Show Figures

Figure 1

14 pages, 2893 KiB  
Article
Effect of Heat Treatments on Microstructure and Mechanical Properties of Low-Cost Ti-6Al-4V Alloy Produced by Thermomechanical Powder Consolidation Route
by Ajit Pal Singh, Rob Torrens, Brian Gabbitas and Giribaskar Sivaswamy
Metals 2023, 13(1), 173; https://doi.org/10.3390/met13010173 - 14 Jan 2023
Cited by 1 | Viewed by 2797
Abstract
This paper investigates the level of properties enhancement achievable by heat-treating Ti-6Al-4V alloy produced from a blended powder mixture using a thermomechanical powder consolidation route involving warm uniaxial pressing and vacuum sintering followed by extrusion at super transus temperature (1150 °C). The as-extruded [...] Read more.
This paper investigates the level of properties enhancement achievable by heat-treating Ti-6Al-4V alloy produced from a blended powder mixture using a thermomechanical powder consolidation route involving warm uniaxial pressing and vacuum sintering followed by extrusion at super transus temperature (1150 °C). The as-extruded material with a higher oxygen content of 0.55 wt.% was subjected to two different sub-transus annealing treatments: HT-A: 955 °C/1 h-furnace cooling and HT-B: 925 °C/4 h-cooling @ 50 °C/h to 760 °C-furnace cooling. Room temperature Charpy v-notch impact toughness tests and tensile tests were performed to ascertain the effect of microstructural changes during post-extrusion annealing treatments. After impact tests, analysis of microstructures and fracture surfaces of samples was carried out using optical and scanning electron microscopy. The as-extruded material displayed mean impact toughness of 4 J along with a yield strength of 956 MPa, an ultimate tensile strength of 1150 MPa, and an elongation to fracture of 2.4%. The annealing treatments gave a noticeable enhancement in the impact toughness (average values 5–6 J obtained) while maintaining a yield strength and ultimate tensile strength level of about 992 MPa and 1164–1181 MPa, respectively. Additionally, the level of change in ductility was limited for each sub-transus annealing treatment, and HT-A has given only a 30% increase compared to as-extruded material. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metallic Materials)
Show Figures

Figure 1

23 pages, 8973 KiB  
Article
Implementation of Sustainable Vegetable-Oil-Based Minimum Quantity Cooling Lubrication (MQCL) Machining of Titanium Alloy with Coated Tools
by Salman Pervaiz, Naveed Ahmad, Kashif Ishfaq, Sarmad Khan, Ibrahim Deiab and Sathish Kannan
Lubricants 2022, 10(10), 235; https://doi.org/10.3390/lubricants10100235 - 24 Sep 2022
Cited by 16 | Viewed by 3083
Abstract
The lubrication capacity and penetration ability of the minimum quantity cooling lubrication-based strategy is linked with lubrication specific parameters (oil flow rates and air pressure), cutting conditions, and chip formation. It points out the complex selection involved in the MQCL-assisted strategy to attain [...] Read more.
The lubrication capacity and penetration ability of the minimum quantity cooling lubrication-based strategy is linked with lubrication specific parameters (oil flow rates and air pressure), cutting conditions, and chip formation. It points out the complex selection involved in the MQCL-assisted strategy to attain optimal machining performance. Lubrication during metal cutting operations is a complex phenomenon, as it is a strong function of the cutting conditions. In addition, it also depends on the physical properties of the lubricant and chemical interactions. Minimum Quantity Lubrication (MQL) has been criticized due to the absence of cooling parts; MQCL is a modified version where a cooling part in the form of sub-zero temperatures is provided. The aim of this paper was to investigate the influence of different lubrication flow parameters under minimum quantity cooling lubrication (MQCL) when machining aeronautic titanium alloy (Ti6Al4V) using Titanium Aluminum Nitride—Physical Vapor Deposition (TiAlN-PVD) coated cutting inserts. The machining experiments on the MQCL system were performed with different levels of oil flow rates (70, 90, and 100 mL/h) and the performance was compared with the conventional dry cutting and flood cooling settings. A generic trend was observed that increasing the oil flow rate from 70—mL/h to 100 h/h improved the surface finish and reduced thermal softening at a low feed of 0.1 mm/rev. The results revealed that many tool-wear mechanisms such as adhesion, micro-abrasion, edge chipping, notch wear, built-up edge (BUE), and built-up layer (BUL) existed. Full article
(This article belongs to the Special Issue Biolubricants in Machining)
Show Figures

Figure 1

17 pages, 4444 KiB  
Article
Influences of Surface, Heat Treatment, and Print Orientation on the Anisotropy of the Mechanical Properties and the Impact Strength of Ti 6Al 4V Processed by Laser Powder Bed Fusion
by Benjamin Meier, Norica Godja, Fernando Warchomicka, Carlos Belei, Sandra Schäfer, Andreas Schindel, Gregor Palcynski, Reinhard Kaindl, Wolfgang Waldhauser and Christof Sommitsch
J. Manuf. Mater. Process. 2022, 6(4), 87; https://doi.org/10.3390/jmmp6040087 - 14 Aug 2022
Cited by 13 | Viewed by 3914
Abstract
The scope of this work is to provide an overview of the influences of process parameters, print orientation, and post-process treatments of Ti6AlV4 processed by laser powder bed fusion on its microstructure and physical and mechanical properties and their anisotropic behavior. To avoid [...] Read more.
The scope of this work is to provide an overview of the influences of process parameters, print orientation, and post-process treatments of Ti6AlV4 processed by laser powder bed fusion on its microstructure and physical and mechanical properties and their anisotropic behavior. To avoid the influence of changes in powder quality and ensure comparability, experiments were carried out using a single batch of virgin powder. First, characterization of the density and surface roughness was performed to optimize the process parameters utilizing design of experiment. Tensile, notched bar impact and compression test specimens were built in three different orientations: vertically, horizontally, and inclined at 45° to the build plate. Later, the influence of the staircase effect and the possible course of anisotropy from vertical to horizontal were investigated. Subsequently, heat treatments for stress relief, furnace annealing, and hot isostatic pressing were performed. In addition to as-built samples, mechanical machining and a two-step electrochemical polishing surface treatment were applied to investigate the influence of the surface roughness. With parameter optimization, a relative density of 99.8% was achieved, and surface roughness was improved over default parameters, reducing Ra by up to 7 µm. Electrochemical polishing is a viable way to decrease the surface roughness. An Ra value of 1 µm and an Rz value of 4 µm can be achieved for 45° downskin surfaces with as-built surface roughness values of Ra 24 µm and Rz 117 µm. As-built and stress-relieved conditions show little anisotropy in their yield and tensile strength (max 2.7%), but there is a strong influence of the build orientation on necking, and brittle fracture behavior is shown due to the martensitic microstructure (up to 70%). Heat treatment can increase the ductility and further decrease the strength anisotropy with both furnace annealing and hot isostatic pressing delivering similar results for tensile properties, while angled samples exhibit behavior that is closer to vertical than horizontal, indicating a non-linear change in break behavior. Electrochemical polishing increases fracture necking, and its isotropy drastically increases from 4% to over 30% compared with as-built parts, which is close to the level of the machined specimen. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing and Its Post Processing Techniques)
Show Figures

Figure 1

14 pages, 33875 KiB  
Article
Study on Characteristics for Reaming Titanium Alloy Ti6Al4V with Two Kinds of Cemented-Carbide Groove Reamers
by Yongqiang Zhang, Yongguo Wang and Zhanlong Han
Materials 2022, 15(14), 5027; https://doi.org/10.3390/ma15145027 - 19 Jul 2022
Cited by 1 | Viewed by 2011
Abstract
Titanium alloys have been extensively used in practical machining owing to their outstanding mechanical properties, high specific strength and low thermal deformation. In this study, the cutting experiments are carried out on Ti6Al4V material with right-hand and straight cemented-carbide groove reamers. The experimental [...] Read more.
Titanium alloys have been extensively used in practical machining owing to their outstanding mechanical properties, high specific strength and low thermal deformation. In this study, the cutting experiments are carried out on Ti6Al4V material with right-hand and straight cemented-carbide groove reamers. The experimental results show that the cutting force with the right-hand reamer is smaller compared to straight groove reamer due to the groove structure. The main tool wear forms are micro-chipping, adhesive wear, abrasive wear, and coating falling off on the right-hand reamer, while there is a built-up edge and serious damage failure on the cutting edge of the straight groove reamer. Notch wear and pitting on the surface of the hole wall are mainly caused by chip adhesion and tool wear. The surface-roughness value is the lowest as the cutting speed is 60 m/min and the feed rate is 0.4 mm/rev. The holes machined by the right-hand reamer have a low hole diameter deviation with various cutting parameters. The geometric accuracy of cylindricity is higher as the feed rate is 0.4 mm/rev and the cutting speed is 40 m/min for both kinds of reamers, and the cylindricity is better with the right-hand reamer. Full article
(This article belongs to the Special Issue Manufacturing Technology, Materials and Methods)
Show Figures

Figure 1

16 pages, 6310 KiB  
Article
Investigation on Strain Hardening and Failure in Notched Tension Specimens of Cold Rolled Ti6Al4V Titanium Alloy
by Hao Zhang, Tao Gao, Jian Chen, Xunpeng Li, Haipeng Song and Ganyun Huang
Materials 2022, 15(10), 3429; https://doi.org/10.3390/ma15103429 - 11 May 2022
Cited by 6 | Viewed by 2399
Abstract
Uniaxial and notched tension samples are utilized to investigate the damage and failure of titanium alloy Ti6Al4V. The strain fields on the samples are obtained by the digital image correlation (DIC) method. Strain localization occurs before fracturing in all samples, and the width [...] Read more.
Uniaxial and notched tension samples are utilized to investigate the damage and failure of titanium alloy Ti6Al4V. The strain fields on the samples are obtained by the digital image correlation (DIC) method. Strain localization occurs before fracturing in all samples, and the width and size of the localized zone are characterized. Slant fractures are observed in uniaxial and notched tension specimen, which indicate that the initiation and propagation of cracks in thin sheet specimens are highly affected by the shear stress. Numerical simulations were performed for identification of hybrid hardening laws, and the results were compared with the experiments. The influence of the stress triaxiality on damage mechanism of Ti6Al4V was analyzed by observation of the specimen fracture surfaces using SEM. The results show that a higher stress triaxiality facilitates the formation and growth of micro-voids, which leads to a decrement of strain at failure. Full article
Show Figures

Figure 1

20 pages, 6908 KiB  
Article
Comparison of Impact Toughness in Simulated Coarse-Grained Heat-Affected Zone of Al-Deoxidized and Ti-Deoxidized Offshore Steels
by Henri Tervo, Antti Kaijalainen, Vahid Javaheri, Mohammed Ali, Tuomas Alatarvas, Mikko Mehtonen, Severi Anttila and Jukka Kömi
Metals 2021, 11(11), 1783; https://doi.org/10.3390/met11111783 - 5 Nov 2021
Cited by 3 | Viewed by 2448
Abstract
The presence of acicular ferrite (AF) in the heat-affected zone (HAZ) of steels used offshore is generally seen as beneficial for toughness. In this study, the effects of varying fractions of AF (0–49 vol.%) were assessed in the simulated, unaltered and coarse-grained heat-affected [...] Read more.
The presence of acicular ferrite (AF) in the heat-affected zone (HAZ) of steels used offshore is generally seen as beneficial for toughness. In this study, the effects of varying fractions of AF (0–49 vol.%) were assessed in the simulated, unaltered and coarse-grained heat-affected zones (CGHAZ) of three experimental steels. Two steels were deoxidized using Ti and one using Al. The characterization was carried out by using electron microscopy, energy-dispersive X-ray spectrometry, electron backscatter diffraction and X-ray diffraction. The fraction of AF varied with the heat input and cooling time applied in the Gleeble thermomechanical simulator. AF was present in one of the Ti-deoxidized steels with all the applied cooling times, and its fraction increased with increasing cooling time. However, in other materials, only a small fraction (13–22%) of AF was present and only when the longest cooling time was applied. The impact toughness of the simulated specimens was evaluated using instrumented Charpy V-notch testing. Contrary to the assumption, the highest impact toughness was obtained in the conventional Al-deoxidized steel with little or no AF in the microstructure, while the variants with the highest fraction of AF had the lowest impact toughness. It was concluded that the coarser microstructural and inclusion features of the steels with AF and also the fraction of AF may not have been great enough to improve the CGHAZ toughness of the steels investigated. Full article
(This article belongs to the Special Issue Mechanical Properties Assessment of Alloys during Welding Process)
Show Figures

Figure 1

13 pages, 3099 KiB  
Article
Localization of Plastic Deformation in Ti-6Al-4V Alloy
by Vladimir V. Skripnyak and Vladimir A. Skripnyak
Metals 2021, 11(11), 1745; https://doi.org/10.3390/met11111745 - 30 Oct 2021
Cited by 12 | Viewed by 3237
Abstract
This article investigated the mechanical behavior of Ti-6Al-4V alloy (VT6, an analog to Ti Grade 5) in the range of strain rates from 0.1 to 103 s−1. Tensile tests with various notch geometries were performed using the Instron VHS 40/50-20 [...] Read more.
This article investigated the mechanical behavior of Ti-6Al-4V alloy (VT6, an analog to Ti Grade 5) in the range of strain rates from 0.1 to 103 s−1. Tensile tests with various notch geometries were performed using the Instron VHS 40/50-20 servo hydraulic testing machine. The Digital Image Correlation (DIC) analysis was employed to investigate the local strain fields in the gauge section of the specimen. The Keyence VHX-600D digital microscope was used to characterize full-scale fracture surfaces in terms of fractal dimension. At high strain rates, the analysis of the local strain fields revealed the presence of stationary localized shear bands at the initial stages of strain hardening. The magnitude of plastic strain within the localization bands was significantly higher than those averaged over the gauge section. It was found that the ultimate strain to fracture in the zone of strain localization tended to increase with the strain rate. At the same time, the Ti-6Al-4V alloy demonstrated a tendency to embrittlement at high stress triaxialities. Full article
(This article belongs to the Special Issue Lightweight Metals: Process, Microstructure, and Properties)
Show Figures

Figure 1

Back to TopTop