Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (998)

Search Parameters:
Keywords = nonferrous metals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Viewed by 22
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

3 pages, 118 KiB  
Editorial
Editorial for Special Issue “Genesis and Metallogeny of Non-Ferrous and Precious Metal Deposits”
by Sitong Chen, Qun Yang, Yunsheng Ren, Chan Li, Haozhe Li and Xiaolei Peng
Minerals 2025, 15(8), 810; https://doi.org/10.3390/min15080810 - 31 Jul 2025
Viewed by 118
Abstract
In recent decades, an increasing number of non-ferrous and precious metal deposits have been discovered all over the world [...] Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
14 pages, 2948 KiB  
Article
Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector
by Feng Jiang, Pengyuan Wang, Jiaxing Qi, Wei Sun, Yulin Zhou, Weishang Zhao, Shuai He, Yuanjia Luo and Honghu Tang
Metals 2025, 15(7), 815; https://doi.org/10.3390/met15070815 - 21 Jul 2025
Viewed by 236
Abstract
The efficient separation of antimonate minerals from quartz remains a significant challenge in mineral processing due to their similar surface properties and strong hydrophilicity. This study explored the application of sodium dodecyl sulfonate (SDS) as a selective collector for antimonate–quartz flotation separation. Micro-flotation [...] Read more.
The efficient separation of antimonate minerals from quartz remains a significant challenge in mineral processing due to their similar surface properties and strong hydrophilicity. This study explored the application of sodium dodecyl sulfonate (SDS) as a selective collector for antimonate–quartz flotation separation. Micro-flotation tests demonstrated that SDS achieved optimal recovery of antimonate minerals (90.25%) at pH 8 with a dosage of 70 mg/L, while quartz recovery remained below 10%. Contact angle measurements revealed a significant increase in the hydrophobicity of antimonate minerals after SDS treatment, whereas quartz remained highly hydrophilic. FTIR and XPS analyses confirmed the selective chemisorption of SDS on antimonate mineral surfaces through Sb-O-S bond formation, while negligible adsorption occurred on quartz. Adsorption isotherms further showed the higher SDS uptake on antimonate minerals compared to quartz. These findings collectively demonstrate the effectiveness of SDS as a selective collector for the flotation of antimonate minerals, providing a promising approach to enhancing the recovery of fine antimonate particles. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

23 pages, 6106 KiB  
Article
Seismic Multi-Parameter Full-Waveform Inversion Based on Rock Physical Constraints
by Cen Cao, Deshan Feng, Jia Tang and Xun Wang
Appl. Sci. 2025, 15(14), 7849; https://doi.org/10.3390/app15147849 - 14 Jul 2025
Viewed by 218
Abstract
Seismic multi-parameter full-waveform inversion (FWI) integrating velocity and density parameters can fully use the kinematic and dynamic information of observed data to reconstruct underground models. However, seismic multi-parameter FWI is a highly ill-posed problem due to the strong dependence on the initial model. [...] Read more.
Seismic multi-parameter full-waveform inversion (FWI) integrating velocity and density parameters can fully use the kinematic and dynamic information of observed data to reconstruct underground models. However, seismic multi-parameter FWI is a highly ill-posed problem due to the strong dependence on the initial model. An inaccurate initial model often leads to cycle skipping and convergence to local minima, resulting in poor inversion results. The introduction of prior information can regularize the inversion problem, not only improving the crosstalk phenomenon between parameters, but also effectively constraining the inversion parameters, enhancing the inversion efficiency. Multi-parameter FWI based on rock physical constraints can introduce prior information of underground media into the objective function of FWI. Taking a simple layered model as an example, the results show that the inversion strategy based on rock physical constraints can enhance the stability of inversion and obtain high-precision inversion results. Application to the international standard 1994BP model further confirms that the proposed inversion strategy has good applicability to complex geological models. Full article
Show Figures

Figure 1

20 pages, 5652 KiB  
Article
Capacitive Sensing of Solid Debris in Used Lubricant of Transmission System: Multivariate Statistics Classification Approach
by Surapol Raadnui and Sontinan Intasonti
Lubricants 2025, 13(7), 304; https://doi.org/10.3390/lubricants13070304 - 14 Jul 2025
Viewed by 353
Abstract
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous [...] Read more.
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous (Al), and non-metallic (SiO2) debris. Controlled tests were performed using five mixing ratios of large-to-small particles (100:0, 75:25, 50:50, 25:75, and 0:100) at a fixed debris mass of 0.5 g per 25 mL of SAE 85W-140 automotive gear oil. Cubic regression analysis yielded high predictive accuracy, with average R2 values of 0.994 for Fe, 0.943 for Al, and 0.992 for SiO2. Further dimensionality reduction using Principal Component Analysis (PCA), along with Linear Discriminant Analysis (LDA) of multivariate statistical analysis, effectively classifies debris types and enhances interpretability. These results demonstrate the potential of capacitive sensing as an offline, non-invasive alternative to traditional techniques for wear debris monitoring in transmission systems. These results confirm the potential of capacitive sensing, supported by statistical modeling, as a non-invasive, cost-effective technique for offline classification and monitoring of wear debris in transmission systems. Full article
(This article belongs to the Special Issue Tribological Research on Transmission Systems)
Show Figures

Figure 1

15 pages, 10188 KiB  
Article
The Effect of Aging Treatment on the Properties of Cold-Rolled Cu-Ni-Si-Co Alloys with Different Mg Contents
by Dan Wu, Jinming Hu, Qiang Hu, Lingkang Wu, Bo Guan, Siqi Zeng, Zhen Xing, Jiahao Wang, Jing Xu, Guojie Huang and Jin Liu
Materials 2025, 18(14), 3263; https://doi.org/10.3390/ma18143263 - 10 Jul 2025
Viewed by 362
Abstract
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of [...] Read more.
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of Cu-Ni-Si-Co-Mg alloys. In this paper, the effects of aging treatment and Mg addition on the properties and precipitates of cold-rolled Cu-Ni-Si-Co alloys were studied. The precipitate was (Ni, Co)2Si and was in a strip shape. During aging, precipitation and coarsening of the (Ni, Co)2Si precipitates were observed. In the early stage of aging, a significant number of fine (Ni, Co)2Si precipitates were formed. These fine precipitates could not only have a better effect of precipitation strengthening, but also impeded the dislocation movement, thus increasing the dislocation density and improving the dislocation strengthening effect. However, the coarsening of the precipitates became dominant with increasing aging times. Therefore, the strengthening effect was weakened. The addition of 0.12% Mg promoted finer and more diffuse precipitates, which not only improving the tensile strength by 100–200 MPa, but also exhibiting a smaller effect on the electrical conductivity. However, further increases in Mg contents resulted in a significant decrease in electrical conductivity, with little change in the tensile strength. The optimum amount of added Mg was 0.12%, and the aging parameters were 300 °C and 20 min. Full article
Show Figures

Figure 1

20 pages, 12984 KiB  
Article
Spatial and Temporal Characterization of the Development and Pollution Emissions of Key Heavy Metal-Related Industries in Typical Regions of China: A Case Study of Hunan Province
by Liying Yang, Xia Li, Jianan Luo, Xuechun Ma, Xiaoyan Zhang, Jiamin Zhao, Zhicheng Shen and Jingwen Xu
Sustainability 2025, 17(14), 6275; https://doi.org/10.3390/su17146275 - 9 Jul 2025
Viewed by 357
Abstract
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted [...] Read more.
At present, there is a lack of in-depth knowledge of the effects of heavy metal-related industries (HMIs) in China on the environment. Hunan Province, as a representative gathering place of HMIs, is among the regions in China that are the most severely polluted with heavy metals. This paper selected Hunan Province as the study area to analyze the development trend, characteristics of pollution emissions, and environmental impacts of seven HMIs based on emission permit information data from Hunan Province. The results of this study show that (1) from 2000 to 2022, the number of heavy metal-related enterprises in Hunan Province increased overall. Among the seven industries, the chemical product manufacturing industry (CPMI) had the largest number of enterprises, whereas the nonferrous metal smelting and rolling industry (NSRI) had the highest gross industrial product (27.6%). (2) HMIs in Hunan Province had significant emissions of cadmium (Cd), arsenic (As), and hydargyrum (Hg) from exhaust gas and wastewater. Heavy metal-related exhaust gas and wastewater outlets from the NSRI constituted 43.9% and 35.3%, respectively, of all outlets of the corresponding type. The proportions of exhaust gas outlets involving Cd, Hg, and As from the NSRI to total exhaust gas outlets were 44.27%, 60.54%, and 34.23%, respectively. The proportions of wastewater outlets involving Cd, Hg, and As from the NSRI to total wastewater outlets were 61.13%, 57.89%, and 75.30%, respectively. (3) The average distances of heavy metal-related enterprises from arable land, rivers, and flooded areas in Hunan Province were 256 m, 1763 m, and 3352 m, respectively. Counties with high environmental risk (H-L type) were situated mainly in eastern Hunan. Among them, Chenzhou had the most heavy metal-related wastewater outlets (22.7%), and Hengyang had the most heavy metal-related exhaust gas outlets (23.1%). The results provide a scientific basis for the prevention and control of heavy metal pollution and an enhancement in environmental sustainability in typical Chinese areas where HMIs are concentrated. Full article
Show Figures

Figure 1

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 466
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

22 pages, 19343 KiB  
Article
Investigation on the Influence of Vacancy and Alloying Element Content on the Performance of Fe/NbN Interface
by Shuangwu Zhang, Xiaolong Zhao, Jiayin Zhang, Jie Sheng, Junqiang Ren, Xuefeng Lu and Xingchang Tang
Metals 2025, 15(7), 759; https://doi.org/10.3390/met15070759 - 5 Jul 2025
Viewed by 228
Abstract
The alloying elements usually lead to the precipitation of second phases in steel, readily forming at grain boundaries, and the type and distribution of these phases significantly influence the mechanical properties of the matrix. In the present contribution, the austenitic matrix fcc-Fe, the [...] Read more.
The alloying elements usually lead to the precipitation of second phases in steel, readily forming at grain boundaries, and the type and distribution of these phases significantly influence the mechanical properties of the matrix. In the present contribution, the austenitic matrix fcc-Fe, the precipitate NbN, and the interface properties between them are investigated by first-principles calculations in detail. The effects of vacancy and alloying element content on the interface performance are examined. The results indicate that the density of states (DOS) of the former is primarily contributed by the Fe d-orbitals, and both exhibit elastic anisotropy. Under a tensile strain of 20%, the maximum tensile strength of fcc-Fe reaches 32.6 GPa. For NbN, the maximum tensile strength comes to 29 GPa at a strain of 10%, after which the stress rapidly decreases with the increasing of strain. In the meantime, the uneven distribution of electron cloud density increases in both. Regarding the interface, the introduction of vacancies enhances atomic interaction and improves interface stability by altering electron cloud distribution. As the Co doping content increases, the covalent interactions between atoms strengthen at the interface, enhancing interface stability. However, excessive V doping may reduce the interface stability. Furthermore, when the vacancies coexist with alloying elements, the stronger covalent characteristics are observed due to shortened bond lengths and positive bond population values. These insights provide a data foundation and theoretical basis for designing high-performance austenitic stainless steels. Full article
Show Figures

Figure 1

13 pages, 642 KiB  
Article
The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction
by Alfira Sabitova, Nurlan Mukhamediyarov, Binur Mussabayeva, Bauyrzhan Rakhadilov, Nurbol Aitkazin, Bulbul Bayakhmetova, Zhanna Sharipkhan and Balzhan Gaisina
Processes 2025, 13(7), 2113; https://doi.org/10.3390/pr13072113 - 3 Jul 2025
Viewed by 308
Abstract
The processing of metallurgical slags is an urgent task, as they contain residual amounts of precious and non-ferrous metals such as gold, silver, copper and zinc. The efficiency of extraction of these metals directly depends on the granulometric composition of the processed material, [...] Read more.
The processing of metallurgical slags is an urgent task, as they contain residual amounts of precious and non-ferrous metals such as gold, silver, copper and zinc. The efficiency of extraction of these metals directly depends on the granulometric composition of the processed material, which determines the need for its detailed analysis. The purpose of this study is to analyze the effect of the granulometric composition of slags on the efficiency of extraction of non-ferrous metals using the flotation method. For this purpose, studies were carried out, including granulometric analysis, chemical composition analysis and flotation tests using Na2S, KAX and 3418A reagents. The analysis showed that the main part of the slag consisted of particles less than 3.36 mm, while the content of copper was 0.60%, zinc was 2.37%, gold was 0.1 g/t and silver was 7.2 g/t. Flotation experiments confirmed that the use of Na2S and 3418A increased the recoverability of copper and zinc, and reducing the particle size to d80 <10 microns increased the efficiency of copper extraction by 7%. Thus, the optimization of flotation processes and the control of granulometric composition make it possible to increase the efficiency of metallurgical waste processing, reduce losses of valuable metals and reduce the environmental burden. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

18 pages, 1917 KiB  
Article
Bimetallic Copper–Indium Co-Doped Titanium Dioxide Towards Electrosynthesis of Urea from Carbon Dioxide and Nitrate
by Youcai Meng, Tianran Wei, Zhiwei Wang, Caiyun Wang, Junyang Ding, Yang Luo and Xijun Liu
C 2025, 11(3), 44; https://doi.org/10.3390/c11030044 - 27 Jun 2025
Viewed by 442
Abstract
Electrocatalytic urea synthesis offers great potential for sustainable strategies through CO2 and NO3 reduction reactions. However, the development of high-performance catalysts is often hampered by the complexity of synthetic methodologies and the unresolved nature of C-N coupling pathways. In this [...] Read more.
Electrocatalytic urea synthesis offers great potential for sustainable strategies through CO2 and NO3 reduction reactions. However, the development of high-performance catalysts is often hampered by the complexity of synthetic methodologies and the unresolved nature of C-N coupling pathways. In this study, we present a copper–indium co-doped titanium dioxide (CuIn-TiO2) catalyst that exhibits remarkable efficacy in enhancing the synergistic reduction of CO2 and NO3 to produce urea. The bimetallic CuIn site functions as the primary active site for the C-N coupling reaction, achieving a urea yield rate of 411.8 μg h−1 mgcat−1 with a Faradaic efficiency of 6.7% at −0.8 V versus reversible hydrogen electrode (vs. RHE). A body of experimental and theoretical research has demonstrated that the nanoscale particles enhance the density of active sites and improve the feasibility of reactions on the surface of TiO2. The co-doping of Cu and In has been shown to significantly enhance electronic conductivity, increase the adsorption affinity for *CO2 and *NO3, and promote the C-N coupling process. The CuIn-TiO2 catalyst has been demonstrated to effectively promote the reduction of NO3 and CO2, as well as accelerate the C-N coupling reaction. This effect is a result of a synergistic interaction among the catalyst’s components. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Graphical abstract

21 pages, 3530 KiB  
Article
Sources, Distribution, and Health Risks of Heavy Metal Contamination in the Tongren Mercury Mining Area: A Case Study on Mercury and Cadmium
by Shuo Wang, Yani Guo, Huimin Hu, Yingqi Liang, Kun Li, Kuifu Zhang, Guiqiong Hou, Chunhai Li, Jiaxun Zhang and Zhenxing Wang
Toxics 2025, 13(7), 527; https://doi.org/10.3390/toxics13070527 - 23 Jun 2025
Viewed by 448
Abstract
This study assessed heavy metal contamination and associated health risks in soils and crops in the vicinity of a mercury mine located in Tongren, Guizhou Province, China, focusing on mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr). The study used [...] Read more.
This study assessed heavy metal contamination and associated health risks in soils and crops in the vicinity of a mercury mine located in Tongren, Guizhou Province, China, focusing on mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr). The study used the Index of Geological Accumulation (Igeo) and Health Risk Assessment (HRA) to quantify the level of contamination and assess the potential risks. The results showed that Area I was the most severely contaminated, with 94.24% of the sample sites being heavily contaminated with mercury, followed by Area II and Area III with severe cadmium contamination. The health risk assessment showed that children were exposed to non-carcinogenic risks of mercury and cadmium that exceeded the safety thresholds, with mercury being the major non-carcinogenic factor, especially through oral intake. The study also assessed the contribution of each heavy metal to pollution, with mercury contributing the most to ecological and health risks, especially in Areas I and III. The study highlights the urgent need to strengthen pollution control strategies, focusing on mining activities and agricultural inputs, to reduce risks and protect public health. Full article
Show Figures

Graphical abstract

20 pages, 9522 KiB  
Article
Preparation of Low-Salt-Rejection Membrane by Sodium Hypochlorite Chlorination for Concentration of Low-Concentration Magnesium Chloride Solution
by Zhengyang Wu, Zongyu Feng, Longsheng Zhao, Zheng Li, Meng Wang and Chao Xia
Materials 2025, 18(12), 2824; https://doi.org/10.3390/ma18122824 - 16 Jun 2025
Viewed by 374
Abstract
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional [...] Read more.
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional reverse osmosis (RO), which is insufficient for recycling. Low-salt-rejection reverse osmosis (LSRRO) allows for a higher concentration of brine while operating at moderate pressures. However, research on LSRRO for the concentration of MgCl2 solution is still at an initial stage. In this study, polyamide RO membranes were treated with sodium hypochlorite (NaClO) to prepare low-salt-rejection membranes. The effects of NaClO concentration, pH, and chlorination time on the membrane properties were investigated. Under alkaline chlorination conditions, the membrane’s salt rejection decreased, and water flux increased with increasing NaClO concentration and chlorination time. This can be explained by the hydrolysis of polyamide in the alkaline solution to form carboxylic acids and amines, resulting in a decrease in the crosslinking degree of polyamide. The low-salt-rejection membrane was prepared by exposing it to a NaClO solution at a concentration of 15 g/L and a pH of 11 for 3 h, and the salt rejection of MgCl2 was 50.7%. The MgCl2 solution with a concentration of 20 g/L was concentrated using multi-stage LSRRO at the pressure of 5 MPa. The concentration of the concentrated brine reached 120 g/L, which is 87% higher than the theoretical maximum concentration of 64 g/L for conventional RO at the pressure of 5 MPa. The specific energy consumption (SEC) was 4.17 kWh/m3, which decreased by about 80% compared to that of mechanical vapor recompression (MVR). This provides an alternative route for the efficient concentration of a diluted MgCl2 solution with lower energy consumption. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 948 KiB  
Review
Antimony Recovery from Industrial Residues—Emphasis on Leaching: A Review
by Marinela Panayotova, Serhii Pysmennyi and Vladko Panayotov
Separations 2025, 12(6), 156; https://doi.org/10.3390/separations12060156 - 8 Jun 2025
Viewed by 946
Abstract
Antimony (Sb) is a metalloid widely used in different areas—from the cutting-edge renewable energy technologies to “classical” lead acid batteries. Its availability in primary sources is limited, and these sources are geographically unevenly distributed worldwide. Antimony use will increase in the future. That [...] Read more.
Antimony (Sb) is a metalloid widely used in different areas—from the cutting-edge renewable energy technologies to “classical” lead acid batteries. Its availability in primary sources is limited, and these sources are geographically unevenly distributed worldwide. Antimony use will increase in the future. That is why Sb is included in the critical raw material lists of the European Union and the USA. In order to mitigate the future Sb shortage, Sb recovery from industrial residues is worth considering. This paper presents the availability of Sb in nonferrous metals extraction waste and the applicability of the hydrometallurgical route for Sb recovery from such sources. Leaching is emphasized. The use of acidic and alkaline leaching methods, their recent modifications, and the effect of different process parameters (reagents’ type, solid-to-liquid ratio, temperature, and the addition of oxidizing reagents) are highlighted. The use of new leaching systems, such as deep eutectic solvents and non-aqueous solutions, is presented. Initial attempts to apply bioleaching are described. Finally, some proposals for future investigations are given. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

12 pages, 3100 KiB  
Article
Effect of B4C Content on the Oxidation Resistance of a B4C-SiO2–Albite/Al2O3 Coating at 900 °C
by Pengbin Chen, Quanhao Luo, Haoze Wang, Huan He, Tao Liu, Yingheng Huang and Tianquan Liang
Coatings 2025, 15(6), 688; https://doi.org/10.3390/coatings15060688 - 6 Jun 2025
Viewed by 755
Abstract
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO [...] Read more.
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO2–Albite/Al2O3 (BSA/AO) double-layer coating by the slurry brushing method at 900 °C was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and differential scanning calorimetry (DSC) with thermogravimetric analysis (TGA) in this work. It is indicated that the composite coating with 20 wt% B4C exhibits excellent oxidation resistance at high temperature, which shows a mass loss of only 0.11% for the coated carbon block after being exposed to 900 °C for 196 h. This is attributed to the in situ formation of a thin, dense glass layer with good self-healing ability at the interface of the B4C-SiO2–Albite/Al2O3 composite coating within 1 h and the persistence and stability of the dense glass layer during exposure. The mechanism is discussed in detail. Full article
Show Figures

Figure 1

Back to TopTop