Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = non-relativistic regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2519 KiB  
Article
Mathematical Formulation of Causal Propagation in Relativistic Ideal Fluids
by Dominique Brun-Battistini, Alfredo Sandoval-Villalbazo and Hernando Efrain Caicedo-Ortiz
Axioms 2025, 14(8), 598; https://doi.org/10.3390/axioms14080598 - 1 Aug 2025
Viewed by 178
Abstract
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and [...] Read more.
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and density fluctuations, clarifying its hyperbolic nature and the associated characteristic propagation speeds. The analysis confirms that thermal fluctuations in a simple non-degenerate relativistic fluid satisfy a causal wave equation in the Euler regime, and it recovers the classical expression for the speed of sound in the non-relativistic limit. This work offers enhanced mathematical and physical insights, reinforcing the validity of the hyperbolic description and suggesting a foundation for future studies in dissipative relativistic hydrodynamics. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

17 pages, 541 KiB  
Article
Non-Extensive Aspects of Gluon Distribution and the Implications for QCD Phenomenology
by Lucas S. Moriggi and Magno V. T. Machado
Physics 2025, 7(1), 5; https://doi.org/10.3390/physics7010005 - 5 Feb 2025
Viewed by 1882
Abstract
This study presents new insights into gluon transverse momentum distributions through non-extensive statistical mechanics, addressing their implications for QCD phenomenology. The saturation physics and scaling laws present in high-energy collision data are investigated as a consequence of gluon distribution modification in a high-density [...] Read more.
This study presents new insights into gluon transverse momentum distributions through non-extensive statistical mechanics, addressing their implications for QCD phenomenology. The saturation physics and scaling laws present in high-energy collision data are investigated as a consequence of gluon distribution modification in a high-density regime. This analysis explores how these modifications influence observables across different collision systems, such as proton–proton, proton–nucleus, and relativistic heavy-ion collisions. Both particle high- and low-transverse-momentum regions are successfully described in hadron production. Full article
(This article belongs to the Special Issue Complexity in High Energy and Statistical Physics)
Show Figures

Figure 1

18 pages, 354 KiB  
Article
Testing the Universality of Quantum Gravity Theories with Cosmic Messengers in the Context of DSR Theories
by Marco Danilo Claudio Torri
Symmetry 2025, 17(2), 203; https://doi.org/10.3390/sym17020203 - 28 Jan 2025
Viewed by 591
Abstract
Recently there have been several studies devoted to the investigation of the fate of fundamental relativistic symmetries at the foreseen unification of gravity and quantum regime, that is the Planck scale. In order to preserve covariance of the formulation even if in an [...] Read more.
Recently there have been several studies devoted to the investigation of the fate of fundamental relativistic symmetries at the foreseen unification of gravity and quantum regime, that is the Planck scale. In order to preserve covariance of the formulation even if in an amended formulation, new mathematical tools are required. In this work, we consider DSR theories that modify covariance by introducing a non-trivial structure in momentum space. Additionally, we explore the possibility of investigating both universal quantum gravity corrections and scenarios where different particle species are corrected differently within the framework of these models. Several astroparticle phenomena are then analyzed to test the phenomenological predictions of DSR models. Full article
(This article belongs to the Special Issue Lorentz Invariance Violation and Space–Time Symmetry Breaking)
Show Figures

Figure 1

8 pages, 285 KiB  
Article
Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission
by Theodora Papavasileiou, Odysseas Kosmas and Theocharis Kosmas
Particles 2024, 7(4), 879-886; https://doi.org/10.3390/particles7040052 - 1 Oct 2024
Viewed by 1211
Abstract
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary [...] Read more.
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary systems range from radio to high-energy gamma rays. The emission mechanisms exhibit thermal origins from the disk, stellar companion, and non-thermal jet-related components (i.e., synchrotron emission, inverse comptonization of less energetic photons, etc.). In many attempts at fitting the emitted spectra, a static black hole is often assumed regarding the accretion disk modeling, ignoring the Kerr metric properties that significantly impact the geometry around the usually rotating black hole. In this work, we study the possible implications of the spin inclusion in predictions of the X-ray binary spectrum. We mainly focus on the most significant aspect inserted by the Kerr geometry, the innermost stable circular orbit radius dictating the disk’s inner boundary. The outcome suggests a higher-peaked and hardened X-ray spectrum from the accretion disk and a substantial increase in the inverse Compton component of disk-originated photons. Jet-photon absorption is also heavily affected at higher energy regimes dominated by hadron-induced emission mechanisms. Nevertheless, a complete investigation requires the full examination of the spin contribution and the resulting relativistic effects beyond the disk truncation. Full article
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle
by Luca Fabbri
Foundations 2024, 4(2), 134-145; https://doi.org/10.3390/foundations4020010 - 28 Mar 2024
Viewed by 1050
Abstract
This article considers the Dirac field in polar formulation and shows that when torsion is taken in effective approximation the theory has the thermodynamic properties of a van der Waals gas. It is then shown that in the limit of zero chiral angle [...] Read more.
This article considers the Dirac field in polar formulation and shows that when torsion is taken in effective approximation the theory has the thermodynamic properties of a van der Waals gas. It is then shown that in the limit of zero chiral angle the van der Waals gas reduces to a Weyssenhoff fluid, and in spinlessness regime the Weyssenhoff fluid further reduces to a Newton particle. This nesting of approximations allows us to interpret the various spinor quantities. We will see that torsion will provide a form of negative pressure, while the chiral angle will be related to a type of temperature. Full article
(This article belongs to the Section Physical Sciences)
13 pages, 336 KiB  
Article
Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory
by Lorenzo Gavassino
Symmetry 2024, 16(1), 78; https://doi.org/10.3390/sym16010078 - 6 Jan 2024
Cited by 5 | Viewed by 1601
Abstract
We show that the GENERIC model for relativistic heat conduction is a multifluid of Carter; this allows one to compute the multifluid constitutive relations directly from the GENERIC formalism. As a quick application, we prove that in the limit of infinite heat conductivity, [...] Read more.
We show that the GENERIC model for relativistic heat conduction is a multifluid of Carter; this allows one to compute the multifluid constitutive relations directly from the GENERIC formalism. As a quick application, we prove that in the limit of infinite heat conductivity, GENERIC heat conduction reduces to the relativistic two-fluid model for superfluidity. This surprising “crossover” is a consequence of relativistic causality: if diffusion happens too fast, all the diffusing charge cumulates on the surface of the light cone, and it eventually travels at the speed of light like a wave. Our analysis is non-perturbative and carried out in a fully non-linear regime. Full article
Show Figures

Figure 1

21 pages, 2808 KiB  
Article
Analytical Scaling Laws for Radiofrequency-Based Pulse Compression in Ultrafast Electron Diffraction Beamlines
by Paul Denham and Pietro Musumeci
Instruments 2023, 7(4), 49; https://doi.org/10.3390/instruments7040049 - 29 Nov 2023
Cited by 3 | Viewed by 2081
Abstract
We present an envelope equation-based approach to obtain analytical scaling laws for the shortest pulse length achievable using radiofrequency (RF)-based bunch compression. The derived formulas elucidate the dependencies on the electron beam energy and beam charge and reveal how relativistic energies are strongly [...] Read more.
We present an envelope equation-based approach to obtain analytical scaling laws for the shortest pulse length achievable using radiofrequency (RF)-based bunch compression. The derived formulas elucidate the dependencies on the electron beam energy and beam charge and reveal how relativistic energies are strongly desirable to obtain bunches containing 1 million electrons with single-digit femtosecond pulse lengths. However, the non-linearities associated with the RF curvature and the beam propagation in drift spaces significantly limit the attainability of extreme compression ratios. Therefore, an additional higher frequency RF cavity is implemented, which linearizes the bunch compression, enabling the generation of ultrashort beams in the sub-femtosecond regime. Full article
Show Figures

Figure 1

38 pages, 429 KiB  
Article
Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions
by Bryan Cordero-Patino, Álvaro Duenas-Vidal and Jorge Segovia
Symmetry 2023, 15(12), 2098; https://doi.org/10.3390/sym15122098 - 22 Nov 2023
Viewed by 1675
Abstract
Dark matter (DM) can be composed of a collection of axions, or axion-like particles (ALPs), whose existence is due to the spontaneous breaking of the Peccei–Quinn U(1) symmetry, which is the most compelling solution of the strong CP-problem [...] Read more.
Dark matter (DM) can be composed of a collection of axions, or axion-like particles (ALPs), whose existence is due to the spontaneous breaking of the Peccei–Quinn U(1) symmetry, which is the most compelling solution of the strong CP-problem of quantum chromodynamics (QCD). Axions must be spin-0 particles with very small masses and extremely weak interactions with themselves as well as with the particles that constitute the Standard Model. In general, the physics of axions is detailed by a quantum field theory of a real scalar field, ϕ. Nevertheless, it is more convenient to implement a nonrelativistic effective field theory with a complex scalar field, ψ, to characterize the mentioned axions in the low-energy regime. A possible application of this equivalent description is for studying the collapse of cold dark matter into more complex structures. There have been a few derivations of effective Lagrangians for the complex field ψ, which were all equivalent after a nonlocal space transformation between ϕ and ψ was found, and some other corrections were introduced. Our contribution herein is to further provide higher-order corrections; in particular, we compute the effective field theory Lagrangian up to order (ψ*ψ)5, also incorporating the fast-oscillating field fluctuations into the dominant slowly varying nonrelativistic field. Full article
(This article belongs to the Section Physics)
14 pages, 1219 KiB  
Article
Quasiperiodic Oscillations and Dynamics of Test Particles around Quasi- and Non-Schwarzschild Black Holes
by Sardor Murodov, Javlon Rayimbaev, Bobomurat Ahmedov and Eldor Karimbaev
Universe 2023, 9(9), 391; https://doi.org/10.3390/universe9090391 - 29 Aug 2023
Cited by 11 | Viewed by 1815
Abstract
One of the open problems in black hole physics is testing spacetime around black holes through astrophysical observations in the strong field regime. In fact, black holes cannot produce radiation themselves in the electromagnetic spectrum. However, a black hole’s gravity plays an important [...] Read more.
One of the open problems in black hole physics is testing spacetime around black holes through astrophysical observations in the strong field regime. In fact, black holes cannot produce radiation themselves in the electromagnetic spectrum. However, a black hole’s gravity plays an important role in the production of the radiation of the accretion disc around it. One may obtain valuable information from the electromagnetic radiation of accretion discs about the gravitational properties of the spacetime around black holes. In this work, we study particle dynamics in the spacetime of quasi- and non-Schwarzschild black holes. We compare the gravitational effects of the spacetime deformation parameters of both black hole solutions on the innermost stable circular orbit (ISCO) radius, position, energy, and angular momentum of test particles at the ISCO, together with the energy efficiency of the accretion disc in the thin Novikov–Thorn model. Furthermore, we study the frequencies of particle oscillations in the radial and angular directions along circular stable orbits around both deformed black holes. Furthermore, we investigate quasiperiodic oscillations around the black holes in the relativistic precession model. We show the dependence of the deviation parameters on the orbits of twin peak QPOs with the frequency ratio 3:2. In the obtained results, we compare the gravitational effects of deviation parameters with the spin of a rotating Kerr black hole. Finally, we obtain constraints on the values of the deviation parameter of the spacetime around the black hole at the center of the microquasars GRO J1655-40 and GRS 1915-105 and their mass, using the χ2 method. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

14 pages, 417 KiB  
Article
Quantum Big Bounce of the Isotropic Universe Using Relational Time
by Eleonora Giovannetti, Fabio Maione and Giovanni Montani
Universe 2023, 9(8), 373; https://doi.org/10.3390/universe9080373 - 16 Aug 2023
Cited by 7 | Viewed by 1508
Abstract
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with [...] Read more.
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with the positive- and negative-frequency modes that emerge in the Wheeler–DeWitt equation. On the other side, when the potential term is present, a non-zero transition amplitude from positive- to negative-frequency states arises, as in standard relativistic scattering theory below the particle creation threshold. In particular, we are able to compute the transition probability for an expanding Universe that emerges from a collapsing regime both in the standard quantization procedure and in the polymer formulation. The probability distribution results similar in the two cases, and its maximum takes place when the mean values of the momentum essentially coincide in the in-going and out-going wave packets, as it would take place in a semiclassical Big Bounce dynamics. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Cosmology)
Show Figures

Figure 1

35 pages, 3145 KiB  
Review
Fermionic Dark Matter: Physics, Astrophysics, and Cosmology
by C. R. Argüelles, E. A. Becerra-Vergara, J. A. Rueda and R. Ruffini
Universe 2023, 9(4), 197; https://doi.org/10.3390/universe9040197 - 20 Apr 2023
Cited by 16 | Viewed by 2843
Abstract
The nature of dark matter (DM) is one of the most relevant questions in modern astrophysics. We present a brief overview of recent results that inquire into the possible fermionic quantum nature of the DM particles, focusing mainly on the interconnection between the [...] Read more.
The nature of dark matter (DM) is one of the most relevant questions in modern astrophysics. We present a brief overview of recent results that inquire into the possible fermionic quantum nature of the DM particles, focusing mainly on the interconnection between the microphysics of the neutral fermions and the macrophysical structure of galactic halos, including their formation both in the linear and non-linear cosmological regimes. We discuss the general relativistic Ruffini–Argüelles–Rueda (RAR) model of fermionic DM in galaxies, its applications to the Milky Way, the possibility that the Galactic center harbors a DM core instead of a supermassive black hole (SMBH), the S-cluster stellar orbits with an in-depth analysis of the S2’s orbit including precession, the application of the RAR model to other galaxy types (dwarf, elliptic, big elliptic, and galaxy clusters), and universal galaxy relations. All the above focus on the model parameters’ constraints most relevant to the fermion mass. We also connect the RAR model fermions with particle physics DM candidates, self-interactions, and galactic observable constraints. The formation and stability of core–halo galactic structures predicted by the RAR model and their relations to warm DM cosmologies are also addressed. Finally, we provide a brief discussion of how gravitational lensing, dynamical friction, and the formation of SMBHs can also probe the DM’s nature. Full article
(This article belongs to the Special Issue Galactic Center with Gravity)
Show Figures

Figure 1

24 pages, 2264 KiB  
Review
On General-Relativistic Lagrangian Perturbation Theory and Its Non-Perturbative Generalization
by Thomas Buchert, Ismael Delgado Gaspar and Jan Jakub Ostrowski
Universe 2022, 8(11), 583; https://doi.org/10.3390/universe8110583 - 4 Nov 2022
Cited by 5 | Viewed by 2447
Abstract
The Newtonian Lagrangian perturbation theory is a widely used framework to study structure formation in cosmology in the nonlinear regime. We review a general-relativistic formulation of such a perturbation approach, emphasizing results on an already developed extensive formalism including among other aspects: the [...] Read more.
The Newtonian Lagrangian perturbation theory is a widely used framework to study structure formation in cosmology in the nonlinear regime. We review a general-relativistic formulation of such a perturbation approach, emphasizing results on an already developed extensive formalism including among other aspects: the non-perturbative modeling of Ricci and Weyl curvatures, gravitational waves, and pressure-supported fluids. We discuss subcases of exact solutions related to Szekeres Class II and, as an exact average model, Ricci-flat LTB models. The latter forms the basis of a generalization that we then propose in terms of a scheme that goes beyond the relativistic Lagrangian perturbation theory on a global homogeneous-isotropic background cosmology. This new approximation does not involve a homogeneous reference background and it contains Szekeres class I (and thus general LTB models) as exact subcases. Most importantly, this new approximation allows for the interaction of structure with an evolving “background cosmology”, conceived as a spatial average model, and thus includes cosmological backreaction. Full article
Show Figures

Figure 1

96 pages, 971 KiB  
Article
K-Essence Lagrangians of Polytropic and Logotropic Unified Dark Matter and Dark Energy Models
by Pierre-Henri Chavanis
Astronomy 2022, 1(3), 126-221; https://doi.org/10.3390/astronomy1030011 - 28 Sep 2022
Cited by 10 | Viewed by 3221
Abstract
We determine the k-essence Lagrangian of a relativistic barotropic fluid. The equation of state of the fluid can be specified in different manners depending on whether the pressure is expressed in terms of the energy density (model I), the rest-mass density (model II), [...] Read more.
We determine the k-essence Lagrangian of a relativistic barotropic fluid. The equation of state of the fluid can be specified in different manners depending on whether the pressure is expressed in terms of the energy density (model I), the rest-mass density (model II), or the pseudo rest-mass density for a complex scalar field in the Thomas-Fermi approximation (model III). In the nonrelativistic limit, these three formulations coincide. In the relativistic regime, they lead to different models that we study exhaustively. We provide general results valid for an arbitrary equation of state and show how the different models are connected to each other. For illustration, we specifically consider polytropic and logotropic dark fluids that have been proposed as unified dark matter and dark energy models. We recover the Born-Infeld action of the Chaplygin gas in models I and III and obtain the explicit expression of the reduced action of the logotropic dark fluid in models II and III. We also derive the two-fluid representation of the Chaplygin and logotropic models. Our general formalism can be applied to many other situations such as Bose-Einstein condensates with a |φ|4 (or more general) self-interaction, dark matter superfluids, and mixed models. Full article
29 pages, 13574 KiB  
Article
Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum
by Ignacio Pastor, Ramón F. Álvarez-Estrada, Luis Roso and Francisco Castejón
Photonics 2022, 9(10), 693; https://doi.org/10.3390/photonics9100693 - 26 Sep 2022
Cited by 4 | Viewed by 1857
Abstract
Classical electromagnetic radiation with orbital angular momentum (OAM), described by nonvanishing vector and scalar potentials (namely, Lorentz gauge) and under Lorentz condition, is considered. They are employed to describe paraxial laser beams, thereby including non-vanishing longitudinal components of electric and magnetic fields. The [...] Read more.
Classical electromagnetic radiation with orbital angular momentum (OAM), described by nonvanishing vector and scalar potentials (namely, Lorentz gauge) and under Lorentz condition, is considered. They are employed to describe paraxial laser beams, thereby including non-vanishing longitudinal components of electric and magnetic fields. The relevance of the latter on electron dynamics is investigated in the reported numerical experiments. The lowest corrections to the paraxial approximation appear to have a negligeable influence in the regimes treated here. Incoherent Thomson scattering (TS) from a sample of free electrons moving subject to the paraxial fields is studied and investigated as a beam diagnosis tool. Numerical computations elucidate the nature and conditions for the so called trapped solutions (electron motions bounded in the transverse plane of the laser and drifting along the propagation direction) in long quasi-steady laser beams. The influence of laser parameters, in particular, the laser beam size and the non-vanishing longitudinal field components, essential for the paraxial approximation to hold, are studied. When the initial conditions of the electrons are sufficiently close to the origin, a simplified model Hamiltonian to the full relativistic one is introduced. It yields results comparing quite well quantitatively with the observed amplitudes, phase relationships and frequencies of oscillation of trapped solutions (at least for wide laser beam sizes). Genuine pulsed paraxial fields with OAM and their features, modeling true ultra-short pulses are also studied for two cases, one of wide laser beam spot (100 μm) and other with narrow beam size of 6.4 μm. To this regard, the asymptotic distribution of the kinetic energy of the electrons as a function of their initial position over the transverse section is analyzed. The relative importance of the transverse structure effects and the role of longitudinal fields is addressed. By including the full paraxial fields, the asymptotic distribution of kinetic energy of an electron population distributed across the laser beam section, has a nontrivial and unexpected rotational symmetry along the optical propagation axis. Full article
Show Figures

Figure 1

10 pages, 2104 KiB  
Article
Laser Beat-Wave Acceleration near Critical Density
by Ernesto Barraza-Valdez, Toshiki Tajima, Donna Strickland and Dante E. Roa
Photonics 2022, 9(7), 476; https://doi.org/10.3390/photonics9070476 - 8 Jul 2022
Cited by 8 | Viewed by 4497
Abstract
We consider high-density laser wakefield acceleration (LWFA) in the nonrelativistic regime of the laser. In place of an ultrashort laser pulse, we can excite wakefields via the Laser Beat Wave (BW) that accesses this near-critical density regime. Here, we use 1D Particle-in-Cell (PIC) [...] Read more.
We consider high-density laser wakefield acceleration (LWFA) in the nonrelativistic regime of the laser. In place of an ultrashort laser pulse, we can excite wakefields via the Laser Beat Wave (BW) that accesses this near-critical density regime. Here, we use 1D Particle-in-Cell (PIC) simulations to study BW acceleration using two co-propagating lasers in a near-critical density material. We show that BW acceleration near the critical density allows for acceleration of electrons to greater than keV energies at far smaller intensities, such as 1014 W/cm2, through the low phase velocity dynamics of wakefields that are excited in this scheme. Near-critical density laser BW acceleration has many potential applications including high-dose radiation therapy. Full article
(This article belongs to the Special Issue Progress in Laser Accelerator and Future Prospects)
Show Figures

Figure 1

Back to TopTop