Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions
Abstract
:1. Introduction
2. Axion Relativistic Field Theory
3. Nonrelativistic Effective Field Theory
3.1. Nonrelativistic EFT Lagrangian Density
3.2. Importance of Rapid Field Fluctuations
3.3. Defining the Iterative Process
4. Higher-Order Corrections
4.1. Zeroth-Order Iteration
4.2. First-Order Iteration
4.3. Second-Order Iteration
4.4. Third-Order Iteration
4.5. Expansion of the Operator
4.6. Treatment of the Extra Temporal Terms
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Mode Functions in Equations (33)
Appendix B. First-Order Iteration Expressions
Appendix C. Second-Order Iteration Expressions
Appendix D. Third-Order Iteration Expressions
References
- Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; Amsler, C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. (PTEP) 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Kim, J.E.; Carosi, G. Axions and the Strong CP Problem. Rev. Mod. Phys. 2010, 82, 557–602. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Davis, R.L. Cosmic Axions from Cosmic Strings. Phys. Lett. B 1986, 180, 225–230. [Google Scholar] [CrossRef]
- Harari, D.; Sikivie, P. On the Evolution of Global Strings in the Early Universe. Phys. Lett. B 1987, 195, 361–365. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Abbott, L.F.; Sikivie, P. A Cosmological Bound on the Invisible Axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein Condensation of Dark Matter Axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef]
- Erken, O.; Sikivie, P.; Tam, H.; Yang, Q. Cosmic axion thermalization. Phys. Rev. D 2012, 85, 063520. [Google Scholar] [CrossRef]
- Saikawa, K.; Yamaguchi, M. Evolution and thermalization of dark matter axions in the condensed regime. Phys. Rev. D 2013, 87, 085010. [Google Scholar] [CrossRef]
- Davidson, S.; Elmer, M. Bose Einstein condensation of the classical axion field in cosmology? J. Cosmol. Astropart. Phys. 2013, 12, 034. [Google Scholar] [CrossRef]
- Noumi, T.; Saikawa, K.; Sato, R.; Yamaguchi, M. Effective gravitational interactions of dark matter axions. Phys. Rev. D 2014, 89, 065012. [Google Scholar] [CrossRef]
- Davidson, S. Axions: Bose Einstein Condensate or Classical Field? Astropart. Phys. 2015, 65, 101–107. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Nonrelativistic Effective Field Theory for Axions. Phys. Rev. D 2016, 94, 076004. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Emission of Photons and Relativistic Axions from Axion Stars. Phys. Rev. D 2017, 96, 031901. [Google Scholar] [CrossRef]
- Mukaida, K.; Takimoto, M.; Yamada, M. On Longevity of I-ball/Oscillon. J. High Energy Phys. 2017, 03, 122. [Google Scholar] [CrossRef]
- Namjoo, M.H.; Guth, A.H.; Kaiser, D.I. Relativistic Corrections to Nonrelativistic Effective Field Theories. Phys. Rev. D 2018, 98, 016011. [Google Scholar] [CrossRef]
- Eby, J.; Suranyi, P.; Wijewardhana, L.C.R. Expansion in Higher Harmonics of Boson Stars using a Generalized Ruffini-Bonazzola Approach, Part 1: Bound States. J. Cosmol. Astropart. Phys. 2018, 04, 038. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Radu, E. On the classicality of bosonic stars. Int. J. Mod. Phys. D 2022, 31, 2242022. [Google Scholar] [CrossRef]
- Sanchis-Gual, N.; Di Giovanni, F.; Herdeiro, C.; Radu, E.; Font, J.A. Multifield, Multifrequency Bosonic Stars and a Stabilization Mechanism. Phys. Rev. Lett. 2021, 126, 241105. [Google Scholar] [CrossRef]
- Di Giovanni, F.; Sanchis-Gual, N.; Cerdá-Durán, P.; Zilhão, M.; Herdeiro, C.; Font, J.A.; Radu, E. Dynamical bar-mode instability in spinning bosonic stars. Phys. Rev. D 2020, 102, 124009. [Google Scholar] [CrossRef]
- Sanchis-Gual, N.; Di Giovanni, F.; Zilhão, M.; Herdeiro, C.; Cerdá-Durán, P.; Font, J.A.; Radu, E. Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys. Rev. Lett. 2019, 123, 221101. [Google Scholar] [CrossRef]
- Braaten, E.; Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 2019, 91, 041002. [Google Scholar] [CrossRef]
- Micahel, E.; Peskin, D.V.S. An Introduction to Quatum Field Theory; Addison-Wesley: Boston, MA, USA, 1995. [Google Scholar]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Grilli di Cortona, G.; Hardy, E.; Pardo Vega, J.; Villadoro, G. The QCD axion, precisely. J. High Energy Phys. 2016, 01, 034. [Google Scholar] [CrossRef]
- Di Vecchia, P.; Veneziano, G. Chiral Dynamics in the Large n Limit. Nucl. Phys. B 1980, 171, 253–272. [Google Scholar] [CrossRef]
- Di Luzio, L.; Giannotti, M.; Nardi, E.; Visinelli, L. The landscape of QCD axion models. Phys. Rept. 2020, 870, 1–117. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Classical Nonrelativistic Effective Field Theories for a Real Scalar Field. Phys. Rev. D 2018, 98, 096012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero-Patino, B.; Duenas-Vidal, Á.; Segovia, J. Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions. Symmetry 2023, 15, 2098. https://doi.org/10.3390/sym15122098
Cordero-Patino B, Duenas-Vidal Á, Segovia J. Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions. Symmetry. 2023; 15(12):2098. https://doi.org/10.3390/sym15122098
Chicago/Turabian StyleCordero-Patino, Bryan, Álvaro Duenas-Vidal, and Jorge Segovia. 2023. "Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions" Symmetry 15, no. 12: 2098. https://doi.org/10.3390/sym15122098
APA StyleCordero-Patino, B., Duenas-Vidal, Á., & Segovia, J. (2023). Higher-Order Corrections to the Effective Field Theory of Low-Energy Axions. Symmetry, 15(12), 2098. https://doi.org/10.3390/sym15122098