Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum
Abstract
:1. Introduction
2. General Aspects
2.1. Maxwell Equations in Lorentz Gauge
2.2. Exact Modulated Plane-Wave Equations
2.3. General Paraxial Approximation
2.4. OAM Waves as Particular Cases of Paraxial Approximation
3. Trapped Trajectories in Quasi-steady Laser Beams with OAM
3.1. Case-Study 1: Wide Laser Beam Spot, = 100.0 m
3.2. Case-Study 2: Narrow Laser Beam Spot, = 6.4 m
4. Electron Dynamics in Ultrashort-Pulse, Paraxial Laser Beams with OAM
4.1. Case-Study 1: Pulsed Laser with Wide Beam Spot, = 100.0 m
4.2. Case-Study 2: Pulsed Laser with Narrow Beam Spot, = 6.4 m
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Analytical Solution of Electron Dynamics for a Transverse Pulsed Plane Wave
Appendix B. Corrections to the Paraxial Approximation
References
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Singapore, 2007. [Google Scholar]
- Froula, D.H.; Glenzer, S.H.; Luhmann, N.C., Jr.; Sheffield, J. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques; Academic Press, Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Hutchison, I. Principles of Plasma Diagnostics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Allen, L.; Barnett, S.M.; Padgett, M.J. Optical Angular Momentum; IOP Publishing: London, UK, 2003. [Google Scholar]
- Torres, J.P.; Torner, L. (Eds.) Twisted Photons: Applications of Light with Orbital Angular Momentum; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Simon, D.S. A Guided Tour to Light Beams: From Lasers to Optical Knots. IoPConcise Physics: Bristol, UK, 2016. [Google Scholar]
- Calvo, G.F.; Picon, A.; Bagan, E. Quantum field theory of photons with orbital angular momentum. Phys. Rev. A. 2006, 73, 013805. [Google Scholar] [CrossRef]
- Karimi, E.; Schulz, S.A.; De Leon, I.; Qassim, H.; Upham, J.; Boyd, R.W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Nat. Commun. Light Sci. Appl. 2014, 3, e167. [Google Scholar] [CrossRef]
- Noyan, M.A.; Kikkawa, J.M. Time-resolved orbital angular momentum spectroscopy. Appl. Phys. Lett. 2015, 107, 032406. [Google Scholar] [CrossRef]
- Persuy, D.; Ziegler, M.; Crégut, O.; Kheng, K.; Gallart, M.; Hönerlage, B.; Gilliot, P. Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes. Phys. Rev. 2015, B92, 115312. [Google Scholar] [CrossRef]
- Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 2018, 7, 12998. [Google Scholar] [CrossRef] [PubMed]
- Seghilani, M.S.; Myara, M.; Sellahi, M.; Legratiet, L.; Sagnes, I.; Beaudoin, G.; Lalanne, P.; Garnache, A. Vortex Laser based on III-V semiconductor metasurface: Direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum. Sci. Rep. 2016, 6, 38156. [Google Scholar] [CrossRef]
- Shigematsu, K.; Yamane, K.; Morita, R.; Toda, Y. Coherent dynamics of exciton orbital angular momentum transferred by optical vortex pulses. Phys. Rev. 2016, B93, 045205. [Google Scholar] [CrossRef]
- Picon, A.; Benseny, A.; Mompart, J.; Vazquez de Aldana, J.R.; Plaja, L.; Calvo, G.F.; Roso, L. Transferring orbital and spin angular momenta of light to atoms. New J. Phys. 2010, 12, 083053. [Google Scholar] [CrossRef]
- Longman, A.; Salgado, C.; Zeraouli, G.H.; Apiñaniz, J.I.; Perez-Hernandez, J.A.; Eltahlawy, M.K.; Volpe, L.; Fedosejevs, R. Off-axis spiral phase mirrors for generating high-intensity optical vortices. Opt. Lett. 2020, 45, 2187. [Google Scholar] [CrossRef] [PubMed]
- Erikson, W.L.; Singh, S. Polarization properties of Maxwell-Gaussian laser beams. Phys. Rev. E 1994, 49, 5778–5786. [Google Scholar] [CrossRef]
- Peatross, J.; Berrondo, M.; Smith, D.; Ware, M. Vector fields in a tight laser focus: Comparison of models. Opt. Express 2017, 25, 13990–14007. [Google Scholar] [CrossRef] [PubMed]
- Ghebregziabher, I.; Shadwick, B.A.; Umstadter, D. Spectral bandwidth reduction of Thomson scattered light by pulse chirping. Phys. Rev. Accel. Beams 2013, 16, 030705. [Google Scholar] [CrossRef]
- Pastor, I.; Alvarez-Estrada, R.F.; Roso, L.; Castejon, F.; Guasp, J. Nonlinear relativistic electron Thomson scattering for laserradiation with orbital angular momentum. J. Phys. Commun. 2020, 4, 065010. [Google Scholar] [CrossRef]
- Pastor, I.; Alvarez-Estrada, R.F.; Roso, L.; Guasp, J.; Castejon, F. Electron Dynamics and Thomson Scattering for Ultra-Intense Lasers: Elliptically Polarized and OAM Beams. Photonics 2021, 8, 182. [Google Scholar] [CrossRef]
- Panofsky, W.K.; Phillips, M. Classical Electricity and Magnetism. Addison-Wesley: Boston, MA, USA, 1962. [Google Scholar]
- Roso, L.; Pérez-Hernández, J.A.; Lera, R.; Fedosejevs, R. The Role of the Ponderomotive Force in High Field Experiments. In Progress in Ultrafast intense Laser Science XVI; Yamanouchi, K., Midorikawa, K., Roso, L., Eds.; Springer: Cham, Switzerland, 2021; p. 149. [Google Scholar]
- Moore, C.I. Confinement of electrons to the centre of a laser focus via the ponderomotive potential. J. Mod. Opt. 1992, 39, 2171. [Google Scholar] [CrossRef]
- Shao, B.; Li, Y.; Peng, Y.; Wang, P.; Qian, J.; Leng, Y.; Li, R. Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100 PW lasers. Opt. Lett. 2020, 45, 2215. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifchitz, E.M. The Classical Theory of Fields, 4th ed.; Pergamon Press: New York, NY, USA, 1975. [Google Scholar]
- Sarachik, E.S.; Schappert, G.T. Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1970, 1, 2738. [Google Scholar] [CrossRef]
- Essarey, E.; Ride, S.K.; Sprangle, P. Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E 1993, 48, 3003. [Google Scholar] [CrossRef]
- Ride, S.K.; Essarey, E.; Baine, M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E 1995, 52, 5425. [Google Scholar] [CrossRef] [PubMed]
- Avetissian, H. Relativistic Nonlinear Electrodynamics; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2006. [Google Scholar]
- Alvarez-Estrada, R.F.; Pastor, I.; Guasp, J.; Castejon, F. Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity. Phys. Plasmas 2012, 19, 062302. [Google Scholar] [CrossRef] [Green Version]
[m] | [m] | [m] |
---|---|---|
−1.5212 | 0.6148 | 0.0 |
−0.2693 | 0.2734 | 0.0 |
−0.3553 | −2.2284 | 0.0 |
0.0596 | −3.7369 | 0.0 |
[m] | [m] | [m] |
---|---|---|
−0.2185 | 0.2189 | 0.0 |
0.1244 | −0.069 | 0.0 |
0.2846 | −0.1308 | 0.0 |
0.1123 | −0.072 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor, I.; Álvarez-Estrada, R.F.; Roso, L.; Castejón, F. Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum. Photonics 2022, 9, 693. https://doi.org/10.3390/photonics9100693
Pastor I, Álvarez-Estrada RF, Roso L, Castejón F. Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum. Photonics. 2022; 9(10):693. https://doi.org/10.3390/photonics9100693
Chicago/Turabian StylePastor, Ignacio, Ramón F. Álvarez-Estrada, Luis Roso, and Francisco Castejón. 2022. "Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum" Photonics 9, no. 10: 693. https://doi.org/10.3390/photonics9100693
APA StylePastor, I., Álvarez-Estrada, R. F., Roso, L., & Castejón, F. (2022). Fundamental Studies on Electron Dynamics in Exact Paraxial Beams with Angular Momentum. Photonics, 9(10), 693. https://doi.org/10.3390/photonics9100693