Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,221)

Search Parameters:
Keywords = non-linear phenomena

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 863 KB  
Article
Energy Dissipation Analysis of Contact/Impact of Deformable Bodies Using Numerical Modelling
by Ondřej Holiš, Tomáš Dvořák, Matej Koiš, Ivan Němec, Miroslav Trcala and Jiří Vala
Buildings 2026, 16(3), 592; https://doi.org/10.3390/buildings16030592 - 31 Jan 2026
Viewed by 98
Abstract
The numerical analysis of dissipative energy in dynamic problems involving impact and contact phenomena relies on the physical principles of classical thermodynamics and on the constitutive equations of the material, supplemented by some additional considerations of potential contact interfaces. From the mathematical perspective, [...] Read more.
The numerical analysis of dissipative energy in dynamic problems involving impact and contact phenomena relies on the physical principles of classical thermodynamics and on the constitutive equations of the material, supplemented by some additional considerations of potential contact interfaces. From the mathematical perspective, we come to a weak form of partial differential equation(s) of evolution with initial, boundary, and interface conditions, whose numerical analysis is required using the method of discretisation in time and typically the finite element technique. Dissipative energy is an important metric for quantifying the portion of mechanical work that is permanently converted to plastic work and thermal energy, among other applications. Crucially, the localised accumulation of this energy, often expressed as the plastic work density, is the primary physical parameter driving microstructural changes, damage initiation, and crack propagation under intense loading. This paper demonstrates how the dissipative energy resulting from material nonlinearities can be evaluated in dynamic problems involving the impact of one body on another and provides a quantitative comparison of numerically calculated dissipated energy using three types of nonlinear constitutive material models, namely the plastic material model with Rankine–Hill criterion, the Mazars damage model, and the Kelvin–Voigt viscoelastic model. Full article
10 pages, 652 KB  
Article
Magnetotransport and Magneto-Thermoelectric Properties of the Nodel-Line Semimetal SnTaS2
by Long Ma, Hao Tian, Xiaojian Wu and Dong Chen
Materials 2026, 19(3), 556; https://doi.org/10.3390/ma19030556 - 30 Jan 2026
Viewed by 159
Abstract
Topological semimetals with nontrivial band structures host a variety of unconventional transport phenomena and have attracted significant attention in condensed matter physics. SnTaS2, a recently proposed topological nodal-line superconductor with a centrosymmetric layered structure, provides an ideal platform to explore the [...] Read more.
Topological semimetals with nontrivial band structures host a variety of unconventional transport phenomena and have attracted significant attention in condensed matter physics. SnTaS2, a recently proposed topological nodal-line superconductor with a centrosymmetric layered structure, provides an ideal platform to explore the interplay between topology and electronic transport. Here, we report a comprehensive study of the normal-state magnetotransport and magneto-thermoelectric properties of SnTaS2 single crystals. We observed large magnetoresistance and nonlinear Hall resistivity at low temperatures, which can be well described by a two-band model, indicating the coexistence of electron and hole carriers. The Seebeck and Nernst coefficients were found to exhibit pronounced and nonmonotonic magnetic field dependences at low temperatures, consistent with multiband transport behavior. Moreover, clear quantum oscillations with a single frequency are detected in both electrical and thermoelectric measurements. Analysis of the oscillations reveals a small effective mass and a nontrivial Berry phase, suggesting that the corresponding Fermi surface arises from a topologically nontrivial band. These findings shed light on the normal-state electronic structure of SnTaS2 and highlight the important role of topological bands in shaping its transport properties. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

49 pages, 5290 KB  
Review
Bridging Molecular and Bulk Nonlinearities: Kerr Effect Phenomena in Transparent Ceramic Systems
by Andrzej Kruk and Mateusz Schabikowski
Int. J. Mol. Sci. 2026, 27(3), 1352; https://doi.org/10.3390/ijms27031352 - 29 Jan 2026
Viewed by 83
Abstract
Transparent ceramics offer a uniquely accessible platform for examining Kerr-type optical phenomena through the lens of molecular structure and local electronic interactions. This review highlights both the magneto-optical (MOKE) and electro-optic (EOKE) forms of the Kerr effect and relates them to the accompanying [...] Read more.
Transparent ceramics offer a uniquely accessible platform for examining Kerr-type optical phenomena through the lens of molecular structure and local electronic interactions. This review highlights both the magneto-optical (MOKE) and electro-optic (EOKE) forms of the Kerr effect and relates them to the accompanying Faraday and Cotton–Mouton responses. We briefly outline material classes exhibiting Kerr activity—from classic spinels and garnets to perovskites and modern composite ceramics. Particular attention is given to the molecular and atomic mechanisms underlying Kerr behavior—crystal symmetry, site-specific ionic coordination, covalency, electronic-level splitting, carrier localization, vacancy chemistry, and the influence of dopants on polarizability and nonlinear susceptibility. We also summarize advances in experimental setups that have improved measurement precision and spectral range. Selected examples demonstrate how molecular-scale control over electronic structure enables diverse and tunable Kerr responses in different ceramics. We conclude by identifying key remaining challenges in materials design and measurement techniques, and by pointing to future directions driven by improved synthesis and molecular-level engineering. Full article
(This article belongs to the Special Issue Molecular Structure and Characterization of Optical Materials)
26 pages, 21416 KB  
Article
A Hybrid Variational Mode Decomposition, Transformer-For Time Series, and Long Short-Term Memory Framework for Long-Term Battery Capacity Degradation Prediction of Electric Vehicles Using Real-World Charging Data
by Chao Chen, Guangzhou Lei, Hao Li, Zhuo Chen and Jing Zhou
Energies 2026, 19(3), 694; https://doi.org/10.3390/en19030694 - 28 Jan 2026
Viewed by 118
Abstract
Considering the nonlinear trends, multi-scale variations, and capacity regeneration phenomena exhibited by battery capacity degradation under real-world conditions, accurately predicting its trajectory remains a critical challenge for ensuring the reliability and safety of electric vehicles. To address this, this study proposes a hybrid [...] Read more.
Considering the nonlinear trends, multi-scale variations, and capacity regeneration phenomena exhibited by battery capacity degradation under real-world conditions, accurately predicting its trajectory remains a critical challenge for ensuring the reliability and safety of electric vehicles. To address this, this study proposes a hybrid prediction framework based on Variational Mode Decomposition and a Transformer–Long Short-Term Memory architecture. Specifically, the proposed Variational Mode Decomposition–Transformer for Time Series–Long Short-Term Memory (VMD–TTS–LSTM) framework first decomposes the capacity sequence using Variational Mode Decomposition. The resulting modal components are then aggregated into high-frequency and low-frequency parts based on their frequency centroids, followed by targeted feature analysis for each part. Subsequently, a simplified Transformer encoder (Transformer for Time Series, TTS) is employed to model high-frequency fluctuations, while a Long Short-Term Memory (LSTM) network captures the long-term degradation trends. Evaluated on charging data from 20 commercial electric vehicles under a long-horizon setting of 20 input steps predicting 100 steps ahead, the proposed method achieves a mean absolute error of 0.9247 and a root mean square error of 1.0151, demonstrating improved accuracy and robustness. The results confirm that the proposed frequency-partitioned, heterogeneous modeling strategy provides a practical and effective solution for battery health prediction and energy management in real-world electric vehicle operation. Full article
(This article belongs to the Topic Electric Vehicles Energy Management, 2nd Volume)
Show Figures

Figure 1

20 pages, 2364 KB  
Article
Nonlinear Fractal Interpolation Functions Under Integral-Type Contractive Conditions
by Hajer Jebali and Najmeddine Attia
Fractal Fract. 2026, 10(2), 94; https://doi.org/10.3390/fractalfract10020094 - 28 Jan 2026
Viewed by 130
Abstract
Given a finite set of interpolation data {(xi,yi)I×R,i=0,1,,N}, I=[x0,xN], we construct [...] Read more.
Given a finite set of interpolation data {(xi,yi)I×R,i=0,1,,N}, I=[x0,xN], we construct a class of nonlinear fractal interpolation functions whose graphs are realized as attractors of appropriately defined iterated function systems. In contrast to the classical framework based on uniform contraction mappings, the present approach is built upon an integral-type contraction condition, which extends the standard Banach setting to a more general and flexible context. By applying Branciari’s fixed point theorem, we prove the existence and uniqueness of continuous fractal interpolants associated with these systems. This generalized formulation contains the classical Barnsley fractal interpolation functions as a particular case, while allowing greater adaptability in the modeling of complex and irregular phenomena. As an application, the proposed methodology is implemented on real time-series data describing vaccination dynamics in four different countries, illustrating the effectiveness of the constructed fractal interpolation functions in approximating highly irregular real-world signals. Full article
(This article belongs to the Section Geometry)
20 pages, 3662 KB  
Article
A Hybrid Parallel Informer-LSTM Framework Based on Two-Stage Decomposition for Lithium Battery Remaining Useful Life Prediction
by Gangqiang Zhu, Chao He, Yanlin Chen and Jiaqiang Li
Energies 2026, 19(3), 612; https://doi.org/10.3390/en19030612 - 24 Jan 2026
Viewed by 203
Abstract
Accurate prediction of lithium battery remaining useful life (RUL) is crucial for battery management systems to monitor battery health status. However, RUL prediction remains challenging due to capacity non-stationarity caused by capacity regeneration phenomena. Therefore, this study proposes a novel RUL prediction framework [...] Read more.
Accurate prediction of lithium battery remaining useful life (RUL) is crucial for battery management systems to monitor battery health status. However, RUL prediction remains challenging due to capacity non-stationarity caused by capacity regeneration phenomena. Therefore, this study proposes a novel RUL prediction framework that combines a two-stage decomposition strategy with a parallel Informer-LSTM architecture. First, STL decomposition is employed to decompose the capacity sequence into trend, seasonal, and residual components. The VMD method further refines the residual component from STL, extracting the underlying multiscale subsignals. Subsequently, a parallel dual-channel prediction network is constructed: the Informer branch captures global long-range dependencies to prevent trend drift, while the LSTM branch models local nonlinear dynamics to reconstruct fluctuations associated with capacity regeneration. Experiments on the NASA dataset demonstrate that this framework achieves an MAE below 0.0109, an RMSE below 0.0160, and an R2 above 0.9950. Additional validation on the Oxford battery dataset confirms the model’s robust generalization capability under dynamic conditions, with an MAE of 0.0017. This further demonstrates that the proposed RUL prediction framework achieves significantly enhanced prediction accuracy and stability, offering a reliable solution for battery health status detection in battery management systems. Full article
Show Figures

Figure 1

18 pages, 1794 KB  
Article
Qualitative Analysis for Modifying an Unstable Time-Fractional Nonlinear Schrödinger Equation: Bifurcation, Quasi-Periodic, Chaotic Behavior, and Exact Solutions
by M. M. El-Dessoky, A. A. Elmandouh and A. A. Alghamdi
Mathematics 2026, 14(2), 354; https://doi.org/10.3390/math14020354 - 20 Jan 2026
Viewed by 1594
Abstract
This work explores the qualitative dynamics of the modified unstable time-fractional nonlinear Schrödinger equation (mUNLSE), a model applicable to nonlinear wave propagation in plasma and optical fiber media. By transforming the governing equation into a planar conservative Hamiltonian system, a detailed bifurcation study [...] Read more.
This work explores the qualitative dynamics of the modified unstable time-fractional nonlinear Schrödinger equation (mUNLSE), a model applicable to nonlinear wave propagation in plasma and optical fiber media. By transforming the governing equation into a planar conservative Hamiltonian system, a detailed bifurcation study is carried out, and the associated equilibrium points are classified using Lagrange’s theorem and phase-plane analysis. A family of exact wave solutions is then constructed in terms of both trigonometric and Jacobi elliptic functions, with solitary, kink/anti-kink, periodic, and super-periodic profiles emerging under suitable parameter regimes and linked directly to the type of the phase plane orbits. The validity of the solutions is discussed through the degeneracy property which is equivalent to the transmission between the phase orbits. The influence of the fractional derivative order on amplitude, localization, and dispersion is illustrated through graphical simulations, exploring the memory impacts in the wave evolution. In addition, an externally periodic force is allowed to act on the mUNLSE model, which is reduced to a perturbed non-autonomous dynamical system. The response to periodic driving is examined, showing transitions from periodic motion to quasi-periodic and chaotic regimes, which are further confirmed by Lyapunov exponent calculations. These findings deepen the theoretical understanding of fractional Schrödinger-type models and offer new insight into complex nonlinear wave phenomena in plasma physics and optical fiber systems. Full article
Show Figures

Figure 1

19 pages, 1533 KB  
Article
CompNO: A Novel Foundation Model Approach for Solving Partial Differential Equations
by Hamda Hmida, Hsiu-Wen Chang Joly and Youssef Mesri
Appl. Sci. 2026, 16(2), 972; https://doi.org/10.3390/app16020972 - 17 Jan 2026
Viewed by 229
Abstract
Partial differential equations (PDEs) govern a wide range of physical phenomena, but their numerical solution remains computationally demanding, especially when repeated simulations are required across many parameter settings. Recent Scientific Foundation Models (SFMs) aim to alleviate this cost by learning universal surrogates from [...] Read more.
Partial differential equations (PDEs) govern a wide range of physical phenomena, but their numerical solution remains computationally demanding, especially when repeated simulations are required across many parameter settings. Recent Scientific Foundation Models (SFMs) aim to alleviate this cost by learning universal surrogates from large collections of simulated systems, yet they typically rely on monolithic architectures with limited interpretability and high pretraining expense. In this work, we introduce Compositional Neural Operators (CompNO), a compositional neural operator framework for parametric PDEs. Instead of pretraining a single large model on heterogeneous data, CompNO first learns a library of Foundation Blocks, where each block is a parametric Fourier neural operator specialized to a fundamental differential operator (e.g., convection, diffusion, nonlinear convection). These blocks are then assembled, via lightweight Adaptation Blocks, into task-specific solvers that approximate the temporal evolution operator for target PDEs. A dedicated boundary-condition operator further enforces Dirichlet constraints exactly at inference time. We validate CompNO on one-dimensional convection, diffusion, convection–diffusion and Burgers’ equations from the PDEBench suite. The proposed framework achieves lower relative L2 error than strong baselines (PFNO, PDEFormer and in-context learning-based models) on linear parametric systems, while remaining competitive on nonlinear Burgers’ flows. The model maintains exact boundary satisfaction with zero loss at domain boundaries, and exhibits robust generalization across a broad range of Péclet and Reynolds numbers. These results demonstrate that Compositional Neural Operators provide a scalable and physically interpretable pathway towards foundation models for PDEs. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

10 pages, 1833 KB  
Article
Observation of Complete Orbital Two-Channel Kondo Effect in van der Waals Ferromagnet Fe3GaTe2
by Chunhao Bao, Zhiyue Li, Xiaolong Yin, Jifeng Shao, Longxiang Li, Xiaoming Ma, Shu Guo and Tingyong Chen
Nanomaterials 2026, 16(2), 123; https://doi.org/10.3390/nano16020123 - 16 Jan 2026
Cited by 1 | Viewed by 217
Abstract
The orbital two-channel Kondo (2CK) effect is one of the crucial systems with non-Fermi liquid (NFL) behavior. But the full three-regime transport evidence has never been observed in one sample. Here, all three resistive regimes for the orbital 2CK effect induced by two-level [...] Read more.
The orbital two-channel Kondo (2CK) effect is one of the crucial systems with non-Fermi liquid (NFL) behavior. But the full three-regime transport evidence has never been observed in one sample. Here, all three resistive regimes for the orbital 2CK effect induced by two-level systems (TLSs) have been observed in the van der Waals ferromagnet Fe3GaTe2. Electron behavior undergoes a continuous transition from electron scattering to NFL behavior, and subsequently to Fermi liquid behavior. The magnetic field does not affect any regimes, indicating the nonmagnetic origin of the TLSs in Fe3GaTe2. In addition, instead of topological Hall, the slope of a linear negative magnetoresistance is related to spin-magnon scattering and could be utilized to infer the emergence of spin textures. Our findings indicate that Fe3GaTe2 may be an ideal platform to study electron correlation and topological phenomena. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

18 pages, 3548 KB  
Article
A Novel Sliding-Mode Control Strategy Based on Exponential Reaching Law for Three-Phase AC/DC Converter
by Sheng Zhou, Xianyang Cui and Tao Jin
Electronics 2026, 15(2), 406; https://doi.org/10.3390/electronics15020406 - 16 Jan 2026
Viewed by 142
Abstract
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address [...] Read more.
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address these issues, Sliding-Mode Control (SMC) is widely adopted for its robustness against parameter uncertainties and rapid dynamic performance. However, the chattering phenomenon inherent in traditional SMC near the sliding surface remains a critical challenge. To improve the dynamic performance of sliding-mode control, this work introduces a redesigned exponential reaching law into the control framework. The proposed strategy is implemented in a voltage–current cascaded (double closed-loop) structure, where the improved reaching law is embedded in the outer DC-link voltage loop and the inner loop regulates the grid currents in the synchronous dq frame. By modifying the reaching dynamics, the proposed approach effectively weakens chattering phenomena while enabling faster convergence of the system states. Comprehensive validation was conducted using Matlab/Simulink simulations and experimental prototypes. The results demonstrate that, compared to PI control and traditional exponential reaching law-based SMC, the proposed strategy significantly mitigates chattering while delivering superior static stability and faster dynamic response. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

31 pages, 1726 KB  
Article
Entrepreneurship and Conway’s Game of Life: A Theoretical Approach from a Systemic Perspective
by Félix Oscar Socorro Márquez, Giovanni Efrain Reyes Ortiz and Harold Torrez Meruvia
Adm. Sci. 2026, 16(1), 45; https://doi.org/10.3390/admsci16010045 - 16 Jan 2026
Viewed by 316
Abstract
This study establishes a comprehensive structural isomorphism between Conway’s Game of Life and the entrepreneurial process, analysing the latter as a complex adaptive system governed by non-linear dynamics rather than linear predictability. Through a rigorous qualitative approach based on a systematic literature review [...] Read more.
This study establishes a comprehensive structural isomorphism between Conway’s Game of Life and the entrepreneurial process, analysing the latter as a complex adaptive system governed by non-linear dynamics rather than linear predictability. Through a rigorous qualitative approach based on a systematic literature review and abductive inference, the research identifies and correlates four fundamental dimensions: uncertainty, adaptability, growth, and sustainability. Transcending traditional metaphorical comparisons, this paper introduces a novel mathematical model that modifies Conway’s deterministic logic by incorporating an «Agency» variable (A). This critical addition quantifies how an entrepreneur’s internal capabilities can counterbalance environmental pressures (neighbourhood density) to determine survival thresholds, effectively transforming the simulation into a «Game of Life with Agency» where participants actively influence their viability potential (Ψ). The analysis explicitly correlates specific algorithmic configurations with real-world business phenomena: high-entropy initial states («The Soup») mirror early-stage market uncertainty where outcomes are probabilistic; «gliders» represent the necessity of strategic pivoting and continuous displacement for survival; and «oscillators» symbolise dynamic sustainability through rhythmic equilibrium rather than static permanence. Furthermore, the study validates the «Gosper Glider Gun» pattern as a model for scalable, generative growth. By bridging abstract systems theory with managerial practice, the research positions these simulations as «mental laboratories» for decision-making. The findings theoretically validate iterative methodologies like the Lean Startup and conclude that successful entrepreneurship operates on the «Edge of Chaos», providing a rigorous framework for navigating high stochastic uncertainty. Full article
(This article belongs to the Section International Entrepreneurship)
Show Figures

Figure 1

17 pages, 7284 KB  
Article
Dynamics and Solution Behavior of the Variable-Order Fractional Newton–Leipnik System
by Rania Saadeh, Nidal E. Taha, Mohamed Hafez, Ghozail Sh. Al-Mutairi and Manahil A. M. Ashmaig
Mathematics 2026, 14(2), 312; https://doi.org/10.3390/math14020312 - 16 Jan 2026
Viewed by 219
Abstract
This paper considers the solution behavior and dynamical properties of the variable-order fractional Newton–Leipnik system defined via Liouville–Caputo derivatives of variable order. In contrast to integer-order models, the presence of variable-order fractional operators in the Newton–Leipnik structure enriches the model by providing memory-dependent [...] Read more.
This paper considers the solution behavior and dynamical properties of the variable-order fractional Newton–Leipnik system defined via Liouville–Caputo derivatives of variable order. In contrast to integer-order models, the presence of variable-order fractional operators in the Newton–Leipnik structure enriches the model by providing memory-dependent effects that vary with time; hence, it is capable of a broader and more flexible range of nonlinear responses. Numerical simulations have been conducted to study how different order functions influence the trajectory and qualitative dynamics: clear transitions in oscillatory patterns have been identified by phase portraits, time-series profiles, and three-dimensional state evolution. The work goes further by considering the development of bifurcations and chaotic regimes and stability shifts and confirms the occurrence of several phenomena unattainable in fixed-order and/or integer-order formulations. Analysis of Lyapunov exponents confirms strong sensitivity to the initial conditions and further details how the memory effects either reinforce or prevent chaotic oscillations according to the type of order function. The results, in fact, show that the variable-order fractional Newton–Leipnik framework allows for more expressive and realistic modeling of complex nonlinear phenomena and points out the crucial role played by evolving memory in controlling how the system moves between periodic, quasi-periodic, and chaotic states. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Climate-Based Natural Suitability Index (CNSI) for Blueberry Cultivation in China: Spatiotemporal Evolution and Influencing Factors
by Yixuan Feng, Jing Chen, Jiayi Liu, Xinchun Wang, Jinying Li, Ying Wang, Junnan Wu, Lin Wu and Yanan Li
Agronomy 2026, 16(2), 211; https://doi.org/10.3390/agronomy16020211 - 15 Jan 2026
Viewed by 257
Abstract
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector [...] Read more.
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector analysis, this study examines the spatiotemporal evolution and driving mechanisms of blueberry climatic suitability realization in 19 major producing provinces in China during 2008–2023. Results show that CNSI exhibits a stable and moderately right-skewed distribution, with partial convergence and a narrowing interprovincial gap. Suitability realization is highest in the middle and lower Yangtze River rice-growing belt, whereas the northern dryland belt and the southern subtropical mountainous belt show persistent mismatches between climatic potential and production advantages. Markov results reveal path dependence and moderate mobility, with “low–low lock-in” and “high–high club” phenomena reinforced under neighborhood effects. GeoDetector results indicate that effective facility irrigation and fertilizer input are dominant factors explaining spatial variation in CNSI, while comprehensive transportation accessibility and agricultural labor act as stable complements. Interaction analysis suggests that multi-factor synergies, particularly irrigation-centered combinations, yield strong dual-factor enhancement and near-nonlinear enhancement. These findings highlight the importance of aligning climatic suitability with adaptive infrastructure investment and region-specific management to promote sustainable production-share advantages in China’s blueberry industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 1419 KB  
Review
How the Vestibular Labyrinth Encodes Air-Conducted Sound: From Pressure Waves to Jerk-Sensitive Afferent Pathways
by Leonardo Manzari
J. Otorhinolaryngol. Hear. Balance Med. 2026, 7(1), 5; https://doi.org/10.3390/ohbm7010005 - 14 Jan 2026
Viewed by 460
Abstract
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in [...] Read more.
Background/Objectives: The vestibular labyrinth is classically viewed as a sensor of low-frequency head motion—linear acceleration for the otoliths and angular velocity/acceleration for the semicircular canals. However, there is now substantial evidence that air-conducted sound (ACS) can also activate vestibular receptors and afferents in mammals and other vertebrates. This sound sensitivity underlies sound-evoked vestibular-evoked myogenic potentials (VEMPs), sound-induced eye movements, and several clinical phenomena in third-window pathologies. The cellular and biophysical mechanisms by which a pressure wave in the cochlear fluids is transformed into a vestibular neural signal remain incompletely integrated into a single framework. This study aimed to provide a narrative synthesis of how ACS activates the vestibular labyrinth, with emphasis on (1) the anatomical and biophysical specializations of the maculae and cristae, (2) the dual-channel organization of vestibular hair cells and afferents, and (3) the encoding of fast, jerk-rich acoustic transients by irregular, striolar/central afferents. Methods: We integrate experimental evidence from single-unit recordings in animals, in vitro hair cell and calyx physiology, anatomical studies of macular structure, and human clinical data on sound-evoked VEMPs and sound-induced eye movements. Key concepts from vestibular cellular neurophysiology and from the physics of sinusoidal motion (displacement, velocity, acceleration, jerk) are combined into a unified interpretative scheme. Results: ACS transmitted through the middle ear generates pressure waves in the perilymph and endolymph not only in the cochlea but also in vestibular compartments. These waves produce local fluid particle motions and pressure gradients that can deflect hair bundles in selected regions of the otolith maculae and canal cristae. Irregular afferents innervating type I hair cells in the striola (maculae) and central zones (cristae) exhibit phase locking to ACS up to at least 1–2 kHz, with much lower thresholds than regular afferents. Cellular and synaptic specializations—transducer adaptation, low-voltage-activated K+ conductances (KLV), fast quantal and non-quantal transmission, and afferent spike-generator properties—implement effective high-pass filtering and phase lead, making these pathways particularly sensitive to rapid changes in acceleration, i.e., mechanical jerk, rather than to slowly varying displacement or acceleration. Clinically, short-rise-time ACS stimuli (clicks and brief tone bursts) elicit robust cervical and ocular VEMPs with clear thresholds and input–output relationships, reflecting the recruitment of these jerk-sensitive utricular and saccular pathways. Sound-induced eye movements and nystagmus in third-window syndromes similarly reflect abnormally enhanced access of ACS-generated pressure waves to canal and otolith receptors. Conclusions: The vestibular labyrinth does not merely “tolerate” air-conducted sound as a spill-over from cochlear mechanics; it contains a dedicated high-frequency, transient-sensitive channel—dominated by type I hair cells and irregular afferents—that is well suited to encoding jerk-rich acoustic events. We propose that ACS-evoked vestibular responses, including VEMPs, are best interpreted within a dual-channel framework in which (1) regular, extrastriolar/peripheral pathways encode sustained head motion and low-frequency acceleration, while (2) irregular, striolar/central pathways encode fast, sound-driven transients distinguished by high jerk, steep onset, and precise spike timing. Full article
(This article belongs to the Section Otology and Neurotology)
Show Figures

Figure 1

20 pages, 17607 KB  
Article
Parasitic Inductance Assessment of E-GaN DPT Circuit Through Finite Element Analysis
by Xing-Rou Chen, Huang-Jen Chiu, Yun-Yen Chen, Yi-Xuan Yang and Yu-Chen Liu
Energies 2026, 19(2), 383; https://doi.org/10.3390/en19020383 - 13 Jan 2026
Viewed by 229
Abstract
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes [...] Read more.
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes them highly suitable for high-frequency applications. However, parasitic inductance in the power loop can introduce resonance phenomena, impacting system stability and switching performance. To address this, this study integrates the parasitic parameters of printed circuit boards (PCBs) with the nonlinear junction capacitance characteristics of GaN devices. Finite element analysis (FEA) is employed to extract PCB parasitic inductance values and analyze their effects on GaN power-switching behavior. The findings indicate that precise extraction and analysis of parasitic inductance are critical for optimizing the performance of GaN switching devices. Additionally, this study investigates mitigation strategies to minimize parasitic inductance, ultimately enhancing GaN device design and reliability. The insights from this research provide valuable guidance for the development of GaN power devices in high-frequency applications. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop