Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = non-anti-de sitter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 318 KiB  
Article
Black-Hole Thermodynamics from Gauge Freedom in Extended Iyer–Wald Formalism
by Thiago de L. Campos, Mario C. Baldiotti and C. Molina
Universe 2025, 11(7), 215; https://doi.org/10.3390/universe11070215 - 28 Jun 2025
Viewed by 194
Abstract
Thermodynamic systems admit multiple equivalent descriptions related by transformations that preserve their fundamental structure. This work focuses on exact isohomogeneous transformations (EITs), a class of mappings that keep fixed the set of independent variables of the thermodynamic potential, while preserving both the original [...] Read more.
Thermodynamic systems admit multiple equivalent descriptions related by transformations that preserve their fundamental structure. This work focuses on exact isohomogeneous transformations (EITs), a class of mappings that keep fixed the set of independent variables of the thermodynamic potential, while preserving both the original homogeneity and the validity of a first law. Our investigation explores EITs within the extended Iyer–Wald formalism for theories containing free parameters (e.g., the cosmological constant). EITs provide a unifying framework for reconciling the diverse formulations of Kerr-anti de Sitter (KadS) thermodynamics found in the literature. While the Iyer–Wald formalism is a powerful tool for deriving first laws for black holes, it typically yields a non-integrable mass variation that prevents its identification as a proper thermodynamic potential. To address this issue, we investigate an extended Iyer–Wald formalism where mass and thermodynamic volume become gauge dependent. Within this framework, we identify the gauge choices and Killing vector normalizations that are compatible with EITs, ensuring consistent first laws. As a key application, we demonstrate how conventional KadS thermodynamics emerges as a special case of our generalized approach. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
19 pages, 3412 KiB  
Article
Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State
by Pavel E. Kashargin, Alexander A. Lebedev and Sergey V. Sushkov
Symmetry 2025, 17(6), 910; https://doi.org/10.3390/sym17060910 - 9 Jun 2025
Viewed by 315
Abstract
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and [...] Read more.
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and the cosmological constant parameter ξ. We study the relationship between the model parameters and characteristic of the neutron star, which allowed us to limit the permissible range of ξ and . In particular, in the case ξ=1, the external geometry of the neutron star coincides with the Schwarzschild–anti-de Sitter geometry, while the internal geometry of the star differs from the case of the standard gravity theory. Many realistic equations of the state of neutron star matter were considered. In general, the neutron star model in the theory of gravity with a non-minimal derivative coupling does not contradict astronomical data and is viable. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

13 pages, 266 KiB  
Article
Conformal Solutions of Static Plane Symmetric Cosmological Models in Cases of a Perfect Fluid and a Cosmic String Cloud
by Ragab M. Gad, Awatif Al-Jedani and Shahad T. Alsulami
Axioms 2025, 14(2), 117; https://doi.org/10.3390/axioms14020117 - 2 Feb 2025
Cited by 2 | Viewed by 792
Abstract
In this work, we obtained exact solutions of Einstein’s field equations for plane symmetric cosmological models by assuming that they admit conformal motion. The space-time geometry of these solutions is found to be nonsingular, non-vacuum and conformally flat. We have shown that in [...] Read more.
In this work, we obtained exact solutions of Einstein’s field equations for plane symmetric cosmological models by assuming that they admit conformal motion. The space-time geometry of these solutions is found to be nonsingular, non-vacuum and conformally flat. We have shown that in the case of a perfect fluid, these solutions have an energy-momentum tensor possessing dark energy with negative pressure and the energy equation of state is ρ+p=0. We have shown that a fluid has acceleration, rotation, shear-free, vanishing expansion, and rotation. In the case of a cosmic string cloud, we found that the tension density and particle density decrease as the fluid moves along the direction of the strings, then vanish at infinity. We shown that the exact conformal solution for a static plane symmetric model reduces to the well-known anti-De Sitter space-time. We obtained that the space-time under consideration admits a conformal vector field orthogonal to the 4-velocity vector and does not admits a vector parallel to the 4-velocity vector. Some physical and kinematic properties of the resulting models are also discussed. Full article
17 pages, 899 KiB  
Article
Corrected Thermodynamics of Black Holes in f(R) Gravity with Electrodynamic Field and Cosmological Constant
by Mou Xu, Yuying Zhang, Liu Yang, Shining Yang and Jianbo Lu
Entropy 2024, 26(10), 868; https://doi.org/10.3390/e26100868 - 15 Oct 2024
Cited by 2 | Viewed by 1522
Abstract
The thermodynamics of black holes (BHs) and their corrections have become a hot topic in the study of gravitational physics, with significant progress made in recent decades. In this paper, we study the thermodynamics and corrections of spherically symmetric BHs in models [...] Read more.
The thermodynamics of black holes (BHs) and their corrections have become a hot topic in the study of gravitational physics, with significant progress made in recent decades. In this paper, we study the thermodynamics and corrections of spherically symmetric BHs in models f(R)=R+αR2 and f(R)=R+2γR+8Λ under the f(R) theory, which includes the electrodynamic field and the cosmological constant. Considering thermal fluctuations around equilibrium states, we find that, for both f(R) models, the corrected entropy is meaningful in the case of a negative cosmological constant (anti-de Sitter–RN spacetime) with Λ=1. It is shown that when the BHs’ horizon radius is small, thermal fluctuations have a more significant effect on the corrected entropy. Using the corrected entropy, we derive expressions for the relevant corrected thermodynamic quantities (such as Helmholtz free energy, internal energy, Gibbs free energy, and specific heat) and calculate the effects of the correction terms. The results indicate that the corrections to Helmholtz free energy and Gibbs free energy, caused by thermal fluctuations, are remarkable for small BHs. In addition, we explore the stability of BHs using specific heat. The study reveals that the corrected BH thermodynamics exhibit locally stable for both models, and corrected systems undergo a Hawking–Page phase transition. Considering the requirement on the non-negative volume of BHs, we also investigate the constraint on the EH radius of BHs. Full article
(This article belongs to the Special Issue The Black Hole Information Problem)
Show Figures

Figure 1

65 pages, 781 KiB  
Article
Gauge-Invariant Lagrangian Formulations for Mixed-Symmetry Higher-Spin Bosonic Fields in AdS Spaces
by Alexander Alexandrovich Reshetnyak and Pavel Yurievich Moshin
Universe 2023, 9(12), 495; https://doi.org/10.3390/universe9120495 - 27 Nov 2023
Cited by 5 | Viewed by 1685
Abstract
We deduce a non-linear commutator higher-spin (HS) symmetry algebra which encodes unitary irreducible representations of the AdS group—subject to a Young tableaux Y(s1,,sk) with k2 rows—in a d-dimensional anti-de Sitter space. [...] Read more.
We deduce a non-linear commutator higher-spin (HS) symmetry algebra which encodes unitary irreducible representations of the AdS group—subject to a Young tableaux Y(s1,,sk) with k2 rows—in a d-dimensional anti-de Sitter space. Auxiliary representations for a deformed non-linear HS symmetry algebra in terms of a generalized Verma module, as applied to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints, are found explicitly in the case of a k=2 Young tableaux. An oscillator realization over the Heisenberg algebra for the Verma module is constructed. The results generalize the method of constructing auxiliary representations for the symplectic sp(2k) algebra used for mixed-symmetry HS fields in flat spaces [Buchbinder, I.L.; et al. Nucl. Phys. B 2012, 862, 270–326]. Polynomial deformations of the su(1,1) algebra related to the Bethe ansatz are studied as a byproduct. A nilpotent BRST operator for a non-linear HS symmetry algebra of the converted constraints for Y(s1,s2) is found, with non-vanishing terms (resolving the Jacobi identities) of the third order in powers of ghost coordinates. A gauge-invariant unconstrained reducible Lagrangian formulation for a free bosonic HS field of generalized spin (s1,s2) is deduced. Following the results of [Buchbinder, I.L.; et al. Phys. Lett. B 2021, 820, 136470.; Buchbinder, I.L.; et al. arXiv 2022, arXiv:2212.07097], we develop a BRST approach to constructing general off-shell local cubic interaction vertices for irreducible massive higher-spin fields (being candidates for massive particles in the Dark Matter problem). A new reducible gauge-invariant Lagrangian formulation for an antisymmetric massive tensor field of spin (1,1) is obtained. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

8 pages, 275 KiB  
Article
Consistent Couplings between a Massive Spin-3/2 Field and a Partially Massless Spin-2 Field
by Nicolas Boulanger, Guillaume Lhost and Sylvain Thomée
Universe 2023, 9(11), 482; https://doi.org/10.3390/universe9110482 - 15 Nov 2023
Cited by 6 | Viewed by 1780
Abstract
We revisit the problem of constructing consistent interactions between a massive spin-3/2 field and a partially massless graviton in four-dimensional (anti) de Sitter (A)dS4 spacetime. We use the Stueckelberg formulation of the action principle for these fields and find two non-trivial cubic [...] Read more.
We revisit the problem of constructing consistent interactions between a massive spin-3/2 field and a partially massless graviton in four-dimensional (anti) de Sitter (A)dS4 spacetime. We use the Stueckelberg formulation of the action principle for these fields and find two non-trivial cubic vertices with less than two derivatives when moving to the unitary gauge. One of the vertices is reminiscent of the minimal coupling of the massive spin-3/2 field to gravity, except that now the graviton is partially massless. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Field Theory)
30 pages, 3482 KiB  
Article
Quantum Explosions of Black Holes and Thermal Coordinates
by Irina Aref’eva and Igor Volovich
Symmetry 2022, 14(11), 2298; https://doi.org/10.3390/sym14112298 - 2 Nov 2022
Cited by 8 | Viewed by 2135
Abstract
The Hawking temperature for a Schwarzschild black hole is T=1/8πM, where M is the black hole mass. This formula is derived for a fixed Schwarzschild background metric, where the mass M could be arbitrary small. Note [...] Read more.
The Hawking temperature for a Schwarzschild black hole is T=1/8πM, where M is the black hole mass. This formula is derived for a fixed Schwarzschild background metric, where the mass M could be arbitrary small. Note that, for vanishing M0, the temperature T becomes infinite. However, the Schwarzschild metric itself is regular when the black hole mass M tends to zero; it is reduced to the Minkowski metric, and there are no reasons to believe that the temperature becomes infinite. We point out that this discrepancy may be due to the fact that the Kruskal coordinates are singular in the limit of the vanishing mass of the black hole. To elucidate the situation, new coordinates for the Schwarzschild metric are introduced, called thermal coordinates, which depend on the black hole mass M and the parameter b. The parameter b specifies the motion of the observer along a special trajectory. The thermal coordinates are regular in the limit of vanishing black hole mass M. In this limit, the Schwarzschild metric is reduced to the Minkowski metric, written in coordinates dual to the Rindler coordinates. Using the thermal coordinates, the Schwarzschild black hole radiation is reconsidered, and it is found that the Hawking formula for temperature is valid only for large black holes, while for small black holes, the temperature is T=1/2π(4M+b). The thermal observer in Minkowski space sees radiation with temperature T=1/2πb, similar to the Unruh effect with non-constant acceleration. The thermal coordinates for more general spherically symmetric metrics, including the Reissner–Nordstrom, de Sitter, and anti-de Sitter, are also considered. In these coordinates, one sees a Planck distribution with constant temperature. One obtains that the thermal Planck distribution of massless particles is not restricted to the cases of black holes or constant acceleration, but is valid for any spherically symmetric metric written in thermal coordinates. Full article
(This article belongs to the Special Issue String Field Theory and Nonlocal Gravity)
Show Figures

Figure 1

14 pages, 469 KiB  
Article
Nonlinear Charged Black Hole Solution in Rastall Gravity
by Gamal Gergess Lamee Nashed
Universe 2022, 8(10), 510; https://doi.org/10.3390/universe8100510 - 28 Sep 2022
Cited by 12 | Viewed by 2236
Abstract
We show that the spherically symmetric black hole (BH) solution of a charged (linear case) field equation of Rastall gravitational theory is not affected by the Rastall parameter and this is consistent with the results presented in the literature. However, when we apply [...] Read more.
We show that the spherically symmetric black hole (BH) solution of a charged (linear case) field equation of Rastall gravitational theory is not affected by the Rastall parameter and this is consistent with the results presented in the literature. However, when we apply the field equation of Rastall’s theory to a special form of nonlinear electrodynamics (NED) source, we derive a novel spherically symmetric BH solution that involves the Rastall parameter. The main source of the appearance of this parameter is the trace part of the NED source, which has a non-vanishing value, unlike the linear charged field equation. We show that the new BH solution is Anti−de-Sitter Reissner−Nordström spacetime in which the Rastall parameter is absorbed into the cosmological constant. This solution coincides with Reissner−Nordström solution in the GR limit, i.e., when Rastall’s parameter is vanishing. To gain more insight into this BH, we study the stability using the deviation of geodesic equations to derive the stability condition. Moreover, we explain the thermodynamic properties of this BH and show that it is stable, unlike the linear charged case that has a second-order phase transition. Finally, we prove the validity of the first law of thermodynamics. Full article
(This article belongs to the Special Issue Origins and Natures of Inflation, Dark Matter and Dark Energy)
Show Figures

Figure 1

24 pages, 427 KiB  
Article
Unitarity and Page Curve for Evaporation of 2D AdS Black Holes
by Mariano Cadoni and Andrea P. Sanna
Entropy 2022, 24(1), 101; https://doi.org/10.3390/e24010101 - 8 Jan 2022
Cited by 10 | Viewed by 2831
Abstract
We explore the Hawking evaporation of two-dimensional anti-de Sitter (AdS2), dilatonic black hole coupled with conformal matter, and derive the Page curve for the entanglement entropy of radiation. We first work in a semiclassical approximation with backreaction. We show that the [...] Read more.
We explore the Hawking evaporation of two-dimensional anti-de Sitter (AdS2), dilatonic black hole coupled with conformal matter, and derive the Page curve for the entanglement entropy of radiation. We first work in a semiclassical approximation with backreaction. We show that the end-point of the evaporation process is AdS2 with a vanishing dilaton, i.e., a regular, singularity-free, zero-entropy state. We explicitly compute the entanglement entropies of the black hole and the radiation as functions of the horizon radius, using the conformal field theory (CFT) dual to AdS2 gravity. We use a simplified toy model, in which evaporation is described by the forming and growing of a negative mass configuration in the positive-mass black hole interior. This is similar to the “islands” proposal, recently put forward to explain the Page curve for evaporating black holes. The resulting Page curve for AdS2 black holes is in agreement with unitary evolution. The entanglement entropy of the radiation initially grows, closely following a thermal behavior, reaches a maximum at half-way of the evaporation process, and then goes down to zero, following the Bekenstein–Hawking entropy of the black hole. Consistency of our simplified model requires a non-trivial identification of the central charge of the CFT describing AdS2 gravity with the number of species of fields describing Hawking radiation. Full article
(This article belongs to the Special Issue Quantum Information in Quantum Gravity)
Show Figures

Figure 1

11 pages, 303 KiB  
Article
Solenoid Configurations and Gravitational Free Energy of the AdS–Melvin Spacetime
by Yen-Kheng Lim
Entropy 2021, 23(11), 1477; https://doi.org/10.3390/e23111477 - 8 Nov 2021
Cited by 1 | Viewed by 2216
Abstract
In this paper we explore a solenoid configuration involving a magnetic universe solution embedded in an empty Anti-de Sitter (AdS) spacetime. This requires a non-trivial surface current at the interface between the two spacetimes, which can be provided by a charged scalar field. [...] Read more.
In this paper we explore a solenoid configuration involving a magnetic universe solution embedded in an empty Anti-de Sitter (AdS) spacetime. This requires a non-trivial surface current at the interface between the two spacetimes, which can be provided by a charged scalar field. When the interface is taken to the AdS boundary, we recover the full AdS–Melvin spacetime. The stability of the AdS–Melvin solution is also studied by computing the gravitational free energy from the Euclidean action. Full article
(This article belongs to the Special Issue Advances in Black Hole Thermodynamics)
Show Figures

Figure 1

15 pages, 319 KiB  
Article
On the Vacuum Structure of the N=4 Conformal Supergravity
by Ioannis Dalianis, Alex Kehagias, Ioannis Taskas and George Tringas
Universe 2021, 7(11), 409; https://doi.org/10.3390/universe7110409 - 28 Oct 2021
Viewed by 1871
Abstract
We consider N=4 conformal supergravity with an arbitrary holomorphic function of the complex scalar S which parametrizes the SU(1,1)/U(1) coset. Assuming non-vanishings vevs for S and the scalars in a [...] Read more.
We consider N=4 conformal supergravity with an arbitrary holomorphic function of the complex scalar S which parametrizes the SU(1,1)/U(1) coset. Assuming non-vanishings vevs for S and the scalars in a symmetric matrix Eij of the 10¯ of SU(4) R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that S-supersymmetry is always broken whereas Q-supersymmetry exists only on flat Minkowski spacetime. Full article
(This article belongs to the Special Issue Gauge Theory, Strings and Supergravity)
54 pages, 1793 KiB  
Article
Circuit Complexity from Cosmological Islands
by Sayantan Choudhury, Satyaki Chowdhury, Nitin Gupta, Anurag Mishara, Sachin Panneer Selvam, Sudhakar Panda, Gabriel D. Pasquino, Chiranjeeb Singha and Abinash Swain
Symmetry 2021, 13(7), 1301; https://doi.org/10.3390/sym13071301 - 20 Jul 2021
Cited by 59 | Viewed by 5026
Abstract
Recently, in various theoretical works, path-breaking progress has been made in recovering the well-known page curve of an evaporating black hole with quantum extremal islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this [...] Read more.
Recently, in various theoretical works, path-breaking progress has been made in recovering the well-known page curve of an evaporating black hole with quantum extremal islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of quantum extremal islands in negative (or positive) cosmological constant with radiation in the background of Friedmann-Lemai^tre-Robertson-Walker (FLRW) space-time, i.e., the presence and absence of islands in anti de Sitter and the de Sitter space-time having SO(2, 3) and SO(1, 4) isometries, respectively. Without using any explicit details of any gravity model, we study the behavior of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, out-of-time ordered correlators, and entanglement entropy of the modes of the squeezed state, in different parameter space, we conclude the non-universality of these measures. Their remarkably different features in the different parameter space suggests their dependence on the parameters of the model under consideration. Full article
(This article belongs to the Special Issue Manifest and Hidden Symmetries in Field and String Theories)
Show Figures

Figure 1

14 pages, 292 KiB  
Article
General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture
by Fabrizio Tamburini and Ignazio Licata
Entropy 2020, 22(1), 3; https://doi.org/10.3390/e22010003 - 18 Dec 2019
Cited by 15 | Viewed by 6069
Abstract
Einstein’s equations of general relativity (GR) can describe the connection between events within a given hypervolume of size L larger than the Planck length L P in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the [...] Read more.
Einstein’s equations of general relativity (GR) can describe the connection between events within a given hypervolume of size L larger than the Planck length L P in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the Riemann curvature tensor. At low energies (when L L P ), these connections behave like an exchange of a virtual graviton with wavelength λ G = L as if gravitation were an emergent physical property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition of events or space–times become indistinguishable. These properties of Einstein’s equations can find connections with the novel picture of quantum gravity (QG) known as the “Einstein–Rosen (ER) = Einstein–Podolski–Rosen (EPR)” (ER = EPR) conjecture proposed by Susskind and Maldacena in Anti-de-Sitter (AdS) space–times in their equivalence with conformal field theories (CFTs). In this scenario, non-traversable wormhole connections of two or more distant events in space–time through Einstein–Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be equivalent to events connected with non-local Einstein–Podolski–Rosen (EPR) entangled states that instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR conjecture is valid, it can be extended to other different types of space–times and that gravity and space–time could be emergent physical quantities if the exchange of a virtual graviton between events can be considered connected by ER wormholes equivalent to entanglement connections. Full article
(This article belongs to the Special Issue Relativistic Quantum Information)
33 pages, 421 KiB  
Review
Higher Spins without (Anti-)de Sitter
by Stefan Prohazka and Max Riegler
Universe 2018, 4(1), 20; https://doi.org/10.3390/universe4010020 - 19 Jan 2018
Cited by 11 | Viewed by 3446
Abstract
Can the holographic principle be extended beyond the well-known AdS/CFT correspondence? During the last couple of years, there has been a substantial amount of research trying to find answers for this question. In this work, we provide a review of recent developments of [...] Read more.
Can the holographic principle be extended beyond the well-known AdS/CFT correspondence? During the last couple of years, there has been a substantial amount of research trying to find answers for this question. In this work, we provide a review of recent developments of three-dimensional theories of gravity with higher spin symmetries. We focus in particular on a proposed holographic duality involving asymptotically flat spacetimes and higher spin extended bms 3 symmetries. In addition, we also discuss developments concerning relativistic and nonrelativistic higher spin algebras. As a special case, Carroll gravity will be discussed in detail. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
Show Figures

Figure 1

35 pages, 395 KiB  
Review
On Exact Solutions and Perturbative Schemes in Higher Spin Theory
by Carlo Iazeolla, Ergin Sezgin and Per Sundell
Universe 2018, 4(1), 5; https://doi.org/10.3390/universe4010005 - 1 Jan 2018
Cited by 20 | Viewed by 3209
Abstract
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with [...] Read more.
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with the symmetries of a domain wall is also described. Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard Green’s functions; and an alternative scheme based on solving the twistor space field equations exactly followed by introducing the spacetime dependence using perturbatively defined gauge functions. Motivated by the need to provide a higher spin invariant characterization of the exact solutions, aspects of a proposal for a geometric description of Vasiliev’s equation involving an infinite dimensional generalization of anti de Sitter space are revisited and improved. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
Back to TopTop