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Abstract: The Hawking temperature for a Schwarzschild black hole is T = 1/8πM, where M is the
black hole mass. This formula is derived for a fixed Schwarzschild background metric, where the
mass M could be arbitrary small. Note that, for vanishing M → 0, the temperature T becomes infinite.
However, the Schwarzschild metric itself is regular when the black hole mass M tends to zero; it is
reduced to the Minkowski metric, and there are no reasons to believe that the temperature becomes
infinite. We point out that this discrepancy may be due to the fact that the Kruskal coordinates
are singular in the limit of the vanishing mass of the black hole. To elucidate the situation, new
coordinates for the Schwarzschild metric are introduced, called thermal coordinates, which depend
on the black hole mass M and the parameter b. The parameter b specifies the motion of the observer
along a special trajectory. The thermal coordinates are regular in the limit of vanishing black hole
mass M. In this limit, the Schwarzschild metric is reduced to the Minkowski metric, written in
coordinates dual to the Rindler coordinates. Using the thermal coordinates, the Schwarzschild black
hole radiation is reconsidered, and it is found that the Hawking formula for temperature is valid only
for large black holes, while for small black holes, the temperature is T = 1/2π(4M + b). The thermal
observer in Minkowski space sees radiation with temperature T = 1/2πb, similar to the Unruh effect
with non-constant acceleration. The thermal coordinates for more general spherically symmetric
metrics, including the Reissner–Nordstrom, de Sitter, and anti-de Sitter, are also considered. In these
coordinates, one sees a Planck distribution with constant temperature. One obtains that the thermal
Planck distribution of massless particles is not restricted to the cases of black holes or constant
acceleration, but is valid for any spherically symmetric metric written in thermal coordinates.

Keywords: black hole; Hawking radiation; black hole evaporation

1. Introduction

Hawking showed that black holes emit radiation like black bodies with a temperature
of TH = 1/8πM, where M is the mass of the black hole [1,2]. This formula is derived for a
fixed Schwarzschild background metric, where the mass M could be arbitrary small. Note
that, for vanishing M → 0, the temperature T becomes infinite. However, the Schwarzschild
metric itself is regular when the black hole mass M tends to zero; it is reduced to the
Minkowski metric, and there are no reasons to believe that the temperature becomes infinite.
We point out that this discrepancy may be due to the fact that the Kruskal coordinates are
singular in the limit of the vanishing mass of the black hole.

We emphasize that, in the present paper, we do not discuss the dynamical evaporation
process of the black hole with its well-known problems of back reaction and quantum
gravity corrections at the Planck scales. We discuss the question of how it happens that, in
the simple model, when we have the classical Schwarzschild background and free quantum
fields, it turns out that the temperature is singular in the limit of a vanishing black hole
mass. From Hawking’s formula, it follows that the energy density of radiation emitted
by a black hole according to the Stefan–Boltzmann formula behaves at small M as M−4.
Therefore, if M → 0, the black hole releases an infinite amount of energy, which is clearly
not physical. This can be called the problem of the big bang of black holes. The information
loss problem [3–5] may be closely related to this big bang problem, since the radiation
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entropy diverges for small M as M−3. Considerations in more complicated cases, such as a
de Sitter–Schwarzschild black hole, do not improve the situation in an essential way.

Standard transformation from the Schwarzschild coordinates to the Kruskal ones
includes first transformation from the Schwarzschild coordinates to Eddington–Finkelstein
coordinates [6–9]. The Schwarzschild metric in the Schwarzschild coordinates:

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2 dΩ2, r > 2M > 0, (1)

obviously admits the M → 0 limit, which defines Minkowski space. The Kruskal coordinates(U, V) are defined as

U = −e−u/4M, V = ev/4M (2)

Here, u and v are the Eddington–Finkelstein coordinates. The Kruskal coordinates are
used to obtain the maximal analytic extension, but we note that, in the limit of a vanishing
black hole mass M, even outside of the horizon, r > 2M, the Kruskal coordinates and the
metric result in a singularity, instead of becoming the Minkowski one. This leads also to
the singular behavior of the Hawking temperature TH = 1/8πM in the limit M → 0. To
improve the situation, exponential (E)-coordinates U and V for the Schwarzschild metric
are introduced:

U = −e−
u

4M+b , V = e
v

4M+b , (3)

which depend on the black hole mass M and a parameter b > 0. This parameter b sets the
observer’s motion along a special trajectory. The E-coordinates are regular in the limit
of the vanishing black hole mass M. Obviously, in this limit, the Schwarzschild metric is
reduced to the Minkowski one written in the E-coordinates.

Black hole radiation was considered, and it was found that the Hawking formula for
temperature is approximately valid only for large black holes, while for small black holes,
for the temperature of the black hole, the following formula is obtained:

T = 1
2π(4M + b) . (4)

As a result, black holes could completely evaporate in terms of classical geometry,
but it is shown that this requires infinite time because the mass is decreasing in inverse
proportion to time,

M(t) = C
t

, t →∞ (5)

We show that the E-observer in Minkowski space will see radiation with the temperature:

T = 1
2πb

. (6)

This effect is similar (dual) to the Unruh effect [10,11] for the Rindler metric [12], but
in our case, the acceleration is not a constant.

We define the E-coordinates (U , V ) and logarithmic (L)-coordinates (ν, ϑ) for the
arbitrary static metric of the form:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2 = − f (r)dudv + r2dΩ2 (7)

as
U = −e−

u
B , V = e

v
B , B > 0, (8)

ϑ = 1
a

log(av), ν = −1
a

log(−au) a > 0. (9)
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It is shown that one has the Planck distribution with temperature T = 1/2πB and
T = a/2π for quantum fields in the gravitational background (7) with an arbitrary function
f (r) in E- and L-coordinates, respectively. We have the following general scheme (duality):

( E-coord.(U , V ) ) V =e
v
B←ÐÐÐÐÐ

U =−e− u
B

⎛⎜⎝
M(u, v)

ds2
2 = − f (r)dudv

⎞⎟⎠
ν=− 1

a log(−au)ÐÐÐÐÐÐÐÐ→
ϑ= 1

a log(av)
( L-coord.(ν, ϑ) ) (10)

The physical meaning of the above formulae for temperature is that they give the
temperature of radiation for different observers moving along different trajectories in
the same background. The simplest examples of such special trajectories are the ones
in Minkowski space. The standard Rindler observer moves with constant acceleration
and sees radiation from the Minkowski vacuum as it has a temperature defined by its
acceleration. The E-observer moves along a hyperbola and feels the temperature. The E-
and L-coordinates can be called the thermal coordinates, since in these coordinates, one
sees a Planck distribution with constant temperature. In fact, the property of having a
temperature is associated not only with black holes, but using the thermal coordinates, that
is the temperature can be obtained for any metric. The implications for the information loss
problem and primordial black holes are mentioned.

The paper is organized as follows. We start with Section 2, reminding about the
standard definition of the Kruskal coordinates, and also, we discuss the problem that
arises with them when one considers the limit M → 0. Then, in Section 2.2, we introduce
in the E-coordinates for the Schwarzschild metric and, in Section 2.3 the temperature of
Schwarzschild black holes in the E-coordinates. In the next Section 3, we discuss the E-
coordinates in Minkowski space. We show in Section 3.1 that two-dimensional Minkowski
space can be represented as a union of four disconnected regions, right (R), future (F),
left (L), and past (P), and each of them is isometric to two-dimensional Minkowski space.
In Section 3.2, we study geodesics in the E-coordinates. In Section 3.3, we calculate the
acceleration of an E-observer. Section 3.4 is devoted to the comparison of the E- and Rindler
coordinates in Minkowski space. In Section 4, we introduce the general E-coordinates.
In Section 4.2, accelerations along special trajectories X = X0 in black hole backgrounds
are calculated. Then, in the next sections, we consider some examples. In Section 5, the
general L-coordinates are introduced. In Section 5.4 the temperature in the L-coordinates is
calculated, and it is found that it is given by a universal formula that does not depend on
the characteristics of the black hole under consideration. The origin of this phenomena is
that the choice of the coordinate system depends essentially on the metric itself. In Section 6,
we present an estimation of the evaporation time as can been seen by observers in different
coordinate systems. In Section 7, we summarize the obtained results and discuss their
physical applications.

2. Exponential Coordinates
2.1. Kruskal Coordinates

Standard transformation from the Schwarzschild coordinates to the Kruskal ones in-
cludes first transformation from the Schwarzschild coordinates to the Eddington–Finkelstein
coordinates. The Schwarzschild metric in the Schwarzschild coordinates is

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2 dΩ2, r > 2M > 0. (11)

where dΩ2 = dθ2 + sin2 θdϕ2. It is obvious that the exterior Schwarzschild spacetime
(r > rh = 2M) admits the M → 0 limit, which defines Minkowski spacetime. Note that the

Kretschmann invariant K = 48M2

r6 → 0 as M → 0 for any fixed r > 2M.
One can introduce the tortoise coordinate r∗:

r∗ = r + 2M log( r
2M

− 1), (12)
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which solves the equation dr∗ = (1− 2M/r)−1dr. To keep the reality condition, one has to
assume r > 2M. Then, one defines

u = t − r∗, v = t + r∗. (13)

(coordinates u, v cover the whole R2), and one has

ds2
2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 = −(1− 2M

r
)dudv (14)

The Kruskal coordinates are

U = −e−
u

4M , V = ev/4M (15)

and the Schwarzschild metric becomes

ds2 = −32M3

r
e−r/2M dUdV + r2dΩ2, (16)

where r is defined by equation

( r
2M

− 1)e
r

2M = −UV (17)

Note that the Kruskal coordinates (15) and metric (16) are singular in the limit M → 0.

2.2. E-Coordinates for the Schwarzschild Metric

To be able to send the mass M of a black hole to zero, we define coordinates (we call
them the E-coordinates) as follows

U = −e−
u

4M+b , V = e
v

4M+b ; (18)

here, b is a positive constant. The coordinates run over the region U < 0, V > 0. The question
of the existence of an extension of the Schwarzschild metric that is analytic, not only with
respect to the space and time variables, but also with respect to the mass parameter requires
a separate consideration.

The Schwarzschild metric in the E-coordinates is (r > 2M)

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dΩ2

= (4M + b)2(1− 2M
r

) dU dV

U V
+ r2dΩ2; (19)

here, r is derived from the relation:

e2r∗/(4M+b) = −U V . (20)

It is clear that, in the limit b → 0 the metric (19), rewritten as

ds2 = −16(M + b/4)2(2M) M
M+b/4 (r − 2M) b

4M+b

r
e−

r
2(M+b/4) ⋅ dU dV + r2dΩ2 (21)

becomes the Schwarzschild–Kruskal metric (16).
At the limit M → 0, the metric (19) becomes

ds2 = −b2e−
2r
b dU dV + r2dΩ2; (22)

here, r is defined by −U V = e
2r
b . (23)
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Equation (23) is nothing but the formula (20) rewritten as

(r − 2M) M
M+b/4 = (2M)M/(M+b/4)(−U V )e−

r
2(M+b/4) (24)

in the limit M → 0. An explicit check shows that the metric (22) is the Minkowski metric.

2.3. Temperature of Schwarzschild Black Holes in E-Coordinates

We consider the scaler field on the Schwarzschild background in two systems of
coordinates, the Eddington–Finkelstein (u, v) and E-coordinates (U , V ), related as

U = − exp{− u
4M + b

}, V = exp{ v
4M + b

}, u, v ∈ R, M > 0, b > 0. (25)

The two-dimensional parts of the Schwarzschild metric in these coordinate systems read

ds2
2 = −(1− 2M

r
)dudv = (4M + b)2(1− 2M

r
) dU dV

U V
, r > 2M. (26)

The wave equations for the scalar field φ(u, v) = Φ(U , V ) in these coordinate systems are

∂v∂uφ = 0, u, v ∈ R (27)

∂V ∂U Φ = 0, U < 0, V > 0. (28)

They can be represented as combinations of the left and write modes, φ(u, v) = φR(u)+
φL(v). For the real right mode (for the left mode, all considerations are similar and will be
omitted), one has

φR(u) = ∫ ∞

0
dω( fωbω + f ∗ωb+ω), fω(u) = 1√

4πω
e−iωu, (29)

where [bω, b+ω′] = δ(ω −ω′). (30)

One also has representation for the Φ-field Φ(U ,V) = ΦR(U )+ΦL(V) where, for the
right mode (similar for the left one),

ΦR(U ) = ∫ ∞

0
dµ(bµfµ(U )+ b+µf∗µ(U )), fµ(U ) = 1√

4πµ
e−iµU (31)

where [bµ,bµ′] = δ(µ − µ′) (32)

Right (and left) modes in different coordinate systems are related φR(u) = ΦR(U (u)),
and therefore,

∫ ∞

0
dω( fωbω + f ∗ωb+ω) = ∫ ∞

0
dµ(fµbµ + f∗µb+µ), u ∈ R (33)

Multiplying (33) by fω′(u) and integrating the first equation over R, one obtains
(for b = 0, we obtain the standard formula for the Schwarzschild metric in the Kruskal
coordinates)

bω = ∫ dµ(β∗ω µb
+

µ + α∗ω µbµ), b+ω = ∫ dµ(βω µbµ + αω µb
+

µ), (34)
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where

βω µ = ∫R du
2π

√
ω

µ
e−iωue−iµU , (35)

αω µ = ∫R du
2π

√
ω

µ
e−iωueiµU . (36)

The E-observer has the E-vacuum

bω ∣0E⟩ = 0, (37)

i.e., the state ∣0E⟩ does not contain b particles. However, it contains the Minkowski b particles:

⟨0E∣Nω(b)∣0E⟩ ≡ ⟨0E∣b+ωbω ∣0E⟩ = ∫ ∞

0
dµ ∣βωµ∣2. (38)

The Bogoliubov coefficient βων is given by (35) with U as in (25), and we have

βω µ = B
2π

√
ω

µ
e−

πBω
2 (µ)−iBω

Γ(iBω), B = 4M + b (39)

Using the formula ∣Γ(ix)∣2 = π/(x sinh(πx)), we obtain the Planck distribution

∣βω µ∣2 = B
2πµ

1
e2πBω − 1

, (40)

with the temperature

T = 1
2πB

= 1
2π(4M + b) (41)

3. E-Coordinates in Minkowski Space
3.1. Minkowski Space in Terms of New Coordinates U ,V and T ,X

Starting from the Minkowski coordinates:

ds2 = ds2
2 + r2dΩ2, ds2

2 = −dt2 + dr2, r ∈ R+, t ∈ R. (42)

we introduce the E-ones:

U = U(R)(t, r) = − exp{ r − t
b

} = − exp{−u
b
}, u = t − r (43)

V = V(R)(t, r) = exp{ t + r
b

} = exp{v
b
}, v = t + r, b > 0, (44)

r > 0 corresponds to UV < −1. One has an expression of r in terms of coordinates U ,V :

r = b/2 log(−UV) (45)

The two-dimensional Minkowski metric in (42) after this change becomes

ds2
2 = b2 dU dVUV (46)

One can see that the metric (22) admits an extension to the region −UV < 0. In this
case, by using Formula (45), the coordinate r is extended to the region r ≤ 0; see Figure 1.

We also define the coordinates:

T = U +V
2

, X = V −U
2

(47)
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We cover the R-region:

R = {(T ,X ) ∈ R2 ∣X 2 − T 2 > 0,X > 0}
by the map

R ∶ T = er/b sinh
t
b

, X = er/b cosh
t
b

, (t, x) ∈M(1,1) (48)

The inverse transformation is

t = b arctanh
TX r = b/2 log(X 2 − T 2), (T ,X ) ∈ R (49)

The metric here is

ds2
2 = −dt2 + dr2 = b2

X 2 − T 2 (−dT 2 + dX 2). (50)

Let us introduce the future (F) E-coordinates:

U = U(F)(r, t) = exp{ r − t
b

} = exp{−u
b
}, V = V(F)(r, t) = exp{ t + r

b
} = exp{v

b
}, (51)

and they cover the F-part of the (U ,V)-plane (see the top part of Figure 1):

UV > 0. (52)

The Minkowski metric (42) after (51) becomes

ds2
2 = −b2 dU dVUV . (53)

One also introduces the left (L) E-coordinates:

U = U(L)(t, r) = exp{ r − t
b

} = exp{−u
b
}, V = V(L)(t, r) = − exp{ t + r

b
} = − exp{v

b
}, (54)

with the inequality: UV < 0 (55)

and the past (P) E-coordinates:

U = U(P)(t, r) = − exp{ r − t
b

} = exp{−u
b
}, V = V(P)(t, r) = − exp{ t + r

b
} = − exp{v

b
}, (56)

with the inequality: UV > 0. (57)

The metric can be written in the universal way:

ds2
2 = −dudv = −b2 dU dV∣UV ∣ , UV ≠ 0. (58)

These maps are shown in Figure 1.
To summarize, we obtained the two-dimensional plane divided into four disconnected

regions with E-coordinates (U ,V) and the metric given by (58). In other words, we obtained
that the two-dimensional space is represented as a union of four disconnected regions R, F,
P, and L, each of which is isometric to two-dimensional Minkowski space.
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vtu
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u = ∞

v = -∞

vu

u = ∞
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-3
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1
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3

→
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V = −ev

←
U = −e−u
V = ev

Figure 1. Map of 4 copies M1,1. Here b = 1

with the inequality UV > 0 (3.16)

The metric can be written in the universal way

ds22 = −dudv = −b2dU dV∣UV ∣ , UV ≠ 0 (3.17)

These maps are shown in Fig.??.

To summarize, we have obtained the 2-dimensional plane divided on 4 discon-

nected regions with E-coordinates (U ,V) and the metric given by (??). Or in other

words, we have obtained that two-dimentional space is represented as a union of

– 9 –

Figure 1. Map of 4 copies M1,1. Here, b = 1.

3.2. Geodesics in E-Coordinates

The geodesics in E-coordinates (U ,V) can be obtained simply by changing the variables
from the geodesics in Minkowski space. However, it seems instructive and useful for
quantization to investigate geodesics directly in the E-coordinates. The geodesic equations
for the metric (22) are

V ′(s)2 −V(s)V ′′(s)U(s)V(s)2 = 0, (59)

U ′(s)2 −U(s)U ′′(s)U(s)2V(s) = 0. (60)

These geodesic Equations (59) and (60) can be solved to obtain

V(s) = c2ec1s, U(s) = c4ec3s; (61)

here, −∞ < s <∞.
To guaranty that the geodesics run in one of the regions R, F, L, P, we have to take

R ∶ c2 > 0, c4 < 0, F ∶ c2 > 0, c4 > 0 (62)

L ∶ c2 < 0, c4 > 0, P ∶ c2 < 0, c4 < 0 (63)
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Here, −∞ < s <∞, and c1 and c3 can have any signs.
The geodesics (61) in the (T ,X ) coordinates are

X (s) = 1
2
(c4ec3s − c2ec1s), T (s) = 1

2
(c2ec1s + c4ec3s). (64)

One can check that these geodesics after mapping to t, x (Minkowski space coordinates)
are (as should be) the straight lines:

t = t(s) = b arctanh
T (s)X (s) = 1

2
(s(−c1 − c3))− log(− c2

c4
)) (65)

r = r(s) = 2b log(X (s)2 − T (s)2) = 2b((c1 + c3)s+ log(−c2c4)). (66)

We have three types of geodesics:

• c1c3 < 0. In this case, both “ends” of the geodesics are in infinities; see, for example,
the plot in Figure 2A.

• c1c3 > 0. In this case, one “end” of the geodesics is at infinity and the second one is at
zero; see, for example, the plot in Figure 2B.

• c1 = 0, c3 ≠ 0 or c3 = 0, c1 ≠ 0. In this case, the geodesics are bounded by the characteris-
tics U = 0 or V = 0; see Figure 3.

From (61), it follows that

( V
c2

)c3 = ( U
c4

)c1

. (67)

3.3. Acceleration in E-Coordinates

Let us consider the time-like trajectory located at X = X0. The proper time τ:

τ = b arctan
⎛⎜⎝

T√X 2
0 − T 2

⎞⎟⎠+ τ0. (68)

From (68), one has

T = ±X0 sin(τ − τ0

b
). (69)

We see that it takes the finite time T , or τ, to reach the characteristic X = T .
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• c1 = 0, c3 ≠ 0 or c3 = 0, c1 ≠ 0, in this case geodesics are bounded by characteris-

tics U = 0 or V = 0, see Fig.??

From (??) follows that

( V
c2

)c3 = (U
c4

)c1 (3.26)

c1 = -1, c2 = 2, c3 = 1, c4 = 1

c1 = -1, c2 = -2, c3 = 1, c4 = 1

c1 = -1, c2 = 2, c3 = 1, c4 = -1

c1 = -1, c2 = -2, c3 = 1, c4 = -1

-10 -5 5 10
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-5

5

10

c1 = 1, c2 = 1, c3 = 2, c4 = 1

c1 = 1, c2 = -1, c3 = 2, c4 = 1

c1 = 1, c2 = 1, c3 = 2, c4 = -1

c1 = 1, c2 = -1, c3 = 2, c4 = -1

-4 -2 2 4

-4

-2

2

4

TT

XX

A B

Figure 2. Geodesics for different values of ci, i = 1,2,3,4.
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Figure 3. Geodesics for the case when c1 or c3 is equal to 0.

– 11 –

Figure 2. Geodesics for different values of ci, i = 1, 2, 3, 4. (A) For all lines c1 = −1, c3 = 1 and for dark
red line c2 = 2, c4 = 1, for blue line c2 = −2, c4 = 1, for green line c2 = −2, c4 = −1 and for cyan line
c2 = 2, c4 = −1. (B) For all lines c1 = 1, c3 = 2 and for dark red line c2 = 1, c4 = 1, for blue line c2 = −1,
c4 = 1, for green line c2 = −1, c4 = −1 and for cyan line c2 = 1, c4 = −1.

• c1 = 0, c3 ≠ 0 or c3 = 0, c1 ≠ 0, in this case geodesics are bounded by characteris-

tics U = 0 or V = 0, see Fig.??

From (??) follows that

( V
c2

)c3 = (U
c4

)c1 (3.26)
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Figure 2. Geodesics for different values of ci, i = 1,2,3,4.
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Figure 3. Geodesics for the case when c1 or c3 is equal to 0.
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Figure 3. Geodesics for the cases when c1 or c3 is equal to 0.

In Figure 4A,B, we plot trajectories with X0 = 1 (red) and X0 = 4 (blue) in the (X ,T )
and (t, x) planes, respectively. We can parameterize these trajectories in the Minkowski
coordinatesby τ:

t = b arctanh(sin(τ − τ0

b
)), (70)

r = b
2

log(X 2
0 cos2(τ − τ0

b
)). (71)
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3.3 Acceleration in E-coordinates

Let us consider the time-like trajectory with located at X = X0. The proper time τ

τ = barctan
⎛⎝ T√X 2

0 − T 2

⎞⎠ + τ0 (3.27)

From (??) one has

T = ±X0 sin(τ − τ0
b

) (3.28)

We see that it takes the finite time T , or τ , to reach the characteristic X = T .

-4 -2 0 2 4

-4

-2

0

2

4

-15 -10 -5 5 x

-20

-10

10

20

tT

X

A B

Figure 4. Trajectories with X0 = 1 (red) and X0 = 4 (blue) in (X ,T ) plane (A) and (x, t)
plane (B). We can take τ0 = 0.

In Fig.??.A and Fig.??.B. we plot trajectories with X0 = 1 (red) and X0 = 4 (blue)

in (X ,T ) and (t, x) planes, respectively. We can parameterize these trajectories in

the Minkowski by τ :

t = barctanh(sin(τ − τ0
b

)) (3.29)

r = b

2
log (X 2

0 cos2 (τ − τ0
b

)) (3.30)

We get

V 0 = dt

dτ
= X0√X 2

0 − T 2
, V 1 = dx

dτ
= T√X 2

0 − T 2
, (3.31)

W 0 = dV 0

dτ
= X0T
b (X 2

0 − T 2) , W 1 = dV 1

dτ
= X 2

0

b (X 2
0 − T 2) . (3.32)

We have

W 2 ≡ −(W 0)2 + (W 1)2 = X 2
0

b2 (X 2
0 − T 2) . (3.33)

– 12 –

Figure 4. Trajectories with X0 = 1 (red) and X0 = 4 (blue) in the (X ,T ) plane (A) and (x, t) plane (B).
We can take τ0 = 0.

We obtain

V0 = dt
dτ

= X0√X 2
0 − T 2

, V1 = dx
dτ

= T√X 2
0 − T 2

, (72)

W0 = dV0

dτ
= X0T

b(X 2
0 − T 2) , W1 = dV1

dτ
= X 2

0

b(X 2
0 − T 2) . (73)

We have

W2 ≡ −(W0)2 + (W1)2 = X 2
0

b2(X 2
0 − T 2) . (74)

One can also rewrite (74) in terms of t:

W2 = 1
b2 cosh2 t

b
, (75)

or in term of τ

W2 = 1
b2 cos2( τ−τ0

b ) . (76)

These calculations show that the acceleration W of the E-trajectory with “X = X0” in
the inertial coordinate system (t, x) increases with increasing of the inertial time t > 0 as
W ∼ 1

b et/b. If b → 0, this acceleration increases to infinity, and it decreases to 0 when b →∞.
The acceleration of the E-observer located at X0 depends on its E-time T (see Figure 5),

as well as it own proper time. The proper time does not depend on the location. In all cases,
the acceleration is inversely proportional to the b parameter.
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One can also rewrite (??) in term of t

W 2 = 1

b2
cosh2 t

b
, (3.34)

or in term of τ

W 2 = 1

b2 cos2 ( τ−τ0b ) . (3.35)

These calculations show that the acceleration W of the E-trajectory with ”X = X0”

in the inertial coordinate system (t, x) increases with increasing of the inertial time

t > 0 as W ∼ 1
be
t/b. If b → 0 this acceleration increases to infinity, and decreases to 0

when b→∞.

1

2

0.5 1.0 1.5 2.0 2.5

0.3

0.4

0.5

0.6

0.7

W

T
X0=1X0=2

b = 1

b = 0.5

0 1 2 3 4 5 6

1

2

3

4

5

W

τ

A B

Figure 5. Accelerations of E-observers located at X0 = 1 (red) and X0 = 2 (blue) agains

their E-time T , b = 1 (A) and proper time τ , b = 0.5 (gray) and b = 1 (green) (B).

Acceleration of the E-observer located at X0 depends on its E-time T (see Fig.??)

as well as it own proper time. The proper time does not depend on the location. In

all cases, the acceleration is inversely proportional to the b parameter.

3.4 Comparison of Exponential and Rindler coordinates

The accelerated observer traveling in Minkowski with constant acceleration a is de-

scribed by the Rindler coordinates (ν, ϑ) related with the inertial coordinates (u, v)
[? ? ]

u = −1

a
e−aν , v = 1

a
eaϑ, a > 0. [[− log(−au)

a
= ν]] (3.36)

These transformations define the Rindler observer as an observer that is ”at rest”

in Rindler coordinates, i.e., maintaining constant ξ and only varying η; a represents

the proper acceleration (along the hyperbola ξ = 0) of the Rindler observer, whose
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Figure 5. Accelerations of E-observers located at X0 = 1 (red) and X0 = 2 (blue) against their E-time
T , b = 1 (A) and proper time τ, b = 0.5 (gray) and b = 1 (green) (B).

3.4. Comparison of Exponential and Rindler Coordinates

The accelerated observer traveling in Minkowski spacewith constant acceleration a is
described by the Rindler coordinates (ν, ϑ) related to the inertial coordinates (u, v) [11,12]:

u = −1
a

e−aν, v = 1
a

eaϑ, a > 0. (77)

These transformations define the Rindler observer as an observer that is “at rest” in
Rindler coordinates, i.e., maintaining constant ξ and only varying η; a represents the proper
acceleration (along the hyperbola ξ = 0) of the Rindler observer, whose proper time is
defined to be equal to the Rindler coordinate time. The Rindler observer at rest in the (η, ξ)
Rindler coordinates travels along the hyperbola:

uv = eξ0 (78)

in the inertial coordinates (t, x); see Figure 6.

proper time is defined to be equal to Rindler coordinate time). The Rindler observer

in the rest in (η, ξ) Rindler coordinate travels along the hyperbola

uv = eξ0 (3.37)

in the inertial coordinates (t, x), see Fig.??.

ξ = 2
ξ = 1

u v

←Ð
v = eη+ξ0
u = −eη−ξ0

ξ

η

ξ = 2
ξ = 1

A B

Figure 6. Rindler observers ”in the rest” (located at ξ = 1,2) move along hyperbolae in

the inertial coordinates with constant acceleration.

The transformation formulas between the inertial coordinates (t, x) and the

Rindler coordinates (ξ, η) (for simplicity we consider 2-dimensional case) are dif-

ferent in four parts of the inertial coordinates plane M1,1. Four different maps of

M1,1 to four different parts of inertial plane [? ? ]. Below we present them in

light-cone coordinates u, v and ν, ϑ:

u = t − x, v = t + x, (3.38)

ν = η − ξ, ϑ = η + ξ, (3.39)

and

R ∶ u = −1

a
e−aν , v = 1

a
eaϑ, (3.40)

F ∶ u = 1

a
e−aν , v = 1

a
eaϑ, (3.41)

L ∶ u = 1

a
e−aν , v = −1

a
eaϑ, (3.42)

P ∶ u = −1

a
e−aν , v = −1

a
eaϑ. (3.43)

In all cases ϑ ∈ (−∞,+∞), ν ∈ (−∞,+∞), see Fig.??.

As it is well known, the velocity and acceleration along the trajectory ξ = ξ0 in

the inertial coordinates

t = eaξ0

a
sinh(aη), x = eaξ0

a
(cosh(aη) − 1) (3.44)

– 14 –

Figure 6. (A) Rindler observers “at rest” in ξ coordinates (located at ξ = 1, 2) move along hyperbolae
in the inertial coordinates with constant acceleration. (B) Rindler observers located at ξ = 1, 2 in ξ

coordinates.

The transformation formulas between the inertial coordinates (t, x) and the Rindler
coordinates (ξ, η) (for simplicity, we considered the two-dimensional case) are different in
the four parts of the inertial coordinates plane M1,1. Four different maps of M1,1 mapto four
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different parts of inertial plane [11,12]. Below, we present them in light-cone coordinates
u, v and ν, ϑ:

u = t − x, v = t + x, (79)

ν = η − ξ, ϑ = η + ξ, (80)

and

R ∶ u = −1
a

e−aν, v = 1
a

eaϑ, (81)

F ∶ u = 1
a

e−aν, v = 1
a

eaϑ, (82)

L ∶ u = 1
a

e−aν, v = −1
a

eaϑ, (83)

P ∶ u = −1
a

e−aν, v = −1
a

eaϑ. (84)

In all cases, ϑ ∈ (−∞,+∞), ν ∈ (−∞,+∞); see Figure 7.
As is well known, the velocity and acceleration along the trajectory ξ = ξ0 in the inertial

coordinates:

t = eaξ0

a
sinh(aη), x = eaξ0

a
(cosh(aη)− 1) (85)

are

u0 = dt
ds

= cosh(aη), u1 = dx
ds

= sinh(aτ), since ds = eaξ0 dη (86)

w0 = du0

ds
= a sinh(aτ)e−aξ0 , w1 = du1

ds
= a cosh(aτ)e−aξ0

and we obtain that the velocity squared is equal to 1 and the acceleration squared is equal
to a2e−2aξ0 .

We see that the formulas for the maps (81)–(84) are the same as in the E-case, but there
is the essential difference in the forms of the corresponding metrics. In the Rindler case, the
metrics in all four spaces with the (ξ, η) coordinates are nontrivial:

ds2
Rindler = ±α2ea(ϑ−ν)dϑ dν (87)

with “−” for (u, v) ∈ R or L, and “+” for (u, v) ∈ F or P.
In the case of the E-thermal coordinates, the metrics in all four spaces with the co-

ordinates (u, v) are trivial, as the first formula in (50), but the metric in two-dimensional
space with coordinates (T ,X ) is nontrivial and given by (58) or, in detail, by (22) and (53).
Therefore, the maps between the pairs of coordinates (U ,V)↔ (u, v) and (U , V )↔ (ν, ϑ)
are given by the same formulas, but the metrics are different.
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ϑ = −∞

↓ u = e−ν v = eϑ

↑ u = −e−ν , v = −eϑ

→
L∶ u = e−ν

v = −eϑ
←

R∶ u = −e−ν
v = eϑ

Figure 7. Map of 4 copies of M1,1 to one M1,1. Here a = 1

4 General E-coordinates

4.1 E-coordinates

We define here an extension of E-coordinates to the arbitrary static metric of the

form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (4.1)

Define also

r∗ = r∗(r) = ∫ dr

f(r) (4.2)

and general Eddington-Finkilstein coordinates

u = t − r∗, v = t + r∗. (4.3)

Then the 2-dim part of the metric becomes

ds22 = −f(r)dudv. (4.4)

– 16 –

Figure 7. Map of 4 copies of M1,1 to one M1,1. Here, a = 1.

4. General E-Coordinates
4.1. E-Coordinates

We define here an extension of the E-coordinates to the arbitrary static metric of the form:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2. (88)

Define also
r∗ = r∗(r) = ∫ dr

f (r) (89)

and the general Eddington–Finkelstein coordinates

u = t − r∗, v = t + r∗. (90)

Then, the 2-dim part of the metric becomes

ds2
2 = − f (r)dudv. (91)

The E-coordinates U , V are defined by the relations:

U = −e−u/B, V = ev/B, B > 0. (92)
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Now, the the 2-dim part of the metric (91) reads

ds2
2 = − f (r)dudv = f (r)B2 dU dV

U V
, (93)

where r is implicitly defined by the relation:

e2r∗/B = −U V . (94)

By introducing the coordinates T = (V +U )/2 and X = (V −U )/2, the metric can be
written in the form:

ds2
2 = f (r)B2−dT 2 + dX 2

−T 2 +X 2 , (95)

where X 2 −T 2 > 0.
Note that, if r∗ and r are constants, then from (94) rewritten as

X 2 −T 2 = e2r∗/B = const, (96)

It follows that we deal with the motion on a hyperbola (96).
In the same way as in Section 2.3, one can show that in the E-coordinates introduced

above for a rather general function f (r), the E-observer will see the Planck distribution of
quanta with temperature

T = 1
2πB

. (97)

It is interesting that one can obtain the temperature distribution for the function f (r)
that has no zeros, i.e., for a metric (7) that does not describe a black hole. For instance, take

f (r) = e−αr, r > 0, α > 0 (98)

and in this case,

r∗ = 1
α
(e−αr − 1), u = t − r∗, v = t + r∗. (99)

In the E-coordinates (92), one obtains the temperature (97).
Note that if there is a black hole with a horizon at rh, f (rh) = 0, f ′(rh) > 0, the metric

for arbitrary B has a coordinate singularity. One can fix B = B0 to avoid this singularity:

B0 = 2
f ′(rh) , κ = 1

2
f ′(rh)⇒ B0 = 1

κ
, (100)

where κ is the surface gravity for the metric (88). Indeed, taking into account that, from (89),
it follows that, as r → rh,

r∗ = ln(r − rh)
f ′(rh) + . . . = ln(r − rh)

2κ
+ . . . , (101)

we obtain that
U V ∼ e2r∗/B ∼ e

ln(r−rh)
Bκ ∼ (r − rh) 1

Bκ (102)

To compensate the first-order zero coming from f (r) near rh, we take B as in (100). We
denote

U ∣
B=B0

= U, V ∣
B=B0

= V. (103)

Note that these formulas reproduce the usual formula, in particular for the Schwarzschild
metric (11).

The coordinates with
B = B0 + b, B0 = 1

κ
, (104)
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we call the general E-coordinates.

4.2. Acceleration of the E-Observer in Black Holes

Now, we can fix X = X0. This trajectory can be parametrized by T , i.e., in the
Schwarzschild coordinates:

t = t(T ), r = r(T ), (105)

t = t(T ) = B
2

log(T +X0

X0 −T
), (106)

r∗ = r∗(T ) = B
2

log(X 2
0 −T 2). (107)

Due to (95) along the trajectory, we have

dT

ds
=

√
X 2

0 −T 2

B
√

f (r) . (108)

Therefore, the velocity components for the observer moving along this trajectory are

u0 = dt
ds

= X0√
f (r)√X 2

0 −T 2
, (109)

u1 = dr
ds

= −
√

f (r)T√
X 2

0 −T 2
. (110)

We have

− f u0u0 + f−1u1u1 = −1. (111)

The components of the moving observer’s acceleration are defined as

w0 = du0

ds
+ Γ0

µνuµuν = du0

dr
dr
ds

+ du0

dT

dT

ds
+ f ′

f
u0u1 (112)

= (− 1
2

f ′ + 1
B
) 1

f
T X0

X 2
0 −T 2

, (113)

w1 = du1

ds
+ Γ1

µνuµuν = du1

dr
dr
ds

+ du1

dT

dT

ds
+ f ′

2 f
( f 2u0u0 − u1u1) (114)

= ( f ′

2
− 1

B
) X 2

0(X 2
0 −T 2) . (115)

The square of the acceleration is

w2 = − f (w0)2 + f−1(w1)2 = 1
f
( f ′

2
− 1

B
)2 ⋅ X 2

0

X 2
0 −T 2

. (116)

One can check that − f u0 ⋅w0 + f−1u1 ⋅w1 = 0.

4.3. Examples: Black Holes in E-Coordinates
4.3.1. E-Observer in the Schwarzschild Black Hole

For the Schwarzschild solution,

f (r) = 1− 2M
r

(117)
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and
r∗ = r + 2M log( r

2M
− 1), (118)

and due to (107)

r∗ = r∗(T ) = B
2

log(X 2
0 −T 2) (119)

and

T 2 = X 2
0 − e2r/B( r

2M
− 1)4M/B

(120)

For the acceleration, we have

w2 = X 2
0 ( 1

B − M
r2 )2

1− 2M
r

e−2r/B( r
2M

− 1)−4M/B
. (121)

The dependence of acceleration (121) on r for fixed M = 1 and along the trajectory (106)
and (107) with X0 = 1.5 is presented in Figure 8. Let us note that, in some plots, the
fonts used in the legends are not the same as the Latex fonts used in the equations. In
particular, t, r, w, etc., are presented using different fonts. We hope that this does not lead
to misunderstanding. We see that, for B < 4M, the acceleration is infinite at the horizon
zh = 2M. For B = 4M, the acceleration at the horizon is related to the surface gravity
κ = 1/4M:

w2∣r=rh = 4X 2
0

e
κ2, (122)

where κ = 1/4 and w2 = 0.20693. For B > 4M, the acceleration near the horizon is infinite
and tends to zero at r = r0 = √

BM; for B = 3.5, r0 = √
4.1 = 2.02485. The locations of these

zeros are shown in the contour plot in Figure 9B by the magenta line.

acceleration is infinite at the horizon zh = 2M . For B = 4M the acceleration at the

horizon is related with the surface gravity κ = 1/4M ,

w2∣r=rh = 4X 2
0

e
κ2 (4.35)

where κ = 1/4 and w2 = 0.20693. For B > 4M the acceleration near horizon is infinite

and tends to zero at r = r0 = √
BM ; for B = 3.5 r0 = √

4.1 = 2.02485. The locations

of these zeros are shown at the contourplot in Fig.??.B by the magenta line.
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M=1 X0=1.5
w2(r) , B = 4.1
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A B

Figure 8. A) The trajectories of stationary observer at (T ,X ) coordinates with X =
X0 in the the Schwarzschild coordinates for different B and M = 1, X0 = 1.5. B) The

acceleration w2 vs r (blue lines) and T 2 vs r (green lines) for trajectories in shown on A).

The red dashed line shows r∗ = r∗(r) for the same M and X0. The dashed-dotted lines

show the restrictions on r following from the requirement T 2 > 0.

– 20 –

Figure 8. (A) The trajectories of a stationary observer in the (T , X ) coordinates with X = X0 in
the the Schwarzschild coordinates for different B and M = 1, X0 = 1.5. (B) The acceleration w2 vs. r
(blue lines) and T2 vs. r (green lines) for the trajectories in shown in (A). The red dashed line shows
r∗ = r∗(r) for the same M and X0. The dashed-dotted lines show the restrictions on r following from
the requirement T2 > 0.
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Figure 9. The contourplot versions of the plot presented in Fig.??. Here on horizontal

axes we show r and on vertical B, M = 1, X0 = 1.5. The acceptable region with T 2 > 0 is

bounded by solid green line. Behaviour of w2 mainly for B < 4M (A) and for B > 4M only

(B). Here the magenta line shows locations of points with w2 = 0. These points exist only

for B > 4M .

4.3.2 E-observer in the Reissner-Nordstrom black hole

For the RN solution one has

f(r) = 1 − 2M

r
+ Q2

r2
, (4.36)

r∗ = r + r+
r+ − r− ln(r − r+) − r−

r+ − r− ln(r − r−), (4.37)

where r± =M ±√
M2 −Q2, M ≥ Q. u, v are defined as u = t − r∗, v = t + r∗, [? ].

Using the general formula (??) we find the dependence of the acceleration on r

along the trajectory X = X0 and the results are presented in Fig.??. We see that

the qualitative behaviour of acceleration dependence on r is similar to the previous

case considered in Sect.??. For B < 1/κ(M,Q), here 1/κ(1,0.2) = 4.00042, the

acceleration near horizon is infinite and monotonically decreases to zero for r →∞.

For B = 1/κ(M,Q) the acceleration at the horizon r = r+ is finite, here r+ = 1.9798 and

w2∣r+ = 0.10448, and for r → ∞ decreases to 0. For B > 1/κ(M,Q) the acceleration

becomes infinite at the horizon and decreases up to zero at r = r0(M,Q).

– 21 –

Figure 9. The contour plot versions of the plot presented in Figure 8. Here, on the horizontal axes,
we show r and, on the vertical B, M = 1, X0 = 1.5. The acceptable region with T2 > 0 is bounded by
the solid green line. The behavior of w2 mainly for B < 4M (A) and for B > 4M only (B). Here, the
magenta line shows the locations of the points with w2 = 0. These points exist only for B > 4M.

4.3.2. E-Observer in the Reissner–Nordstrom Black Hole

For the RN solution, one has

f (r) = 1− 2M
r

+ Q2

r2 , (123)

r∗ = r + r+
r+ − r−

ln(r − r+)− r−
r+ − r−

ln(r − r−), (124)

where r± = M ±√
M2 −Q2, M ≥ Q. u, v are defined as u = t − r∗, v = t + r∗ [6].

Using the general formula (116), we find the dependence of the acceleration on r along
the trajectory X = X0, and the results are presented in Figure 10. We see that the qualitative
behavior of the acceleration dependence on r is similar to the previous case considered
in Section 4.3.1. For B < 1/κ(M, Q), here, 1/κ(1, 0.2) = 4.00042, the acceleration near the
horizon is infinite and monotonically decreases to zero for r →∞. For B = 1/κ(M, Q), the
acceleration at the horizon r = r+ is finite; here, r+ = 1.9798 and w2∣r+ = 0.10448; for r →∞,
it decreases to 0; for B > 1/κ(M, Q), the acceleration becomes infinite at the horizon and
decreases up to zero at r = r0(M, Q).
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Figure 10. A) The trajectories with X = X0 in the RN spacetime in the Schwarzschild

coordinates for different B and M = 1, X0 = 1.5,Q2 = 0.2. B) w2 vs r (blue) and T 2 vs

r (green) for trajectories shown in A). The red dashed line shows r∗ = r∗(r) for the same

M,X0. The dashed-dotted lines show the restrictions on r following from the requirement

T 2 > 0.

4.3.3 E-observer in Schwarzschild-AdS

For the Schwarzschild-AdS solution one has

f(r) = 1 − 2M

r
+ k2r2 (4.38)

and

r∗(r) = ∫ r

0

dr′
f(r′) = rh

3k2r2h + 1
[ log ∣1 − r

rh
∣ − 1

2
log(1 + k2r (rh + r)

k2r2h + 1
) ]

+ (3k2r2h + 2)
k
√

3k2r2h + 4
arctan

⎛⎝ kr
√

3k2r2h + 4

2 (k2r2h + 1) + k2rrh
⎞⎠ (4.39)

where

rh = 3

√
M

k2

⎛⎜⎝
3

¿ÁÁÀ
1 −

√
1

27k2M2
+ 1 + 3

¿ÁÁÀ√
1

27k2M2
+ 1 + 1

⎞⎟⎠ (4.40)

Fig.?? shows the dependence of the acceleration along trajectories with X0 = 1.5

and different B in the AdS-Sch metric with M = 1 and varying B. We see that the

acceleration becomes infinite near the horizon, decreases monotonically for B < Bc

(the thick line in Fig.A) and has minimum equal to zero for B > Bc (the line of

moderate thickness in Fig.A). For B > Br this minimal value is reached out of the

acceptable region (the thin line in Fig.A).
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Figure 10. (A) The trajectories with X = X0 in the RN spacetime in the Schwarzschild coordinates
for different B and M = 1, X0 = 1.5, Q2 = 0.2. (B) w2 vs. r (blue) and T2 vs. r (green) for the trajectories
shown in (A). The red dashed line shows r∗ = r∗(r) for the same M, X0. The dashed-dotted lines
show the restrictions on r following from the requirement T2 > 0.
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4.3.3. E-Observer in Schwarzschild-AdS

For the Schwarzschild-AdS solution, one has

f (r) = 1− 2M
r

+ k2r2 (125)

and

r∗(r) = ∫ r

0

dr′

f (r′) = rh

3k2r2
h + 1

[ log∣1− r
rh

∣− 1
2

log
⎛⎝1+ k2r(rh + r)

k2r2
h + 1

⎞⎠]
+ (3k2r2

h + 2)
k
√

3k2r2
h + 4

arctan
⎛⎜⎝

kr
√

3k2r2
h + 4

2(k2r2
h + 1)+ k2rrh

⎞⎟⎠ (126)

where

rh = 3

√
M
k2

⎛⎜⎝
3

¿ÁÁÀ1−
√

1
27k2M2 + 1+ 3

¿ÁÁÀ√
1

27k2M2 + 1+ 1
⎞⎟⎠ (127)

Figure 11 shows the dependence of the acceleration along the trajectories with X0 = 1.5
and different B in the AdS-Sch metric with M = 1 and varying B. We see that the acceleration
becomes infinite near the horizon, decreases monotonically for B < Bc (the thick line in
Figure 11A), and has the minimum equal to zero for B > Bc (the line of moderate thickness
in Figure 11A). For B > Br, this minimal value is reached in the acceptable region (the thin
line in Figure 11A).
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Figure 11. A) The trajectories with X0 = 1.5 in the AdS-Schwarzschild spacetime in the

Schwarzschild coordinates for different B and M = 1 are shown by darker cyan lines. The

acceleration w2 along these trajectories are shown by blue lines. T 2 for these trajectories

for the same M = 1 and X0 are shown by green lines. The red dashed line shows r∗ = r∗(r)
for the same M,X0. The dashed-dotted lines show the restrictions on r following from the

requirement T 2 > 0. The in-plot shows the zoom of the original plot for B = 2.615. B) The

contour plot version of A) with r in the horizontal direction and B on the vertical one.

The darker magenta line shows the acceleration w2 zeroes locations.

4.3.4 E-observer in Schwarzschild-dS

For the Schwarzschild-dS solution one has

f(r) = 1 − 2M

r
− k2r2 (4.41)

and for 0 < 27k2M2 < 1 there exist two positive roots r1 and r2 of f(r) such that

0 < 2M < r1 < 3M < r2,
r1 = 2

k
√

3
cos(α/3 + 4π/3), r2 = 2

k
√

3
cos(α/3) with cosα = −3Mk

√
3 (4.42)

There also is a negative root

r3 = 2

k
√

3
cos(α/3 + 2π/3). (4.43)

Here r1 and r2 describe the black-hole event horizon and the cosmological event

horizon, respectively. Now we can write r∗ in the form

r∗ = ∫ dr

f(r) = − 1

k2
(A ln(r1 − r) +B ln(r − r2) +C ln(r − r3)) +D, (4.44)

where

A = r1(r1 − r−)(r1 − r2) , B = −r2(r2 − r−)(r1 − r2) , C = r−(r2 − r−)(r1 − r−) (4.45)

– 23 –

Figure 11. (A) The trajectories with X0 = 1.5 in the AdS-Schwarzschild spacetime in the Schwarzschild
coordinates for different B and M = 1 are shown by darker cyan lines. The accelerations w2 along
these trajectories are shown by blue lines. T2 for these trajectories for the same M = 1 and X0 are
shown by green lines. The red dashed line shows r∗ = r∗(r) for the same M, X0. The dashed-dotted
lines show the restrictions on r following from the requirement T2 > 0. The inset shows the zoom of
the original plot for B = 2.615. (B) The contour plot version of (A) with r in the horizontal direction
and B in the vertical one. The darker magenta line shows the acceleration w2 zeroes’ locations.

4.3.4. E-Observer in Schwarzschild-dS

For the Schwarzschild-dS solution, one has

f (r) = 1− 2M
r

− k2r2 (128)
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and for 0 < 27k2M2 < 1, there exist two positive roots r1 and r2 of f (r) such that 0 < 2M <
r1 < 3M < r2:

r1 = 2
k
√

3
cos(α/3+ 4π/3), r2 = 2

k
√

3
cos(α/3) with cos α = −3Mk

√
3 (129)

There is also a negative root:

r3 = 2
k
√

3
cos(α/3+ 2π/3). (130)

Here, r1 and r2 describe the black hole event horizon and the cosmological event
horizon, respectively. Now, we can write r∗ in the form

r∗ = ∫ dr
f (r) = − 1

k2 (A ln(r1 − r)+ B ln(r − r2)+C ln(r − r3))+D, (131)

where:

A = r1(r1 − r−)(r1 − r2) , B = −r2(r2 − r−)(r1 − r2) , C = r−(r2 − r−)(r1 − r−) (132)

We adjust D to remove the imaginary part from the expression for r∗.
Figure 12 shows the dependence of the acceleration along the trajectories with X0 = 1.5

and different B in the dS-Sch metric with M = 1 and varying k. We see that the acceleration
becomes infinite near the horizon and decreases monotonically for B < B0 (the thick line in
Figure 12A). For B = B0, the acceleration is finite at the horizon, and for B > B0, it is infinite
at the horizon and has the minimum equal to zero. For B large enough, this minimal value
is reached in the acceptable region (the thin line in Figure 12A).

We adjust D to remove the imaginary part from expression for r∗.
Fig.?? shows the dependence of the acceleration along trajectories with X0 = 1.5

and different B in the dS-Sch metric with M = 1 and varying k. We see that the

acceleration becomes infinite near the horizon and decreases monotonically forB < B0

(the thick line in Fig.A). For B = B0 the acceleration is finite at the horizon and for

B > B0 it is infinite at the horizon and has minimum equal to zero. For B large

enough this minimal value is reached out of the acceptable region (the thin line in

Fig.A).
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Figure 12. A) The trajectories with X0 = 1.5 in the Schwarzschild coordinates for dS-

Schwarzschild metric. B) w2 vs r (blue) and T 2 vs r(green) for different B and M = 1.

The red dashed line shows r∗ = r∗(r)/25 for the same M,X0.
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Figure 12. (A) The trajectories with X0 = 1.5 in the Schwarzschild coordinates for the dS-
Schwarzschild metric. (B) w2 vs. r (blue) and T2 vs. r(green) for different B and M = 1. The
red dashed line shows r∗ = r∗(r)/25 for the same M, X0.

5. General L-Coordinates
5.1. L-Coordinates

Having in mind Formulas (7) and (89)–(91), we define the L-coordinates ν, ϑ by the
relations

ν = −1
a

log(−au), ϑ = 1
a

log(av). a > 0 (133)

To have the possibility to send a → 0, one can use a modified definition):

u = −1
a
(e−aν−1), v = 1

a
(eaϑ−1), a > 0, (134)
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and in the case of (134) r∗ = 1
2a(eaϑ + e−aν − 2).

In terms of the coordinates (ϑ, ν), the metric (91) reads

ds2
2 = − f (r)dudv = − f (r)ea(ϑ−ν)dνdϑ, ν, ϑ ∈ (−∞,∞) (135)

where r = r(ϑ, ν) is defined in two steps: first, r is defined as r = r(r∗) by the relation (89)
and, then, r∗ as a function of ϑ, ν using:

r∗ = 1
2a

(eaϑ + e−aν). (136)

By introducing the coordinates:

η = (ϑ + ν)/2, ξ = (ϑ − ν)/2 (137)

the metric (135) can by rewritten as

ds2 = − f (r)ea(ϑ−ν)dνdϑ = f (r)e2aξ(−dη2 + dξ2), (138)

that is, up to the conformal factor f (r), the Rindler metric on the (η, ξ)-plane:

ds2
Rindler = e2aξ(−dη2 + dξ2). (139)

From (136) and (137) follow the relations:

r∗ = eaξ cosh(aη)
a

, t = eaξ sinh(aη)
a

. (140)

Hence, in the case of (136), one obtains

r2
∗
− t2 = e2aξ

a2 ; (141)

in the case of (134), one obtains

(r∗ + 1
a
)2 − t2 = e2aξ

a2 (142)

In both cases, if ξ is a constant, one has a motion along a hyperbola. In particular, if one
takes ξ = 0, then the parameter 1/a is a semi-axis of the hyperbola. Therefore, for the
two-dimensional part of the general spherically symmetric metric (138), the parameter 1/a
is a semi-axis of the hyperbola.

It will be shown below, in Section 5.4, that, for a rather general metric in the form (138),
the temperature is

T = a
2π

. (143)

The temperature (154) does not depend on the form of the function f (r) in the metric (7).
However, the trajectory of the L-observer does depend on f (r) through the form of r∗.

5.2. Acceleration along Trajectories ξ = ξ0 in Black Hole Backgrounds

Let us consider an observer moving along this hyperbola, i.e., along the trajectory (140)
with ξ = ξ0 in the (t, r∗)-plane. One can parametrize this trajectory as

r∗ = r∗(η) = eaξ0 cosh(aη)
a

, (144)

t = t(η) = eaξ0 sinh(aη)
a

. (145)

This parametrization means that r∗ > 0, or, more precisely, that r∗ > eaξ0
a .
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One can find the velocity and acceleration along this trajectory. Indeed, along this
trajectory, the interval is

ds = √
f (r)eaξ0 dη, here ds = ∣ds∣, (146)

and the components of the velocity along this trajectory are

u0 = dt
ds

= 1√
f (r) cosh(aη),

u1 = dr
ds

= √
f (r) sinh(aη). (147)

We see that the square of the velocity is equal to −1, − f (u0)2 + f−1(u1)2 = −1.
The components of the acceleration are

w0 = du0

ds
+ Γ0

µνuµuν = sinh(aη)
f

(ae−aξ0 + f ′

2
cosh aη), (148)

and

w1 = du1

ds
+ Γ1

µνuµuν = cosh(aη)( f ′

2
cosh(aη)+ ae−aξ0), (149)

wϑ = Γϑ
µνuµuν = 0, (150)

wϕ = Γϕ
µνuµuν = 0, (151)

and

w2 ≡ − f (w0)2 + 1
f
(w1)2 = a2e−2aξ0

f
( f ′

2
r∗(r)+ 1)2

. (152)

One can also check the orthogonality condition: − f u0w0 + f−1u1w1 = 0.

5.3. Examples
5.3.1. Schwarzschild Metricin L-Coordinates

According to (152), the acceleration along the trajectory (144) and (145), shown in
Figure 13, is given by

w2 = a2e−2aξ0

1− 2M
r

(1+ M
r
(1+ 2M

r
log( r

2M
− 1)))2

. (153)

Acceleration along these trajectories as a function of r is presented in Figure 14A and
as function of η in Figure 14B.



Symmetry 2022, 14, 2298 23 of 30

and

w2 ≡ −f(w0)2 + 1

f
(w1)2 = a2e−2aξ0

f
(f ′

2
r∗(r) + 1)2 . (5.20)

One can also check the orthogonality condition −fu0w0 + f−1u1w1 = 0.

5.3 Examples.

5.3.1 Schwarzschild in L-coordinates

According (??) the acceleration along the trajectory (??),(??) is given by

w2 = a2e−2aξ0
1 − 2M

r

(1 + M
r

(1 + 2M

r
log( r

2M
− 1)))2 . (5.21)

Acceleration along these trajectories as function of r is presented in Fig.??.A and as

function of η in Fig.??.B.
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Figure 13. Trajectories with ξ = ξ0 in the Schwarzschild spacetime are shown by darker

cyan lines. The red lines show r∗ = r∗(r).
5.3.2 Reissner-Nordstrom in L-coordinates

For the RN solution with f(r) given by (??) the acceleration dependence on r can

be calculated using general formula (??). The results are presented in Fig.??.A.
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Figure 13. Trajectories with ξ = ξ0 in Schwarzschild spacetime are shown by darker cyan lines. The
red lines show r∗ = r∗(r).
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Figure 14. A) The acceleration along the trajectories shown in Fig.?? as function of r.

B) Contourplot for varying r (horizontal) and M (vertical). We see that in the admissible

area the acceleration w2 decreases when r increases.
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Figure 15. A) w2 as function on r along the trajectories with ξ = ξ0 for different Q. The

physical acceptable regions are on the right of dashed lines shown r∗, here M = 1 . B)

Countour plot of A) for varying r and Q, M = 1. The physiacally acceptable domain is

bounded by the green line. We see that the character of the acceleration dependence on r

is the same as for the Schwarzschild case shown in Fig.??.

5.3.3 Schwarzschild-AdS in L-coordinates

Here we consider the Schwarzschild-AdS metric in L-coordinates. For the Schwarzschild-

AdS solution f(r) and r∗ = r∗(r) are given by (??) and (??), respectively. Using

general formula (??) we calculate the acceleration. The result is presented in Fig.??.

– 28 –

Figure 14. (A) The acceleration along the trajectories shown in Figure 13 as a function of r. (B) Contour
plot for varying r (horizontal) and M (vertical). We see that, in the admissible area, the acceleration
w2 decreases when r increases.

5.3.2. Reissner–Nordstrom Metricin L-Coordinates

For the RN solution with f (r) given by (123), the acceleration dependence on r can be
calculated using the general formula (152). The results are presented in Figure 15A.
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Figure 14. A) The acceleration along the trajectories shown in Fig.?? as function of r.

B) Contourplot for varying r (horizontal) and M (vertical). We see that in the admissible
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Figure 15. A) w2 as function on r along the trajectories with ξ = ξ0 for different Q. The

physical acceptable regions are on the right of dashed lines shown r∗, here M = 1 . B)

Countour plot of A) for varying r and Q, M = 1. The physiacally acceptable domain is

bounded by the green line. We see that the character of the acceleration dependence on r

is the same as for the Schwarzschild case shown in Fig.??.

5.3.3 Schwarzschild-AdS in L-coordinates

Here we consider the Schwarzschild-AdS metric in L-coordinates. For the Schwarzschild-

AdS solution f(r) and r∗ = r∗(r) are given by (??) and (??), respectively. Using

general formula (??) we calculate the acceleration. The result is presented in Fig.??.
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Figure 15. (A) w2 as a function of r along the trajectories with ξ = ξ0 for different Q. The physically
acceptable regions are on the right of the dashed lines, shown as r∗; here, M = 1. (B) Contour plot of
(A) for varying r and Q, M = 1. The physically acceptable domain is bounded by the green line. We
see that the character of the acceleration dependence on r is the same as for the Schwarzschild case
shown in Figure 14.

5.3.3. Schwarzschild-AdS Metricin L-Coordinates

Here, we consider the Schwarzschild-AdS metric in the L-coordinates. For the
Schwarzschild-AdS solution, f (r) and r∗ = r∗(r) are given by (125) and (126), respectively.
Using the general formula (152), we calculate the acceleration. The result is presented in
Figure 16.
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Figure 16. A) Trajectories in the AdS-Schwarzschild spacetime in the Schwarzschild

coordinates corresponding to the observer with the fixed space coordinate ξ0 in the (η, ξ)
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Figure 16. (A) Trajectories in the AdS-Schwarzschild spacetime in the Schwarzschild coordinates
corresponding to the observer with the fixed space coordinate ξ0 in the (η, ξ) coordinates; acceleration
w2 vs. r for the trajectories shown in (A) for different values of k; (C) zoom of (B).
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5.3.4. Schwarzschild-dS in L-Coordinates

Trajectories in the dS-Schwarzschild spacetime in the Schwarzschild coordinates are
presented in Figure 17 and acceleration w2 along these trajectories in Figure 18.
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Figure 18. (A) The accelerations along the trajectories with ξ = ξ0 = 1 for different k = 0.1 (darker reds
line), 0.15 (blue lines), and 0.19 (green lines). (B–D) are zooms of (A), as well as the same plots for
ξ0 = 0.8.
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5.4. Temperature in L-Coordinates

Here, we show that the accelerated observer moving along special trajectories defined
by requirement ξ = ξ0 (specifying this condition in terms of the original coordinates, the
form of the trajectory essentially depends on the blackening function f (r)) (see the Hawking
radiation with temperature, defined only by the parameter a):

T = a
2π

. (154)

Indeed, comparing the solution of the wave equation in the (u, v) and (ν, ϑ) coordi-
nates related as in (134):

∂ν∂ϑφ = 0, ν, ϑ ∈ R (155)

∂v∂u Φ = 0, u < 0, v > 0 (156)

we obtain the relation between corresponding to the creation and annihilation operators.
For this purpose, we write, as usual, the representation for solutions of two-dimensional
wave equations as combinations of the left and right modes, φ(ν, ϑ) = φR(ν) + φL(ϑ),
Φ(u, v) = ΦR(u)+ΦL(v).

For the real right mode (for the left mode, all considerations are similar), one has

φR(ν) = ∫ ∞

0
dω( fωBω + f ∗ωB+ω), fω(ν) = 1√

4πω
e−iων, (157)

where [Bω, B+ω′] = δ(ω −ω′) and

ΦR(u) = ∫ ∞

0
dµ(Bµfµ(u)+B+

µf
∗

µ(u)), fµ(u) = 1√
4πµ

e−iµu, (158)

where [Bµ,B+

µ′] = δ(µ − µ′).
Right (and left) modes in different coordinate systems are related as φR(ν) = ΦR(u),

and therefore,

∫ ∞

0
dω( fωBω + f ∗ωB+ω) = ∫ ∞

0
dµ(fµBµ + f∗µB+

µ). (159)

Multiplying (33) by fω′(ν) and integrating the first equation over R, one obtains

Bω = ∫ dµ(β∗ω µB
+

µ + α∗ω µBµ), B+ω = ∫ dµ(βω µBµ + αω µB
+

µ), (160)

where (compare with the calculations in Section 2.3)

βω µ = ∫R dν

2π

√
ω

µ
e−iωνe−iµu, αω µ = ∫R dν

2π

√
ω

µ
e−iωνeiµu. (161)

The Eddington–Finkelstein (EF) observer has the EF vacuum:

Bω ∣0EF >= 0, (162)

i.e., the state ∣0EF⟩ does not contain B particles. However, it contains B particles:

⟨0EF ∣Nω(B)∣0EF⟩ ≡ ⟨0EF ∣B+ωBω ∣0EF⟩ = ∫ ∞

0
dµ ∣βωµ∣2. (163)

The Bogoliubov coefficient βων is given by (35) with u as in (134), so we have

βω µ = 1
2πa

√
ω

µ
e−

πω
2a (µ)−i ω

a
Γ(i

ω

a
), (164)
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and as in (40), we obtain the Planck distribution:

∣βω µ∣2 = 1
2πaµ

1

e
2πω

a − 1
(165)

with the temperature (154). Therefore, we obtained that the temperature depends only on
the acceleration a, but the equation of the trajectory along which the observer is moving
depends on the metric through the coordinate r∗.

6. Characteristic Times
6.1. Time of Black Hole Evaporation

In this section, we briefly discuss the evaporation of a black hole within an approxi-
mation when we ignore the back reaction of radiation, as well as the effects of quantum
gravity. The change of the black hole mass due to evaporation is described by the equation:

dM(t)
dt

= −L (166)

where L is the luminosity, L = C T4 ⋅Area, and C is a constant. In our case, T = 1/2π(b+4M),
and Area = 16πM2, so:

L = C M2

π3(b + 4M)4 (167)

and we have the equation:

dM
dt

= − C M2

π3(b + 4M)4 , M(0) = M0 (168)

Therefore,

∫ M

M0

(b + 4M′)4

M′2 dM′ = − C
π3 t, (169)

Taking the integral, we obtain

− b4

M
+ 8b3 log(M)+ 96b2M + 128bM2 + 256M3

3
= C

π3 (t0 − t), (170)

where t0 is

t0 = π3

C
(− b4

M0
+ 8b3 log(M0)+ 96b2M0 + 128bM2

0 + 256M3
0

3
) (171)

The evaporation time t = tevap.time is the time when M(tevap.time) = ε → 0. In our case,
the leading terms are the first two terms in the LHS of (170) and

− b4

ε
+ 8b3 log(ε) = C

π3 (t0 − tevap.time), (172)

so we obtain

tevap.time ∼ π3

C
(b4

ε
− 8b3 log ε)+ t0 →∞. (173)

In other words,

M(t) = π3

C
b4

t
→ 0 when t →∞ (174)

Note that the leading term is independent of the initial mass of the black hole. Note
also that, if we set b = 0, then the evaporation time is
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tevap.time = 256π3

3C
M3

0. (175)

Let us mention once again that the consideration of black hole evaporation discussed
in this section is rather crude, since we ignored the back reaction of radiation, as well as the
effects of quantum gravity.

6.2. Small Black Holes and Free-Falling Observer

Light falling on a black hole in Schwarzschild spacetime is described by the equation:

t = ∫ r

rh

dr(1− rh
r ) , (176)

where rh = 2M. Here, the integral is divergent at r = rh as rh ln(r − rh). Usually, one
concludes the asymptotics of approaching the horizon to be

r − rh = const e−
t

rh . (177)

Let us consider in more detail the question about the limit rh → 0. The solution of the
equation:

− dt = dr(1− rh
r ) , r(0) = r0 > rh (178)

is − t + r0 − r = 2M log( r − 2M
r0 − 2M

). (179)

When M → 0, one obtains r = r0 − t, as it should be.
From the other side, if we rewrite Equation (179) in the form:

r = 2M + (r0 − 2M)e
r0−t−r

2M (180)

then it is not obvious how to take the limit M → 0.
Let us discuss the leading term when the regularization parameters B1 and B2 are

introduced:

t = ∫ r

rh+B1

dr

(1− rh+B2
r ) , B1 > B2 > 0. (181)

We have

r = rh + B2 + (B1 − B2)e
−t+r−rh−B1

rh+B2 (182)

and for r near rh and large t, one obtains

r = rh + B2 + (B1 − B2)e
−

t
rh+B2 (183)

If rh is large, we can set B2 = 0, and we obtain the asymptotic formula (177). However,
for small black holes, we can take the limit rh → 0 in (182) to obtain

r = B2 + (B1 − B2)e−
t

B2 (184)

This consideration was a motivation to introduce the E-coordinates.

7. Discussions and Conclusions

It was shown that the property to have a thermal distribution for quantum fields
in classical gravitational background is not restricted to the cases of black holes or con-
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stant acceleration, but is valid for any spherically symmetric metric written in thermal
coordinates.

The Hawking temperature for a Schwarzschild black hole TH = 1/8πM is singular
in the limit of vanishing mass M → 0. This seems unphysical since the Schwarzschild
metric in the original coordinates is regular when the black hole mass M tends to zero. It is
reduced to the Minkowski metric, and there are no reasons to believe that the temperature
becomes infinite.

To scrutinize the situation, new coordinates, called thermal coordinates, which depend
on the black hole mass M and the parameter b that defines the semi-axis of a hyper-
bola along which an observer is moving, were used. Using the thermal coordinates, the
Schwarzschild black hole radiation was reconsidered, and it was found that the Hawking
formula for temperature is valid only for large black holes, while for small black holes,
the temperature is T = 1/2π(4M + b). The thermal coordinates are regular in the limit of
vanishing black hole mass M. In this limit, the Schwarzschild metric is reduced to the
Minkowski metric, written in coordinates dual to the Rindler coordinates. The thermal
observer in Minkowski space sees radiation with temperature T = 1/2πb, similar to the
Unruh effect, but in our case, the acceleration is not a constant. Note that the question of
the violation of the weak equivalence principle for thermal coordinates is similar to the
same question for the Rindler coordinates; see, for example, [13]. The physical temperature
of a black hole, calculated in thermal coordinates, differs from the surface gravity. A similar
effect takes place in the Rindler coordinates (the Unruh effect). Similar to the Rindler
thermodynamics [14,15], it would be interesting to discuss thermodynamics in thermal
coordinates.
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